TY - GEN A1 - Xie, Chao A1 - Jia, Tianye A1 - Rolls, Edmund T. A1 - Robbins, Trevor W. A1 - Sahakian, Barbara J. A1 - Zhang, Jie A1 - Liu, Zhaowen A1 - Cheng, Wei A1 - Luo, Qiang A1 - Zac Lo, Chun-Yi A1 - Schumann, Gunter A1 - Feng, Jianfeng A1 - Wang, He A1 - Banaschewski, Tobias A1 - Barker, Gareth J. A1 - Bokde, Arun L.W. A1 - Büchel, Christian A1 - Quinlan, Erin Burke A1 - Desrivières, Sylvane A1 - Flor, Herta A1 - Grigis, Antoine A1 - Garavan, Hugh A1 - Gowland, Penny A1 - Heinz, Andreas A1 - Hohmann, Sarah A1 - Ittermann, Bernd A1 - Martinot, Jean-Luc A1 - Paillère Martinot, Marie-Laure A1 - Nees, Frauke A1 - Papadopoulos Orfanos, Dimitri A1 - Paus, Tomáš A1 - Poustka, Luise A1 - Fröhner, Juliane H. A1 - Smolka, Michael N. A1 - Walter, Henrik A1 - Whelan, Robert T1 - Reward versus nonreward sensitivity of the medial versus lateral orbitofrontal cortex relates to the severity of depressive symptoms T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - BACKGROUND: The orbitofrontal cortex (OFC) is implicated in depression. The hypothesis investigated was whether the OFC sensitivity to reward and nonreward is related to the severity of depressive symptoms. METHODS: Activations in the monetary incentive delay task were measured in the IMAGEN cohort at ages 14 years (n = 1877) and 19 years (n = 1140) with a longitudinal design. Clinically relevant subgroups were compared at ages 19 (high-severity group: n = 116; low-severity group: n = 206) and 14. RESULTS: The medial OFC exhibited graded activation increases to reward, and the lateral OFC had graded activation increases to nonreward. In this general population, the medial and lateral OFC activations were associated with concurrent depressive symptoms at both ages 14 and 19 years. In a stratified high-severity depressive symptom group versus control group comparison, the lateral OFC showed greater sensitivity for the magnitudes of activations related to nonreward in the high-severity group at age 19 (p = .027), and the medial OFC showed decreased sensitivity to the reward magnitudes in the high-severity group at both ages 14 (p = .002) and 19 (p = .002). In a longitudinal design, there was greater sensitivity to nonreward of the lateral OFC at age 14 for those who exhibited high depressive symptom severity later at age 19 (p = .003). CONCLUSIONS: Activations in the lateral OFC relate to sensitivity to not winning, were associated with high depressive symptom scores, and at age 14 predicted the depressive symptoms at ages 16 and 19. Activations in the medial OFC were related to sensitivity to winning, and reduced reward sensitivity was associated with concurrent high depressive symptom scores. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 860 KW - adolescents KW - depression KW - monetary incentive delay task KW - nonreward sensitivity KW - orbitofrontal cortex KW - reward anticipation KW - reward sensitivity KW - ventral striatum Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-557882 SN - 1866-8364 IS - 3 ER - TY - GEN A1 - Mell, Thomas A1 - Wartenburger, Isabell A1 - Marschner, Alexander A1 - Villringer, Arno A1 - Reischies, Friedel M. A1 - Heekeren, Hauke R. T1 - Altered function of ventral striatum during reward-based decision making in old age N2 - Normal aging is associated with a decline in different cognitive domains and local structural atrophy as well as decreases in dopamine concentration and receptor density. To date, it is largely unknown how these reductions in dopaminergic neurotransmission affect human brain regions responsible for reward-based decision making in older adults. Using a learning criterion in a probabilistic object reversal task, we found a learning stage by age interaction in the dorsolateral prefrontal cortex (dIPFC) during decision making. While young adults recruited the dlPFC in an early stage of learning reward associations, older adults recruited the dlPFC when reward associations had already been learned. Furthermore, we found a reduced change in ventral striatal BOLD signal in older as compared to younger adults in response to high probability rewards. Our data are in line with behavioral evidence that older adults show altered stimulus-reward learning and support the view of an altered fronto-striatal interaction during reward-based decision making in old age, which contributes to prolonged learning of reward associations. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 182 KW - aging KW - fMRI KW - reward association learning KW - ventral striatum KW - decision making KW - dorsolateral prefrontal cortex Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-45235 ER - TY - GEN A1 - Hägele, Claudia A1 - Schlagenhauf, Florian A1 - Rapp, Michael Armin A1 - Sterzer, Philipp A1 - Beck, Anne A1 - Bermpohl, Felix A1 - Stoy, Meline A1 - Ströhle, Andreas A1 - Wittchen, Hans-Ulrich A1 - Dolan, Raymond J. A1 - Heinz, Andreas T1 - Dimensional psychiatry BT - reward dysfunction and depressive mood across psychiatric disorders T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - A dimensional approach in psychiatry aims to identify core mechanisms of mental disorders across nosological boundaries. We compared anticipation of reward between major psychiatric disorders, and investigated whether reward anticipation is impaired in several mental disorders and whether there is a common psychopathological correlate (negative mood) of such an impairment. We used functional magnetic resonance imaging (fMRI) and a monetary incentive delay (MID) task to study the functional correlates of reward anticipation across major psychiatric disorders in 184 subjects, with the diagnoses of alcohol dependence (n = 26), schizophrenia (n = 44), major depressive disorder (MDD, n = 24), bipolar disorder (acute manic episode, n = 13), attention deficit/hyperactivity disorder (ADHD, n = 23), and healthy controls (n = 54). Subjects' individual Beck Depression Inventory-and State-Trait Anxiety Inventory-scores were correlated with clusters showing significant activation during reward anticipation. During reward anticipation, we observed significant group differences in ventral striatal (VS) activation: patients with schizophrenia, alcohol dependence, and major depression showed significantly less ventral striatal activation compared to healthy controls. Depressive symptoms correlated with dysfunction in reward anticipation regardless of diagnostic entity. There was no significant correlation between anxiety symptoms and VS functional activation. Our findings demonstrate a neurobiological dysfunction related to reward prediction that transcended disorder categories and was related to measures of depressed mood. The findings underline the potential of a dimensional approach in psychiatry and strengthen the hypothesis that neurobiological research in psychiatric disorders can be targeted at core mechanisms that are likely to be implicated in a range of clinical entities. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 653 KW - dimensional KW - fMRI KW - reward system KW - ventral striatum KW - monetary incentive delay task KW - depressive symptoms Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431064 SN - 1866-8364 IS - 653 SP - 331 EP - 341 ER - TY - GEN A1 - Friedel, Eva A1 - Schlagenhauf, Florian A1 - Beck, Anne A1 - Dolan, Raymond J. A1 - Huys, Quentin J. M. A1 - Rapp, Michael Armin A1 - Heinz, Andreas T1 - The effects of life stress and neural learning signals on fluid intelligence T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Fluid intelligence (fluid IQ), defined as the capacity for rapid problem solving and behavioral adaptation, is known to be modulated by learning and experience. Both stressful life events (SLES) and neural correlates of learning [specifically, a key mediator of adaptive learning in the brain, namely the ventral striatal representation of prediction errors (PE)] have been shown to be associated with individual differences in fluid IQ. Here, we examine the interaction between adaptive learning signals (using a well-characterized probabilistic reversal learning task in combination with fMRI) and SLES on fluid IQ measures. We find that the correlation between ventral striatal BOLD PE and fluid IQ, which we have previously reported, is quantitatively modulated by the amount of reported SLES. Thus, after experiencing adversity, basic neuronal learning signatures appear to align more closely with a general measure of flexible learning (fluid IQ), a finding complementing studies on the effects of acute stress on learning. The results suggest that an understanding of the neurobiological correlates of trait variables like fluid IQ needs to take socioemotional influences such as chronic stress into account. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 621 KW - reinforcement learning KW - prediction error signal KW - ventral striatum KW - stress KW - intelligence Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-435140 SN - 1866-8372 IS - 621 SP - 35 EP - 43 ER -