TY - THES A1 - Vu, Nils Leif T1 - A task-based parallel elliptic solver for numerical relativity with discontinuous Galerkin methods N2 - Elliptic partial differential equations are ubiquitous in physics. In numerical relativity---the study of computational solutions to the Einstein field equations of general relativity---elliptic equations govern the initial data that seed every simulation of merging black holes and neutron stars. In the quest to produce detailed numerical simulations of these most cataclysmic astrophysical events in our Universe, numerical relativists resort to the vast computing power offered by current and future supercomputers. To leverage these computational resources, numerical codes for the time evolution of general-relativistic initial value problems are being developed with a renewed focus on parallelization and computational efficiency. Their capability to solve elliptic problems for accurate initial data must keep pace with the increasing detail of the simulations, but elliptic problems are traditionally hard to parallelize effectively. In this thesis, I develop new numerical methods to solve elliptic partial differential equations on computing clusters, with a focus on initial data for orbiting black holes and neutron stars. I develop a discontinuous Galerkin scheme for a wide range of elliptic equations, and a stack of task-based parallel algorithms for their iterative solution. The resulting multigrid-Schwarz preconditioned Newton-Krylov elliptic solver proves capable of parallelizing over 200 million degrees of freedom to at least a few thousand cores, and already solves initial data for a black hole binary about ten times faster than the numerical relativity code SpEC. I also demonstrate the applicability of the new elliptic solver across physical disciplines, simulating the thermal noise in thin mirror coatings of interferometric gravitational-wave detectors to unprecedented accuracy. The elliptic solver is implemented in the new open-source SpECTRE numerical relativity code, and set up to support simulations of astrophysical scenarios for the emerging era of gravitational-wave and multimessenger astronomy. N2 - Elliptische partielle Differentialgleichungen sind in der Physik allgegenwärtig. Das elektrische Feld einer Ladung, die Gravitation der Erde, die Statik einer Brücke, oder die Temperaturverteilung auf einer heißen Herdplatte folgen trotz verschiedenster zugrundeliegender Physik elliptischen Gleichungen ähnlicher Struktur, denn es sind statische, also zeitunabhängige Effekte. Elliptische Gleichungen beschreiben auch astrophysikalische Szenarien von kataklysmischen Ausmaßen, die jegliche Gegebenheiten auf der Erde weit überschreiten. So werden Schwarze Löcher und Neutronensterne -- zwei mögliche Endstadien von massereichen Sternen -- ebenfalls von elliptischen Gleichungen beschrieben. In diesem Fall sind es Einstein's Feldgleichungen von Raum, Zeit, Gravitation und Materie. Da Schwarze Löcher und Neutronensterne mehr Masse als unsere Sonne auf die Größe einer Stadt wie Potsdam komprimieren übernimmt die Gravitation, und damit Einstein's allgemeine Relativitätstheorie, die Kontrolle. Es ist die Aufgabe der numerischen Relativität, Szenarien wie die Kollision solcher gewaltigen Objekte mithilfe von Supercomputern zu simulieren und damit die Gravitationswellensignale vorherzusagen, die von Detektoren auf der Erde gemessen werden können. Jede dieser Simulationen beginnt mit Anfangsdaten, die elliptische Gleichungen erfüllen müssen. In dieser Dissertation entwickle ich neue numerische Methoden um elliptische partielle Differentialgleichungen auf Supercomputern zu lösen, mit besonderem Augenmerk auf Anfangsdaten für Simulationen von Schwarzen Löchern und Neutronensternen. Ich entwickle dafür eine sogenannte discontinuous Galerkin Methode um elliptische Gleichungen auf Computern zu repräsentieren, sowie eine Reihe von Algorithmen um diese Gleichungen anschließend schrittweise numerisch zu lösen bis sie die notwendige Präzision erfüllen. Die Besonderheit dieser Algorithmen liegt in ihrer Eigenschaft, in viele Teilprobleme zerlegt auf einer großen Zahl von Rechenkernen parallel arbeiten zu können. Dieses task-based parallelism ermöglicht die effektive Verwendung von Supercomputern. Ich demonstriere die Fähigkeit meiner Algorithmen, Berechnungen von über 200 Millionen Unbekannten mit hoher Effizienz auf mindestens einige Tausend Rechenkerne verteilen zu können, und Anfangsdaten zweier sich umkreisender Schwarzer Löcher bereits etwa zehnmal schneller zu lösen als der langjährig verwendete Computercode SpEC. Außerdem zeige ich, dass mein neuer Code auch außerhalb der Relativitätstheorie anwendbar ist. Dazu simuliere ich thermisches Rauschen in den Beschichtungen von Spiegeln, das ebenfalls von elliptischen Gleichungen beschrieben wird. Solche Spiegel sind Objekt großen Forschungsinteresses, da sie ein zentrales Element von Gravitationswellendetektoren darstellen. Mein Code zur numerischen Lösung elliptischer Gleichungen ist Teil des kollaborativen und quelloffenen SpECTRE Forschungsprojekts zur Simulation astrophysikalischer Szenarien für die aufstrebende Ära der Gravitationswellen- und Multimessenger-Astronomie. KW - numerical relativity KW - task-based parallelism KW - discontinuous Galerkin methods KW - elliptic partial differential equations KW - black holes KW - initial data KW - high-performance computing KW - iterative methods for sparse linear systems KW - gravitational waves KW - thermal noise in mirror coatings KW - numerische Relativität KW - elliptische partielle Differentialgleichungen KW - schwarze Löcher KW - Anfangsdaten KW - Hochleistungscomputer KW - iterative Methoden zur Lösung linearer Systeme KW - Gravitationswellen KW - thermisches Rauschen in Spiegelbeschichtungen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-562265 ER - TY - THES A1 - Ohme, Frank T1 - Bridging the gap between post-Newtonian theory and numerical relativity in gravitational-wave data analysis T1 - Die Verbindung von post-Newtonscher Theorie und Numerischer Relativitätstheorie in der Gravitationswellenanalyse N2 - One of the most exciting predictions of Einstein's theory of gravitation that have not yet been proven experimentally by a direct detection are gravitational waves. These are tiny distortions of the spacetime itself, and a world-wide effort to directly measure them for the first time with a network of large-scale laser interferometers is currently ongoing and expected to provide positive results within this decade. One potential source of measurable gravitational waves is the inspiral and merger of two compact objects, such as binary black holes. Successfully finding their signature in the noise-dominated data of the detectors crucially relies on accurate predictions of what we are looking for. In this thesis, we present a detailed study of how the most complete waveform templates can be constructed by combining the results from (A) analytical expansions within the post-Newtonian framework and (B) numerical simulations of the full relativistic dynamics. We analyze various strategies to construct complete hybrid waveforms that consist of a post-Newtonian inspiral part matched to numerical-relativity data. We elaborate on exsisting approaches for nonspinning systems by extending the accessible parameter space and introducing an alternative scheme based in the Fourier domain. Our methods can now be readily applied to multiple spherical-harmonic modes and precessing systems. In addition to that, we analyze in detail the accuracy of hybrid waveforms with the goal to quantify how numerous sources of error in the approximation techniques affect the application of such templates in real gravitational-wave searches. This is of major importance for the future construction of improved models, but also for the correct interpretation of gravitational-wave observations that are made utilizing any complete waveform family. In particular, we comprehensively discuss how long the numerical-relativity contribution to the signal has to be in order to make the resulting hybrids accurate enough, and for currently feasible simulation lengths we assess the physics one can potentially do with template-based searches. N2 - Eine der aufregendsten Vorhersagen aus Einsteins Gravitationstheorie, die bisher noch nicht direkt durch ein Experiment nachgewiesen werden konnten, sind Gravitationswellen. Dies sind winzige Verzerrungen der Raumzeit selbst, und es wird erwartet, dass das aktuelle Netzwerk von groß angelegten Laserinterferometern im kommenden Jahrzehnt die erste direkte Gravitationswellenmessung realisieren kann. Eine potentielle Quelle von messbaren Gravitationswellen ist das Einspiralen und Verschmelzen zweier kompakter Objekte, wie z.B. ein Binärsystem von Schwarzen Löchern. Die erfolgreiche Identifizierung ihrer charakteristischen Signatur im Rausch-dominierten Datenstrom der Detektoren hängt allerdings entscheidend von genauen Vorhersagen ab, was wir eigentlich suchen. In dieser Arbeit wird detailliert untersucht, wie die komplettesten Wellenformenmodelle konstruiert werden können, indem die Ergebnisse von (A) analytischen Entwicklungen im post-Newtonschen Verfahren und (B) numerische Simulationen der voll-relativistischen Bewegungen verknüpft werden. Es werden verschiedene Verfahren zur Erstellung solcher "hybriden Wellenformen", bei denen der post-Newtonsche Teil mit numerischen Daten vervollständigt wird, analysiert. Existierende Strategien für nicht-rotierende Systeme werden vertieft und der beschriebene Parameterraum erweitert. Des Weiteren wird eine Alternative im Fourierraum eingeführt. Die entwickelten Methoden können nun auf multiple sphärisch-harmonische Moden und präzedierende Systeme angewandt werden. Zusätzlich wird die Genauigkeit der hybriden Wellenformen mit dem Ziel analysiert, den Einfluss verschiedener Fehlerquellen in den Näherungstechniken zu quantifizieren und die resultierenden Einschränkungen bei realen Anwendungen abzuschätzen. Dies ist von größter Bedeutung für die zukünftige Entwicklung von verbesserten Modellen, aber auch für die korrekte Interpretation von Gravitationswellenbeobachtungen, die auf Grundlage solcher Familien von Wellenformen gemacht worden sind. Insbesondere wird diskutiert, wie lang der numerische Anteil des Signals sein muss, um die Hybride genau genug konstruieren zu können. Für die aktuell umsetzbaren Simulationslängen wird die Physik eingeschätzt, die mit Hilfe von Modell-basierten Suchen potentiell untersucht werden kann. KW - Schwarze Löcher KW - Gravitationswellen KW - Numerische Relativitätstheorie KW - Datenanalyse KW - Post-Newton KW - black holes KW - gravitational waves KW - numerical relativity KW - data analysis KW - post-Newton Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-60346 ER - TY - THES A1 - Koppitz, Michael T1 - Numerical studies of Black Hole initial data N2 - Diese Doktorarbeit behandelt neue Methoden der numerischen Evolution von Systemen mit binären Schwarzen Löchern. Wir analysieren und vergleichen Evolutionen von verschiedenen physikalisch motivierten Anfangsdaten und zeigen Resultate der ersten Evolution von so genannten 'Thin Sandwich' Daten, die von der Gruppe in Meudon entwickelt wurden. Zum ersten Mal wurden zwei verschiedene Anfangsdaten anhand von dreidimensionalen Evolutionen verglichen: die Puncture-Daten und die Thin-Sandwich Daten. Diese zwei Datentypen wurden im Hinblick auf die physikalischen Eigenschaften während der Evolution verglichen. Die Evolutionen zeigen, dass die Meudon Daten im Vergleich zu Puncture Daten wesentlich mehr Zeit benötigen bevor sie kollidieren. Dies deutet auf eine bessere Abschätzung der Parameter hin. Die Kollisionszeiten der numerischen Evolutionen sind konsistent mit unabhängigen Schätzungen basierend auf Post-Newtonschen Näherungen die vorhersagen, dass die Schwarzen Löcher ca. 60% eines Orbits rotieren bevor sie kollidieren. N2 - This thesis presents new approaches to evolutions of binary black hole systems in numerical relativity. We analyze and compare evolutions from various physically motivated initial data sets, in particular presenting the first evolutions of Thin Sandwich data generated by the Meudon group. For the first time two different quasi-circular orbit initial data sequences are compared through fully 3d numerical evolutions: Puncture data and Thin Sandwich data (TSD) based on a helical killing vector ansatz. The two different sets are compared in terms of the physical quantities that can be measured from the numerical data, and in terms of their evolutionary behavior. The evolutions demonstrate that for the latter, "Meudon" datasets, the black holes do in fact orbit for a longer amount of time before they merge, in comparison with Puncture data from the same separation. This indicates they are potentially better estimates of quasi-circular orbit parameters. The merger times resulting from the numerical simulations are consistent with independent Post-Newtonian estimates that the final plunge phase of a black hole inspiral should take 60% of an orbit. KW - numerische Relativiät KW - binäre schwarze Löcher KW - Anfangsdaten KW - Evolutionen KW - numerical relativity KW - binary black holes KW - initial data KW - evolutions Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-0001245 ER - TY - THES A1 - Kellermann, Thorsten T1 - Accurate numerical relativity simulations of non-vacuumspace-times in two dimensions and applications to critical collapse T1 - Exakte numerisch relativistische Simulationen der Nicht-Vakuum-Raum-Zeit in zwei Dimensionen und deren Anwendung zu Problemen des kritischen Kollaps N2 - This Thesis puts its focus on the physics of neutron stars and its description with methods of numerical relativity. In the first step, a new numerical framework the Whisky2D code will be developed, which solves the relativistic equations of hydrodynamics in axisymmetry. Therefore we consider an improved formulation of the conserved form of these equations. The second part will use the new code to investigate the critical behaviour of two colliding neutron stars. Considering the analogy to phase transitions in statistical physics, we will investigate the evolution of the entropy of the neutron stars during the whole process. A better understanding of the evolution of thermodynamical quantities, like the entropy in critical process, should provide deeper understanding of thermodynamics in relativity. More specifically, we have written the Whisky2D code, which solves the general-relativistic hydrodynamics equations in a flux-conservative form and in cylindrical coordinates. This of course brings in 1/r singular terms, where r is the radial cylindrical coordinate, which must be dealt with appropriately. In the above-referenced works, the flux operator is expanded and the 1/r terms, not containing derivatives, are moved to the right-hand-side of the equation (the source term), so that the left hand side assumes a form identical to the one of the three-dimensional (3D) Cartesian formulation. We call this the standard formulation. Another possibility is not to split the flux operator and to redefine the conserved variables, via a multiplication by r. We call this the new formulation. The new equations are solved with the same methods as in the Cartesian case. From a mathematical point of view, one would not expect differences between the two ways of writing the differential operator, but, of course, a difference is present at the numerical level. Our tests show that the new formulation yields results with a global truncation error which is one or more orders of magnitude smaller than those of alternative and commonly used formulations. The second part of the Thesis uses the new code for investigations of critical phenomena in general relativity. In particular, we consider the head-on-collision of two neutron stars in a region of the parameter space where two final states a new stable neutron star or a black hole, lay close to each other. In 1993, Choptuik considered one-parameter families of solutions, S[P], of the Einstein-Klein-Gordon equations for a massless scalar field in spherical symmetry, such that for every P > P⋆, S[P] contains a black hole and for every P < P⋆, S[P] is a solution not containing singularities. He studied numerically the behavior of S[P] as P → P⋆ and found that the critical solution, S[P⋆], is universal, in the sense that it is approached by all nearly-critical solutions regardless of the particular family of initial data considered. All these phenomena have the common property that, as P approaches P⋆, S[P] approaches a universal solution S[P⋆] and that all the physical quantities of S[P] depend only on |P − P⋆|. The first study of critical phenomena concerning the head-on collision of NSs was carried out by Jin and Suen in 2007. In particular, they considered a series of families of equal-mass NSs, modeled with an ideal-gas EOS, boosted towards each other and varied the mass of the stars, their separation, velocity and the polytropic index in the EOS. In this way they could observe a critical phenomenon of type I near the threshold of black-hole formation, with the putative solution being a nonlinearly oscillating star. In a successive work, they performed similar simulations but considering the head-on collision of Gaussian distributions of matter. Also in this case they found the appearance of type-I critical behaviour, but also performed a perturbative analysis of the initial distributions of matter and of the merged object. Because of the considerable difference found in the eigenfrequencies in the two cases, they concluded that the critical solution does not represent a system near equilibrium and in particular not a perturbed Tolmann-Oppenheimer-Volkoff (TOV) solution. In this Thesis we study the dynamics of the head-on collision of two equal-mass NSs using a setup which is as similar as possible to the one considered above. While we confirm that the merged object exhibits a type-I critical behaviour, we also argue against the conclusion that the critical solution cannot be described in terms of equilibrium solution. Indeed, we show that, in analogy with what is found in, the critical solution is effectively a perturbed unstable solution of the TOV equations. Our analysis also considers fine-structure of the scaling relation of type-I critical phenomena and we show that it exhibits oscillations in a similar way to the one studied in the context of scalar-field critical collapse. N2 - Diese Arbeit legt seinen Schwerpunkt auf die Physik von Neutronensternen und deren Beschreibung mit Methoden der numerischen Relativitätstheorie. Im ersten Schritt wird eine neue numerische Umgebung, der Whisky2D Code entwickelt, dieser löst die relativistischen Gleichungen der Hydrodynamik in Axialymmetrie. Hierzu betrachten wir eine verbesserte Formulierung der sog. "flux conserved formulation" der Gleichungen. Im zweiten Teil wird der neue Code verwendet , um das kritische Verhalten zweier kollidierenden Neutronensternen zu untersuchen. In Anbetracht der Analogie, um Übergänge in der statistischen Physik Phase werden wir die Entwicklung der Entropie der Neutronensterne während des gesamten Prozesses betrachten. Ein besseres Verständnis der Evolution von thermodynamischen Größen, wie der Entropie in kritischer Prozess, sollte zu einem tieferen Verständnis der relativistischen Thermodynamik führen. Der Whisky2D Code, zur Lösung Gleichungen relativistischer Hydrodynamik wurde in einer „flux conserved form“ und in zylindrischen Koordinaten geschrieben. Hierdurch entstehen 1 / r singuläre Terme, wobei r der ist, die entsprechend behandelt werden müssen. In früheren Arbeiten, wird der Operator expandiert und die 1 / r spezifisch Therme auf die rechte Seite geschrieben, so dass die linke Seite eine Form annimmt, die identisch ist mit der kartesischen Formulierung. Wir nennen dies die Standard-Formulierung. Eine andere Möglichkeit ist, die Terme nicht zu expandieren, den und den 1/r Term in die Gleichung hinein zu ziehen. Wir nennen dies die Neue-Formulierung. Die neuen Gleichungen werden mit den gleichen Verfahren wie im kartesischen Fall gelöst. Aus mathematischer Sicht ist keine Unterschiede zwischen den beiden Formulierungen zu erwarten, erst die numerische Sicht zeigt die Unterschiede auf. Versuche zeigen, dass die Neue-Formulierung numerische Fehler um mehrere Größenordnungen reduziert. Der zweite Teil der Dissertation verwendet den neuen Code für die Untersuchung kritischer Phänomene in der allgemeinen Relativitätstheorie. Insbesondere betrachten wir die Kopf-auf-Kollision zweier Neutronensterne in einem Bereich des Parameter Raums, deren zwei mögliche Endzustände entweder einen neuen stabilen Neutronenstern oder ein Schwarzes Loch darstellen. Im Jahr 1993, betrachtete Choptuik Ein-Parameter-Familien von Lösungen, S [P], der Einstein-Klein-Gordon-Gleichung für ein masseloses Skalarfeld in sphärischer Symmetrie, so dass für jedes P> P ⋆, S[P] ein Schwarzes Loch enthalten ist und jedes P