TY - JOUR A1 - Zen, Achmad A1 - Saphiannikova, Marina A1 - Neher, Dieter A1 - Grenzer, Jörg A1 - Grigorian, Souren A. A1 - Pietsch, Ullrich A1 - Asawapirom, Udom A1 - Janietz, Silvia A1 - Scherf, Ullrich A1 - Lieberwirth, Ingo A1 - Wegner, Gerhard T1 - Effect of molecular weight on the structure and crystallinity of poly(3-hexylthiophene) N2 - Recently, two different groups have reported independently that the mobility of field-effect transistors made from regioregular poly(3-hexylthiophene) (P3HT) increases strongly with molecular weight. Two different models were presented: one proposing carrier trapping at grain boundaries and the second putting emphasis on the conformation and packing of the polymer chains in the thin layers for different molecular weights. Here, we present the results of detailed investigations of powders and thin films of deuterated P3HT fractions with different molecular weight. For powder samples, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were used to investigate the structure and crystallization behavior of the polymers. The GPC investigations show that all weight fractions possess a rather broad molecular weight distribution. DSC measurements reveal a strong decrease of the crystallization temperature and, most important, a significant decrease of the degree of crystallinity with decreasing molecular weight. To study the structure of thin layers in lateral and vertical directions, both transmission electron microscopy (TEM) and X-ray grazing incidence diffraction (GID) were utilized. These methods show that thin layers of the low molecular weight fraction consist of well-defined crystalline domains embedded in a disordered matrix. We propose that the transport properties of layers prepared from fractions of poly(3-hexylthiophene) with different molecular weight are largely determined by the crystallinity of the samples and not by the perfection of the packing of the chains in the individual crystallites Y1 - 2006 UR - http://pubs.acs.org/doi/full/10.1021/ma0521349 U6 - https://doi.org/10.1021/Ma0521349 ER - TY - JOUR A1 - Zen, Achmad A1 - Saphiannikova, Marina A1 - Neher, Dieter A1 - Asawapirom, Udom A1 - Scherf, Ullrich T1 - Comparative study of the field-effect mobility of a copolymer and a binary blend based on poly(3- alkylthiophene)s N2 - The performance of highly soluble regioregular poly[ (3-hexylthiophene)-co-(3-octylthiophetie)] (P3HTOT) as a semiconducting material in organic field-effect transistors (OFETs) is presented in comparison to that of the corresponding homopolymers. Transistors made from as-prepared layers of P3HTOT exhibit a mobility of ca. 7 x 10(-3) cm(2) V-1 s(-1), which is comparable to the performance of transistors made from as-prepared poly(3-hexylthiophene) (P3HT) and almost 6 times larger than the mobility of transistors prepared with poly(3-octylthiophene) (P3OT). On the other hand, the solubility parameter delta(p) of P3HTOT is close to that of the highly soluble P3OT. Moreover, compared to a physical blend of poly(3-hexylthiophene) and poly(3-octylthiophene), the mobility of P3HTOT devices is almost twice as large and the performance does not degrade upon annealing at elevated temperatures. Therefore, the copolymer approach outlined here may be one promising step toward an optimum balance between a Sufficient processability of the polymers from common organic solvents, a high solid state order, and applicable OFET performances Y1 - 2005 SN - 0897-4756 ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Saphiannikova, Marina A1 - Santer, Svetlana T1 - Photosensitive response of azobenzene containing films towards pure intensity or polarization interference patterns JF - Applied physics letters N2 - In this paper, we report on differences in the response of photosensitive azobenzene containing films upon irradiation with the intensity or polarization interference patterns. Two materials are studied differing in the molecular weight: an azobenzene-containing polymer and a molecular glass formed from a much smaller molecule consisting of three connected azobenzene units. Topography changes occurring along with the changes in irradiation conditions are recorded using a homemade set-up combining an optical part for generation and shaping of interference patterns and an atomic force microscope for acquiring the kinetics of film deformation. In this way, we could reveal the unique behavior of photosensitive materials during the first few minutes of irradiation: the change in topography is initially driven by an increase in the azobenzene free volume along with the transcis isomerization, followed by the mass transport finally resulting in the surface relief grating. This study demonstrates the great potential of our setup to experimentally highlight puzzling processes governing the formation of surface relief gratings. (C) 2014 AIP Publishing LLC. Y1 - 2014 U6 - https://doi.org/10.1063/1.4891615 SN - 0003-6951 SN - 1077-3118 VL - 105 IS - 5 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Yadavalli, Nataraja Sekhar A1 - Saphiannikova, Marina A1 - Lomadze, Nino A1 - Goldenberg, Leonid M. A1 - Santer, Svetlana T1 - Structuring of photosensitive material below diffraction limit using far field irradiation JF - Applied physics : A, Materials science & processing N2 - In this paper, we report on in-situ atomic force microscopy (AFM) studies of topographical changes in azobenzene-containing photosensitive polymer films that are irradiated with light interference patterns. We have developed an experimental setup consisting of an AFM combined with two-beam interferometry that permits us to switch between different polarization states of the two interfering beams while scanning the illuminated area of the polymer film, acquiring corresponding changes in topography in-situ. This way, we are able to analyze how the change in topography is related to the variation of the electrical field vector within the interference pattern. It is for the first time that with a rather simple experimental approach a rigorous assignment can be achieved. By performing in-situ measurements we found that for a certain polarization combination of two interfering beams [namely for the SP (a dagger center dot, a dagger") polarization pattern] the topography forms surface relief grating with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We believe that this relatively simple method could be extremely valuable to, for instance, produce structural features below the diffraction limit at high-throughput, and this could significantly contribute to the search of new fabrication strategies in electronics and photonics industry. Y1 - 2013 U6 - https://doi.org/10.1007/s00339-013-7945-3 SN - 0947-8396 SN - 1432-0630 VL - 113 IS - 2 SP - 263 EP - 272 PB - Springer CY - New York ER - TY - JOUR A1 - Stiller, Burkhard A1 - Karageorgiev, Peter A1 - Geue, Thomas A1 - Morawetz, Knut A1 - Saphiannikova, Marina A1 - Mechau, Norman A1 - Neher, Dieter T1 - Optically induced mass transport studied by scanning near-field optical- and atomic force microscopy N2 - Some functionalised thin organic films show a very unusual property, namely the light induced material transport. This effect enables to generate three-dimensional structures on surfaces of azobenzene containing films only caused by special optical excitation. The physical mechanisms underlying this phenomenon have not yet been fully understood, and in addition, the dimensions of structures created in that way are macroscopic because of the optical techniques and the wavelength of the used light. In order to gain deeper insight into the physical fundamentals of this phenomenon and to open possibilities for applications it is necessary to create and study structures not only in a macroscopic but also in nanometer range. We first report about experiments to generate optically induced nano structures even down to 100 nm size. The optical stimulation was therefore made by a Scanning Near-field Optical Microscope (SNOM). Secondly, physical conditions inside optically generated surface relief gratings were studied by measuring mechanical properties with high lateral resolution via pulse force mode and force distance curves of an AFM Y1 - 2004 SN - 0204-3467 ER - TY - JOUR A1 - Stiller, Burkhard A1 - Geue, Thomas A1 - Morawetz, Knut A1 - Saphiannikova, Marina T1 - Optical patterning in azobenzene polymer films N2 - Thin azobenzene polymer films show a very unusual property, namely optically induced material transport. The underlying physics for this phenomenon has not yet been thoroughly explained. Nevertheless, this effect enables one to inscribe different patterns onto film surfaces, including one- and two-dimensional periodic structures. Typical sizes of such structures are of the order of micrometers, i.e. related to the interference pattern made by the laser used for optical excitation. In this study we have measured the mechanical properties of one- and two-dimensional gratings, with a high lateral resolution, using force-distance curves and pulse force mode of the atomic force microscope. We also report on the generation of considerably finer structures, with a typical size of 100 nm, which were inscribed onto the polymer surface by the tip of a scanning near-field optical microscope used as an optical pen. Such inscription not only opens new application possibilities but also gives deeper insight into the fundamentals physics underlying optically induced material transport Y1 - 2005 SN - 0022-2720 ER - TY - JOUR A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Thermodynamic theory of light-induced material transport in amorphous azobenzene polymer films N2 - It was discovered 10 years ago that the exposure of an initially flat layer of an azobenzene-containing polymer to an inhomogeneous light pattern leads to the formation of surface relief structures, accompanied by a mass transport over several micrometers. However, the driving force of this process is still unclear. We propose a new thermodynamic approach that explains a number of experimental findings including the light-induced deformation of free-standing films and the formation of surface relief gratings for main inscription geometries. Our basic assumption is that under homogeneous illumination, an initially isotropic sample should stretch itself along the polarization direction to compensate the entropy decrease produced by the photoinduced reorientation of azobenzene chromophores. The magnitude of the elastic stress, estimated by taking the derivative of the free energy over the sample deformation, is shown to be sufficient to induce plastic deformation of the polymer film. Orientational distributions of chromophores predicted by our model are compared with those deduced from Raman intensity measurements Y1 - 2005 SN - 1520-6106 ER - TY - JOUR A1 - Saphiannikova, Marina A1 - Henneberg, Oliver A1 - Gene, T. M. A1 - Pietsch, Ullrich A1 - Rochon, Paul T1 - Nonlinear effects during inscription of azobenzene surface relief gratings N2 - Surface relief gratings were inscribed on azobenzene polymer films using a pulselike exposure of an Ar+ laser. The inscription process was initiated by a sequence of short pulses followed by much longer relaxation pauses. The development of the surface relief grating was probed by a He-Ne laser measuring the scattering intensity of the first- order grating peak. The growth time of the surface relief grating was found to be larger than the length of the pulses used. This unusual behavior can be considered as a nonlinear material response associated with the trans-cis isomerization of azobenzene moieties. In this study the polymer stress was assumed to be proportional to the number of cis-isomers. One-dimensional viscoelastic analysis was used to derive the polymer deformation. The rate of trans-cis isomerization increases with the intensity of the inscribing light; in the dark it is equal to the rate of thermal cis- trans isomerization. The respective relaxation times were estimated by fitting theoretical deformation curves to experimental data Y1 - 2004 SN - 1520-6106 ER - TY - JOUR A1 - Saphiannikova, Marina A1 - Geue, Thomas A1 - Henneberg, Oliver A1 - Morawetz, Knut A1 - Pietsch, Ullrich T1 - Linear viscoelastic analysis of formation and relaxation of azobenzene polymer gratings N2 - Surface relief gratings on azobenzene containing polymer films were prepared under irradiation by actinic light. Finite element modeling of the inscription process was carried out using linear viscoelastic analysis. It was assumed that under illumination the polymer film undergoes considerable plastification, which reduces its original Young's modulus by at least three orders of magnitude. Force densities of about 10(11) N/m(3) were necessary to reproduce the growth of the surface relief grating. It was shown that at large deformations the force of surface tension becomes comparable to the inscription force and therefore plays an essential role in the retardation of the inscription process. In addition to surface profiling the gradual development of an accompanying density grating was predicted for the regime of continuous exposure. Surface grating development under pulselike exposure cannot be explained in the frame of an incompressible fluid model. However, it was easily reproduced using the viscoelastic model with finite compressibility. (C) 2004 American Institute of Physics Y1 - 2004 U6 - https://doi.org/10.1063/1.1642606 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Saphiannikova, Marina A1 - Henneberg, Oliver A1 - Geue, Thomas T1 - Non-linear effects during inscription of azobenzene surface relief gratings Y1 - 2004 ER - TY - JOUR A1 - Pietsch, Ullrich A1 - Geue, Thomas A1 - Henneberg, Oliver A1 - Saphiannikova, Marina T1 - X-ray investigations of formation efficiency of buried azobenzene polymer density gratings Y1 - 2003 UR - http://scitation.aip.org/journals/doc/JAPIAU-ft/vol_93/iss_6/3161_1.html U6 - https://doi.org/10.1063/1.1554753 ER - TY - JOUR A1 - Mechau, Norman A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Molecular tracer diffusion in thin azobenzene polymer layers JF - Applied physics letters N2 - Translational diffusion of fluorescent tracer molecules in azobenzene polymer layers is studied at different temperatures and under illumination using the method of fluorescence recovery after photobleaching. Diffusion is clearly observed in the dark above the glass transition temperature, while homogeneous illumination at 488 nm and 100 mW/cm(2) does not cause any detectable diffusion of the dye molecules within azobenzene layers. This implies that the viscosity of azobenzene layers remains nearly unchanged under illumination with visible light in the absence of internal or external forces. (c) 2006 American Institute of Physics. Y1 - 2006 U6 - https://doi.org/10.1063/1.2405853 SN - 0003-6951 VL - 89 IS - 25 PB - Elsevier CY - Melville ER - TY - JOUR A1 - Mechau, Norman A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Dielectric and mechanical properties of azobenzene polymer layers under visible and ultraviolet irradiation N2 - Photoinduced changes in the mechanical and dielectric properties of azobenzene polymer films were measured utilizing the method of electromechanical spectroscopy. The measurements revealed a strong correlation between the time- dependent behavior of the plate compliance and the dielectric constant under irradiation. Actinic light causes a light softening of the film that also manifests itself in the increase of the dielectric constant, whereas ultraviolet irradiation results in an initial plasticization of the film followed by its hardening. The latter is accompanied by decrease of the dielectric constant. A semiquantitative model based on the kinetics of the photoisomerization process in azobenzene polymers is proposed. We assume that both visible and ultraviolet irradiation increase the free volume in the layer due to photoisomerization. Additionally, ultraviolet light increases the modulus of the polymer matrix due to the presence of a high density of azobenzene moieties in the cis state. These assumptions allowed us to reproduce the time- dependent behavior of the bulk compliance as well as the dielectric constant at different irradiation intensities, for both visible and ultraviolet light, with only two adjustable parameters Y1 - 2005 SN - 0024-9297 ER - TY - JOUR A1 - Loebner, Sarah A1 - Yadav, Bharti A1 - Lomadze, Nino A1 - Tverdokhleb, Nina A1 - Donner, Hendrik A1 - Saphiannikova, Marina A1 - Santer, Svetlana T1 - Local direction of optomechanical stress in azobenzene containing polymers during surface relief grating formation JF - Macromolecular materials and engineering N2 - In this work, it is revealed how the photoinduced deformation of azobenzene containing polymers relates to the local direction of optomechanical stresses generated during irradiation with interference patterns (IPs). It can be substantiated by the modeling approach proposed by Saphiannikova et al., which describes the directional photodeformations in glassy side-chain azobenzene polymers, and proves that these deformations arise from the reorientation of rigid backbone segments along the light polarization direction. In experiments and modeling, surface relief gratings in pre-elongated photosensitive colloids of few micrometers length are inscribed using different IPs such as SS, PP, +/- 45, SP, RL, and LR. The deformation of colloidal particles is studied in situ, whereby the local variation of polymer topography is assigned to the local distribution of the electrical field vector for all IPs. Experimentally observed shapes are reproduced exactly with modeling azopolymer samples as visco-plastic bodies in the finite element software ANSYS. Orientation approach correctly predicts local variations of the main axis of light-induced stress in each interference pattern for both initially isotropic and highly oriented materials. With this work, it is suggested that the orientation approach implements a self-sufficient and convincing mechanism to describe photoinduced deformation in azopolymer films that in principle does not require auxiliary assumptions. KW - azobenzene containing polymers KW - colloidal particles KW - direction of optomechanical stress KW - orientation approaches Y1 - 2022 U6 - https://doi.org/10.1002/mame.202100990 SN - 1438-7492 SN - 1439-2054 VL - 307 IS - 8 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Loebner, Sarah A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Koch, Markus A1 - Guskova, Olga A1 - Saphiannikova, Marina A1 - Santer, Svetlana T1 - Light-Induced Deformation of Azobenzene-Containing Colloidal Spheres BT - Calculation and Measurement of Opto-Mechanical Stresses JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - We report on light-induced deformation of colloidal spheres consisting of azobenzene-containing polymers. The colloids of the size between 60 nm and 2 mu m in diameter were drop casted on a glass surface and irradiated with linearly polarized light. It was found that colloidal particles can be deformed up to ca. 6 times of their initial diameter. The maximum degree of deformation depends on the irradiation wavelength and intensity, as well as on colloidal particles size. On the basis of recently proposed theory by Toshchevikov et al. [J. Phys. Chem. Lett. 2017, 8, 1094], we calculated the optomechanical stresses (ca. 100 MPa) needed for such giant deformations and compared them with the experimental results. Y1 - 2018 U6 - https://doi.org/10.1021/acs.jpcb.7b11644 SN - 1520-6106 VL - 122 IS - 6 SP - 2001 EP - 2009 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Koch, Markus A1 - Saphiannikova, Marina A1 - Santer, Svetlana A1 - Guskova, Olga T1 - Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - This study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of the isomerization state and on the structuring of water around the star. From the analysis of two contributions to the free energy of hydration, the nonpolar van der Waals and the electrostatic terms, it is concluded that isomerization specificity largely determines the polarity of the molecule and the solute-solvent electrostatic interactions. This convertible hydrophilicity/hydrophobicity together with readjustable occupied volume and the surface area accessible to water, affects the self-assembly/disassembly of the azobenzene star with a flat core triggered by light. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.7b07350 SN - 1520-6106 VL - 121 SP - 8854 EP - 8867 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Ilnytskyi, Jaroslav A1 - Saphiannikova, Marina A1 - Neher, Dieter T1 - Photo-induced deformations in azobenzene-containing side-chain polymers : molecular dynamics study N2 - We perform molecular dynamics simulations of azobenzene containing side-chain liquid crystalline polymer subject to an external model field that mimicks the reorientations of the azobenzenes upon irradiation with polarized light. The smectic phase of the polymer is studied with the field applied parallel to the nematic director, forcing the trans isomers to reorient perpendicularly to the field (the direction of which can be assosiated with the light polarization). The coupling between the reorientation of azobenzenes and mechanical deformation of the sample is found to depend on the field strength. In a weak field the original smectic order is melted gradually with no apparent change in the simulation box shape, whereas in a strong field two regimes are observed. During the first one a rapid melting of the liquid crystalline order is accompanied by the contraction of the polymer along the field direction (the effect similar to the one observed experimentally in azopenzene containing elastomers). During the slower second regime, the smectic layers are rebuilt to accomodate the preferential direction of chromophores perperdicular to the field. Y1 - 2006 UR - http://www.icmp.lviv.ua/journal/Contents.html SN - 1607-324X ER - TY - JOUR A1 - Ilnytskyi, Jaroslav M. A1 - Saphiannikova, Marina A1 - Neher, Dieter A1 - Allen, Michael P. T1 - Modelling elasticity and memory effects in liquid crystalline elastomers by molecular dynamics simulations JF - Soft matter N2 - We performed molecular dynamics simulations of a liquid crystal elastomer of side-chain architecture. The network is formed from a melt of 28 molecules each having a backbone of 100 hydrocarbon monomers, to which 50 side chains are attached in a syndiotactic way. Crosslinking is performed in the smectic A phase. We observe an increase of the smectic-isotropic phase transition temperature of about 5 degrees as compared to the uncrosslinked melt. Memory effects in liquid crystalline order and in sample shape are well reproduced when the elastomer is driven through the smectic-isotropic transition. Above this transition, in the isotropic phase, the polydomain smectic phase is induced by a uniaxial load. Below the transition, in a monodomain smectic A phase, both experimentally observed effects of homogeneous director reorientation and stripe formation are reproduced when the sample is stretched along the director. When the load is applied perpendicularly to the director, the sample demonstrates reversible deformation with no change of liquid crystalline order, indicating elasticity of the two-dimensional network of polymer layers. Y1 - 2012 U6 - https://doi.org/10.1039/c2sm26499d SN - 1744-683X VL - 8 IS - 43 SP - 11123 EP - 11134 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Ilnytskyi, Jaroslav M. A1 - Neher, Dieter A1 - Saphiannikova, Marina T1 - Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture molecular dynamics study JF - The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr N2 - Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases. KW - amorphous state KW - light polarisation KW - liquid crystal polymers KW - molecular dynamics method KW - optical hole burning KW - photochemistry Y1 - 2011 U6 - https://doi.org/10.1063/1.3614499 SN - 0021-9606 VL - 135 IS - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Henneberg, Oliver A1 - Rochon, Paul A1 - Panzner, Tobias A1 - Finkelstein, Kenneth D. A1 - Geue, Thomas A1 - Saphiannikova, Marina A1 - Pietsch, Ullrich T1 - In-situ Investigation of Surface Relief Grating Formation in Photosensitive Polymers Y1 - 2004 UR - http://www.chess.cornell.edu/pubs/csnm2004/research/insitu.pdf ER - TY - JOUR A1 - Henneberg, Oliver A1 - Panzner, Tobias A1 - Pietsch, Ullrich A1 - Geue, Thomas A1 - Saphiannikova, Marina A1 - Rochon, Paul A1 - Finkelstein, Kenneth D. T1 - X-ray and VIS light scattering from light-induced polymer gratings N2 - Sinusoidally shaped surface relief gratings made of polymer films containing, azobenzene moieties can be created by holographic illumination with laser light of about lambda approximate to 500 nm. The remarkable material transport takes place at temperatures far (100 K) below the glass transition temperature of the material. As probed by visible light scattering the efficiency of grating formation crucially depends on the polarization state of the laser light and is maximal when circular polarization is used. In contrast to VIS light scattering X-ray diffraction is most sensitive for periodic surface undulations with amplitudes below 10 nm. Thus, combined in-situ X-ray and visible light scattering at CHESS were used to investigate the dynamics of surface relief grating formations upon laser illumination. The time development of grating peaks up to 9th order at laser power of P = 20 mW/cm(2) could be investigated, even the onset of grating formation as a function of light polarization. A linear growth of grating amplitude was observed for all polarizations. The growth velocity is maximal using circularly polarized light but very small for s-polarized light Y1 - 2004 UR - 1960 = doi:10.1524/zkri.219.4.218.30438 SN - 0044-2968 ER - TY - JOUR A1 - Henneberg, Oliver A1 - Geue, Thomas A1 - Saphiannikova, Marina A1 - Pietsch, Ullrich A1 - Rochon, Paul A1 - Natansohn, Almeria T1 - Formation and dynamics of polymer surface relief gratings Y1 - 2001 SN - 0378-5963 ER - TY - JOUR A1 - Henneberg, Oliver A1 - Geue, Thomas A1 - Saphiannikova, Marina A1 - Pietsch, Ullrich A1 - Rochon, Paul T1 - X-ray and VIS light scattering from light-induced polymer gratings Y1 - 2003 UR - http://stacks.iop.org/0022-3727/36/A241 U6 - https://doi.org/10.1088/0022-3727/36/10A/350 ER - TY - JOUR A1 - Henneberg, Oliver A1 - Geue, Thomas A1 - Saphiannikova, Marina A1 - Natansohn, Almeria A1 - Rochon, Paul A1 - Finkelstein, Kenneth D. T1 - Investigation of material flow on inscribing a polymer surface grating probing X-ray and VIS light scattering Y1 - 2002 SN - 0927-7757 ER - TY - JOUR A1 - Henneberg, Oliver A1 - Chi, Li Feng A1 - Geue, Thomas A1 - Saphiannikova, Marina A1 - Pietsch, Ullrich A1 - Rochon, Paul A1 - Natansohn, Almeria T1 - Atomic force microscopy inspection of the early state of formation of polymer surface relief grating Y1 - 2001 ER - TY - JOUR A1 - Geue, Thomas A1 - Saphiannikova, Marina A1 - Henneberg, Oliver A1 - Pietsch, Ullrich A1 - Rochon, Paul A1 - Natansohn, Almeria T1 - Formation mechanism and dynamics in polymer surface gratings Y1 - 2002 ER -