TY - THES A1 - Weger Coenen, Lindsey T1 - Exploring potential impacts from transitions in German and European energy on GHG and air pollutant emissions and on ozone air quality N2 - Energy is at the heart of the climate crisis—but also at the heart of any efforts for climate change mitigation. Energy consumption is namely responsible for approximately three quarters of global anthropogenic greenhouse gas (GHG) emissions. Therefore, central to any serious plans to stave off a climate catastrophe is a major transformation of the world's energy system, which would move society away from fossil fuels and towards a net-zero energy future. Considering that fossil fuels are also a major source of air pollutant emissions, the energy transition has important implications for air quality as well, and thus also for human and environmental health. Both Europe and Germany have set the goal of becoming GHG neutral by 2050, and moreover have demonstrated their deep commitment to a comprehensive energy transition. Two of the most significant developments in energy policy over the past decade have been the interest in expansion of shale gas and hydrogen, which accordingly have garnered great interest and debate among public, private and political actors. In this context, sound scientific information can play an important role by informing stakeholder dialogue and future research investments, and by supporting evidence-based decision-making. This thesis examines anticipated environmental impacts from possible, relevant changes in the European energy system, in order to impart valuable insight and fill critical gaps in knowledge. Specifically, it investigates possible future shale gas development in Germany and the United Kingdom (UK), as well as a hypothetical, complete transition to hydrogen mobility in Germany. Moreover, it assesses the impacts on GHG and air pollutant emissions, and on tropospheric ozone (O3) air quality. The analysis is facilitated by constructing emission scenarios and performing air quality modeling via the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). The work of this thesis is presented in three research papers. The first paper finds that methane (CH4) leakage rates from upstream shale gas development in Germany and the UK would range between 0.35% and 1.36% in a realistic, business-as-usual case, while they would be significantly lower - between 0.08% and 0.15% - in an optimistic, strict regulation and high compliance case, thus demonstrating the value and potential of measures to substantially reduce emissions. Yet, while the optimistic case is technically feasible, it is unlikely that the practices and technologies assumed would be applied and accomplished on a systematic, regular basis, owing to economics and limited monitoring resources. The realistic CH4 leakage rates estimated in this study are comparable to values reported by studies carried out in the US and elsewhere. In contrast, the optimistic rates are similar to official CH4 leakage data from upstream gas production in Germany and in the UK. Considering that there is a lack of systematic, transparent and independent reports supporting the official values, this study further highlights the need for more research efforts in this direction. Compared with national energy sector emissions, this study suggests that shale gas emissions of volatile organic compounds (VOCs) could be significant, though relatively insignificant for other air pollutants. Similar to CH4, measures could be effective for reducing VOCs emissions. The second paper shows that VOC and nitrogen oxides (NOx) emissions from a future shale gas industry in Germany and the UK have potentially harmful consequences for European O3 air quality on both the local and regional scale. The results indicate a peak increase in maximum daily 8-hour average O3 (MDA8) ranging from 3.7 µg m-3 to 28.3 µg m-3. Findings suggest that shale gas activities could result in additional exceedances of MDA8 at a substantial percentage of regulatory measurement stations both locally and in neighboring and distant countries, with up to circa one third of stations in the UK and one fifth of stations in Germany experiencing additional exceedances. Moreover, the results reveal that the shale gas impact on the cumulative health-related metric SOMO35 (annual Sum of Ozone Means Over 35 ppb) could be substantial, with a maximum increase of circa 28%. Overall, the findings suggest that shale gas VOC emissions could play a critical role in O3 enhancement, while NOx emissions would contribute to a lesser extent. Thus, the results indicate that stringent regulation of VOC emissions would be important in the event of future European shale gas development to minimize deleterious health outcomes. The third paper demonstrates that a hypothetical, complete transition of the German vehicle fleet to hydrogen fuel cell technology could contribute substantially to Germany's climate and air quality goals. The results indicate that if the hydrogen were to be produced via renewable-powered water electrolysis (green hydrogen), German carbon dioxide equivalent (CO2eq) emissions would decrease by 179 MtCO2eq annually, though if electrolysis were powered by the current electricity mix, emissions would instead increase by 95 MtCO2eq annually. The findings generally reveal a notable anticipated decrease in German energy emissions of regulated air pollutants. The results suggest that vehicular hydrogen demand is 1000 PJ annually, which would require between 446 TWh and 525 TWh for electrolysis, hydrogen transport and storage. When only the heavy duty vehicle segment (HDVs) is shifted to green hydrogen, the results of this thesis show that vehicular hydrogen demand drops to 371 PJ, while a deep emissions cut is still realized (-57 MtCO2eq), suggesting that HDVs are a low-hanging fruit for contributing to decarbonization of the German road transport sector with hydrogen energy. N2 - Energie ist der Kern der Klimakrise—aber auch der Kern jeglicher Bemühungen zur Eindämmung des Klimawandels. Der Energieverbrauch ist heute für ungefähr drei Viertel der weltweiten Treibhausgasemissionen verantwortlich. Grundlegend für einen ernsthaft gemeinten Plan eine Klimakatastrophe abzuwenden ist daher eine umfassende Umgestaltung des weltweiten Energiesystems von fossilen Brennstoffen weg in Richtung zukünftige Netto-Null-Emissionen. Angesichts der Tatsache, dass fossile Brennstoffe auch eine Hauptquelle für Luftschadstoffemissionen sind, hat die Energiewende wichtige Auswirkungen auf die Luftqualität und damit auch auf die Gesundheit von Mensch und Umwelt. Sowohl Europa als auch Deutschland haben sich zum Ziel gesetzt, bis 2050 treibhausgasneutral zu werden und zeigen darüber hinaus ihr tiefes Engagement für eine umfassende Energiewende. Zwei der wichtigsten Entwicklungen in der Energiepolitik im letzten Jahrzehnt waren das Interesse an der Ausweitung von Schiefergas und Wasserstoff, das entsprechend großes Interesse und große Diskussionen in der Öffentlichkeit, im Privaten und in der Politik erzeugt hat. In diesem Zusammenhang können fundierte wissenschaftliche Informationen eine wichtige Rolle spielen, indem sie Interessenvertreter und zukünftige Forschungsinvestitionen informieren und evidenzbasierte Entscheidungen unterstützen. Diese Doktorarbeit untersucht die Umweltauswirkungen möglicher, relevanter Veränderungen im europäischen Energiesystem, um wertvolle Erkenntnisse zu vermitteln und kritische Wissenslücken zu schließen. Insbesondere werden mögliche zukünftige Schiefergasentwicklungen in Deutschland und im Vereinigten Königreich (UK) sowie ein hypothetischer, vollständiger Übergang zur Wasserstoffmobilität in Deutschland untersucht. Darüber hinaus werden die Auswirkungen auf die Treibhausgas- und Luftschadstoffemissionen sowie auf die Luftqualität von troposphärischem Ozon (O3) bewertet. Die Analyse wird durch die Erstellung von Emissionsszenarien und die Durchführung von Luftqualitätsmodellen über die Chemie-Version des "Weather Research and Forecasting Model" (WRF-Chem) erleichtert. Die Forschung dieser Doktorarbeit wird in drei wissenschaftlichen Artikeln vorgestellt. Der erste Artikel beschreibt, dass die Methan (CH4)-Leckraten aus einer vorgelagerten Schiefergasproduktion in Deutschland und Großbritannien in einem gewöhnlichen Fall zwischen 0.35% und 1.36% liegen würden, während sie in einem optimistischen, streng regulierten Fall signifikant zwischen 0.08% und 0.15% niedriger wären, und zeigt damit die Bedeutung und das Potenzial von Maßnahmen zur wesentlichen Reduzierung der Emissionen auf. Obwohl der optimistische Fall technisch machbar ist, ist es aufgrund der Wirtschaftlichkeit und der begrenzten Überwachungsressourcen unwahrscheinlich, dass die angenommenen Praktiken und Technologien systematisch und regelmäßig angewendet und durchgeführt werden. Die in dieser Studie geschätzten realistischen CH4-Leckraten sind vergleichbar mit Werten, die in Studien in den USA und anderswo angegeben wurden. Im Gegensatz dazu ähneln die optimistischen Raten den offziellen CH4- Leckraten aus der vorgelagerten Gasproduktion in Deutschland und Großbritannien. In Anbetracht des Mangels an systematischen, transparenten und unabhängigen Berichten, die die offziellen Werte stützen, unterstreicht diese Studie die Notwendigkeit weiterer Forschungsanstrengungen in diese Richtung. Im Vergleich zu den Emissionen des nationalen Energiesektors deutet diese Studie darauf hin, dass die Schiefergasemissionen flüchtiger organischer Verbindungen (VOC) erheblich sein könnten, andere Luftschadstoffe jedoch relativ unbedeutend bleiben. Ähnlich wie bei CH4 könnten Maßnahmen zur Reduzierung der VOC-Emissionen wirksam sein. Der zweite Artikel beschreibt, dass VOC- und Stickoxidemissionen (NOx) einer zukünftigen Schiefergasindustrie in Deutschland und Großbritannien potenziell schädliche Folgen für die europäische O3-Luftqualität sowohl auf lokaler als auch auf regionaler Ebene haben. Die Ergebnisse zeigen einen Spitzenanstieg des maximalen täglichen 8-Stunden-Durchschnitts von O3 (MDA8) im Bereich von 3.7 µg m-3 bis 28.3 µg m-3. Die Ergebnisse deuten darauf hin, dass Schiefergasaktivitäten zu zusätzlichen Grenzwertüberschreitungen des MDA8 bei einem erheblichen Prozentsatz der regulatorischen Messstationen sowohl vor Ort als auch in Nachbar- und entfernten Ländern führen können, wobei bei bis zu etwa einem Drittel der Stationen in Großbritannien und einem Fünftel der Stationen in Deutschland zusätzliche Überschreitungen auftreten. Darüber hinaus zeigen die Ergebnisse, dass die Auswirkungen von Schiefergas auf die kumulative gesundheitsbezogene Metrik SOMO35 (jährliche Summe des Ozonmittel über 35 ppb) mit einem maximalen Anstieg von ca. 28% erheblich sein könnten. Insgesamt deuten die Ergebnisse darauf hin, dass die VOC-Emissionen von Schiefergas eine entscheidende Rolle bei der O3-Erhöhung spielen könnten, während die NOx-Emissionen in geringerem Maße dazu beitragen würden. Unsere Ergebnisse zeigen daher, dass eine strenge Regulierung der VOC-Emissionen im Falle einer künftigen europäischen Schiefergasentwicklung wichtig ist, um schädliche gesundheitliche Folgen zu minimieren. Der dritte Artikel beschreibt, dass ein hypothetischer, vollständiger Übergang der deutschen Fahrzeugflotte zur Wasserstoff-Brennstoffzellentechnologie wesentlich zu Deutschlands Klima- und Luftqualitätszielen beitragen kann. Die Ergebnisse deuten darauf hin, dass bei einer Erzeugung des Wasserstoffs durch erneuerbare Wasserelektrolyse (grüner Wasserstoff) die Emissionen des deutschen Kohlendioxidäquivalents (CO2eq) jährlich um 179 MtCO2eq sinken würden. Wenn die Elektrolyse jedoch mit dem aktuellen Strommix betrieben würde, würden sich die Emissionen stattdessen um jährlich 95 MtCO2eq erhöhen. Die Ergebnisse zeigen im Allgemeinen einen bemerkenswerten Rückgang der Luftschadstoffemissionen in Deutschland. Weiterhin legen sie nahe, dass der Wasserstoffbedarf von Fahrzeugen 1000 PJ pro Jahr beträgt, was zwischen 446 TWh und 525 TWh für Elektrolyse, Wasserstofftransport und -speicherung erfordern würde. Wenn nur das Segment der Schwerlastfahrzeuge (HDVs) auf grünen Wasserstoff umgestellt wird, zeigen unsere Ergebnisse, dass der Wasserstoffbedarf der Fahrzeuge auf 371 PJ sinkt, während immer noch eine tiefgreifende Emissionsreduzierung erzielt wird (-57 MtCO2eq). Dies zeigt, dass die Umstellung der HDVs auf grünen Wasserstoff einen entscheidenden Beitrag zur Dekarbonisierung des deutschen Straßenverkehrs leisten kann. T2 - Erforschung möglicher Auswirkungen von Veränderungen deutscher und europäischer Energie auf Treibhausgas- und Luftschadstoffemissionen sowie auf die Ozonluftqualität KW - European energy KW - Emission scenarios KW - Greenhouse gas mitigation KW - Air quality modeling KW - Air pollution KW - Ozone KW - Shale gas KW - Hydrogen economy KW - German road transport KW - Fuel cell electric vehicle KW - Europäische Energie KW - Emissionsszenarien KW - Treibhausgasminderung KW - Luftqualitätsmodellen KW - Luftverschmutzung KW - Ozon KW - Schiefergas KW - Wasserstoffwirtschaft KW - Deutscher Straßenverkehr KW - Brennstoffzellenfahrzeug Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-496986 ER - TY - THES A1 - Tegtmeier, Susann T1 - Variationen der stratosphärischen Residualzirkulation und ihr Einfluss auf die Ozonverteilung T1 - Variations of the residual circulation and its impact on ozone N2 - Die Residualzirkulation entspricht der mittleren Massenzirkulation und beschreibt die im zonalen Mittel stattfindenden meridionalen Transportprozesse. Die Variationen der Residualzirkulation bestimmen gemeinsam mit dem anthropogen verursachten Ozonabbau die jährlichen Schwankungen der Ozongesamtsäule im arktischen Frühling. In der vorliegenden Arbeit wird die Geschwindigkeit des arktischen Astes der Residualzirkulation aus atmosphärischen Daten gewonnen. Zu diesem Zweck wird das diabatische Absinken im Polarwirbel mit Hilfe von Trajektorienrechnungen bestimmt. Die vertikalen Bewegungen der Luftpakete können mit vertikalen Windfeldern oder entsprechend einem neuen Ansatz mit diabatischen Heizraten angetrieben werden. Die Eingabedaten stammen aus dem 45 Jahre langen Reanalyse-Datensatz des "European Centre for Medium Range Weather Forecast" (ECMWF). Außerdem kann für die Jahre ab 1984 die operationelle ECMWF-Analyse verwendet werden. Die Qualität und Robustheit der Heizraten- und Trajektorienrechnungen werden durch Sensitivitätsstudien und Vergleiche mit anderen Modellen untermauert. Anschließend werden umfangreiche Trajektorienensemble statistisch ausgewertet, um ein detailliertes, zeit- und höhenaufgelöstes Bild des diabatischen Absinkens zu ermitteln. In diesem Zusammenhang werden zwei Methoden entwickelt, um das Absinken gemittelt im Polarwirbel oder als Funktion der äquivalenten Breite zu bestimmen. Es wird gezeigt, dass es notwendig ist den Lagrangeschen auf Trajektorienrechnungen basierenden Ansatz zu verfolgen, da die einfachen Eulerschen Mittel Abweichungen zu den Lagrangeschen Vertikalgeschwindigkeiten aufweisen. Das wirbelgemittelte Absinken wird für einzelne Winter mit dem beobachteten Absinken langlebiger Spurengase und anderen Modellstudien verglichen. Der Vergleich zeigt, dass das Absinken basierend auf den vertikalen Windfeldern der ECMWF-Datensätze den Nettoluftmassentransport durch die Residualzirkulation sehr stark überschätzt. Der neue Ansatz basierend auf den Heizraten ergibt hingegen realistische Ergebnisse und wird aus diesem Grund für alle Rechnungen verwendet. Es wird erstmalig eine Klimatologie des diabatischen Absinkens über einen fast fünf Jahrzehnte umfassenden Zeitraum erstellt. Die Klimatologie beinhaltet das vertikal und zeitlich aufgelöste diabatische Absinken gemittelt über den gesamten Polarwirbel und Informationen über die räumliche Struktur des vertikalen Absinkens. Die natürliche Jahr-zu-Jahr Variabilität des diabatischen Absinkens ist sehr stark ausgeprägt. Es wird gezeigt, dass zwischen der ECMWF-Zeitreihe des diabatischen Absinkens und der Zeitreihe aus einem unabhängig analysierten Temperaturdatensatz hohe Korrelationen bestehen. Erstmals wird der Einfluss von Transportprozessen auf die Ozongesamtsäule im arktischen Frühling direkt quantifiziert. Es wird gezeigt, dass die Jahr-zu-Jahr Variabilität der Ozongesamtsäule im arktischen Frühling zu gleichen Anteilen durch die Variabilität der dynamischen Komponente und durch die Variabilität der chemischen Komponente beeinflusst wird. Die gefundenen Variabilitäten von diabatischem Absinken und Ozoneintrag in hohen Breiten werden mit der vertikalen Ausbreitung planetarer Wellen aus der Troposphäre in die Stratosphäre in Beziehung gesetzt. N2 - Due to the variability of tropospheric wave activity, the strength of the residual circulation has a distinct seasonal cycle and significant year-to-year variability. The variability of the residual circulation causes interannual variations of the polar ozone layer in late winter and spring. A reverse domain filling trajectory model based on atmospheric data sets is used to calculate the strength and spatial structure of the polar branch of the residual circulation. The atmospheric data sets (ERA-40 and ECMWF Analysis) emerge from a combined analysis of Reanalysis data and a weather forecast model and are available for a time period of 47 years starting from September 1957. Two different approaches are used in the trajectory routine to calculate the vertical movement of air. The first approach is based on the vertical velocity given by "European Centre for Medium Range Weather Forecast" (ECMWF), a quantity that is derived from the divergence of the horizontal winds and that tends to be noisy. In the second approach a radiation transfer model is used to calculate the diabatic heating rates from the divergence of the net radiation flux. The derived descent from both methods is compared with measured tracer distributions from satellite data and Arctic field campaigns. The comparison shows that the second approach results in a much more realistic vertical transport. The method based on the diabatic heating rates is used to compile a climatology of the diabatic descent, averaged within the polar vortex for the Arctic winters 1957/58-2003/04. Furthermore, the climatology contains information regarding the spatial structure of the diabatic descent. The influence of the diabatic descent in the Arctic polar vortex on the total ozone column is calculated for the recent winters since 1990. It is shown that the interannual variability of the Arctic total ozone column is in equal shares caused by dynamical transport processes and by chemical ozone depletion. KW - Allgemeine atmosphärische Zirkulation KW - Ozon KW - Strahlungstransportmodell KW - Trajektorienmodell KW - Polarwirbel KW - Residual circulation KW - Polar ozone KW - Radiation transfer model KW - Trajectory model KW - Polar vortex Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-12118 ER - TY - THES A1 - Streibel, Martin Albert Gerhard T1 - Bestimmung von Ozonabbauraten über der Arktis und Antarktis mittels Ozonsonden- und Satellitendaten T1 - Determination of ozone loss rates over the Arctic and Antarctic using ozone sonde and satellite data N2 - Diese Arbeit beschäftigt sich mit der chemischen Ozonzerstörung im arktischen und antarktischen stratosphärischen Polarwirbel. Diese wird durch Abbauprodukte von anthropogen emittierten Fluorchlorkohlenwasserstoffen und Halonen, Chlor- und Bromradikale, verursacht. Studien in denen der gemessene und modellierte Ozonabbau verglichen wird zeigen, dass die Prozeße bekannt sind, der quantitative Verlauf allerdings nicht vollständig verstanden ist. Die Prozesse, die zur Ozonzerstörung führen sind in beiden Polarwirbeln ähnlich. Allerdings fällt als Konsequenz unterschiedlicher meteorologischer Bedingungen der chemische Ozonabbau im arktischen Polarwirbel weniger drastisch aus als über der Antarktis. Der arktische Polarwirbel ist im Mittel stärker dynamisch gestört als der antarktische und weist eine stärkere Jahr-zu-Jahr Variabilität auf. Das erschwert die Messung des chemischen Ozonabbaus. Zur Trennung des chemischen Ozonabbaus von der dynamischen Umverteilung des Ozons im arktischen Polarwirbel wurde die Matchmethode entwickelt. Bei dieser Methode werden Luftpakete innerhalb des Polarwirbels mehrfach beprobt, um den chemischen Anteil der Ozonänderung zu quantifizieren. Zur Identifizierung von doppelt beprobten Luftpaketen werden Trajektorien aus Windfeldern berechnet. Können zwei Messungen im Rahmen bestimmter Qualitätskriterien durch eine Trajektorie verbunden werden, kann die Ozondifferenz zwischen beiden Sondierungen berechnet und als chemischer Ozonabbau interpretiert werden. Eine solche Koinzidenz wird Match genannt. Der Matchmethode liegt ein statistischer Ansatz zugrunde, so dass eine Vielzahl solcher doppelt beprobter Luftmassen vorliegen muss, um gesicherte Aussagen über die Ozonzerstörung gewinnen zu können. So erhält man die Ozonzerstörung in einem bestimmten Zeitintervall, also Ozonabbauraten. Um die Anzahl an doppelt beprobten Luftpackten zu erhöhen wurde eine aktive Koordinierung der Ozonsondenaufstiege entwickelt. Im Rahmen dieser Arbeit wurden Matchkampagnen während des arktischen Winters 2002/2003 und zum ersten Mal während eines antarktischen Winter (2003) durchgeführt. Aus den gewonnenen Daten wurden Ozonabbauraten in beiden Polarwirbeln bestimmt. Diese Abbauraten dienen zum einen der Evaluierung von Modellen, ermöglichen aber auch den direkten Vergleich von Ozonabbauraten in beiden Polarwirbeln. Der Winter 2002/2003 war zu Beginn durch sehr tiefe Temperaturen in der mittleren und unteren Stratosphäre charakterisiert, so dass die Matchkampagne Ende November gestartet wurde. Ab Januar war der Polarwirbel zeitweise stark dynamisch gestört. Die Kampagne ging bis Mitte März. Für den Höhenbereich von 400 bis 550 K potentieller Temperatur (15-23 km) konnten Ozonabbauraten und der Verlust in der Gesamtsäule berechnet werden. Die Ozonabbauraten wurden in verschiedenen Tests auf ihre Stabilität überprüft. Der antarktische Polarwirbel war vom Beginn des Winters bis Mitte Oktober 2003 sehr kalt und stellte Ende September kurzzeitig den Rekord für die größte bisher aufgetretene Ozonloch-Fläche ein. Es konnten für den Kampagnenzeitraum, Anfang Juni bis Anfang Oktober, Ozonabbauraten im Höhenbereich von 400 bis 550 K potentieller Temperatur ermittelt werden. Der zeitliche Verlauf des Ozonabbaus war dabei auf fast allen Höhenniveaus identisch. Die Zunahme des Sonnenlichtes im Polarwirbel mit der Zeit führt zu einem starken Anwachsen der Ozonabbauraten. Ab Mitte September gingen die Ozonabbauraten auf Null zurück, da bis zu diesem Zeitpunkt das gesamte Ozon zwischen ca. 14 und 21 km zerstört wurde. Im letzten Teil der Arbeit wird ein neuer Algorithmus auf Basis der multivariaten Regression vorgestellt, mit dem Ozonabbauraten aus Ozonprofilen verschiedener Sensoren gleichzeitig berechnet werden können. Dabei können neben der Ozonabbaurate die systematischen Fehler zwischen den einzelnen Sensoren bestimmt werden. Dies wurde exemplarisch am antarktischen Winter 2003 für das 475 K potentielle Temperatur Niveau gezeigt. Neben den Ozonprofilen der Sonden wurden Daten von zwei Satellitenexperimenten verwendet. Die mit der multivariaten Matchtechnik berechneten Ozonabbauraten stimmen gut mit den Ozonabbauraten der Einzelsensor-Matchansätze überein. N2 - The subject of this thesis is the destruction of ozone in the stratospheric polar vortex of the Arctic and Antarctic. It is caused by decomposition products of anthropogenic emitted Chlorofluorocarbons and Halons, radicals of chlorine and bromine. Studies which are dealing with the comparison of measured and modelled ozone loss show that the processes are known but that the quantitative development is not fully understood yet. The processes that lead to ozone destruction are similar in both polar vortices. But as a consequence of different meteorological conditions the chemical ozone loss in the arctic polar vortex is less dramatic than over the Antarctic. On average the Arctic polar vortex is stronger perturbed and exhibit a stronger annual variability. In order to distinguish between chemical ozone loss and the dynamical redistribution of ozone in the Arctic vortex the Match method was developed. Air parcels in the polar vortex are probed several times in order to quantify the chemical change in ozone. To identify those air parcels trajectories are calculated using wind fields. When it is possible to connect two measurements by a trajectory within certain quality criteria the difference in ozone can be calculated and is interpreted as chemical ozone loss. Such a coincidence is called a Match. The Match method is a statistical approach which needs many of those doubly probed air parcels in order to draw significant conclusions about the destruction of ozone. So the ozone destruction can be calculated for a certain period in time which gives ozone loss rates. In order to enhance the number of doubly probed air masses an active coordination was established. Within the scope of the thesis Match campaigns were performed during the Arctic winter 2002/2003 and for the first time during the Antarctic winter 2003. The achieved data was used in order to determine ozone loss rates in both polar vortices. The loss rates serve for the evaluation of numerical models but allow as well the direct comparison of ozone loss rates of both polar vortices. The beginning of the winter 2002/2003 is characterized by very low temperatures in the middle and lower stratosphere. Hence, the Match campaign started at the end of November. From January on the polar vortex was strongly dynamically disturbed at certain times. For the height region of 400 to 500 K potential temperature (15-23 km) ozone loss rates and the column loss were determined. The robustness of the ozone loss rates was checked with a variety of different tests. From beginning of the winter until October 2003 the Antarctic polar vortex was very cold and the expansion of the ozone hole area reached record values in late September. From the beginning of June until the beginning of October ozone loss has been calculated in a height region from 400 to 550 K potential temperature. The development of the ozone loss was almost identical on the different height levels. The increase in sunlight led to an increase in ozone loss rates. From mid September the ozone loss rates decreased rapidly and the ozone was completely destroyed between approx. 14 and 21 km. In the last part of the thesis a new algorithm is presented which is based on a multivariate regression in order to calculate ozone loss rates from ozone profiles made by different sensors. At the same time the systematic error between different sensors has to be considered. As an example the approach is shown for the Antarctic Winter 2003 on the 475 K potential temperature level. Beside the ozone profiles from the sondes, data from two satellites experiments have been used. The agreement between the ozone loss rates calculated by the multivariate regression method and those calculated by the single match approach is very good. KW - Ozon KW - Polarforschung KW - Polartief KW - Atmosphäre KW - Ozonzabbau KW - ozone KW - polar research KW - polar vortex KW - atmosphere KW - ozone loss Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-6570 ER - TY - THES A1 - Bleßmann, Daniela T1 - Der Einfluss der Dynamik auf die stratosphärische Ozonvariabilität über der Arktis im Frühwinter T1 - Dynamical influence on stratospheric ozone variability over the Arctic in early winter N2 - Der frühwinterliche Ozongehalt ist ein Indikator für den Ozongehalt im Spätwinter/Frühjahr. Jedoch weist dieser aufgrund von Absinkprozessen, chemisch bedingten Ozonabbau und Wellenaktivität von Jahr zu Jahr starke Schwankungen auf. Die vorliegende Arbeit zeigt, dass diese Variabilität weitestgehend auf dynamische Prozesse während der Wirbelbildungsphase des arktischen Polarwirbels zurückgeht. Ferner wird der bisher noch ausstehende Zusammenhang zwischen dem früh- und spätwinterlichen Ozongehalt bezüglich Dynamik und Chemie aufgezeigt. Für die Untersuchung des Zusammenhangs zwischen der im Polarwirbel eingeschlossenen Luftmassenzusammensetzung und Ozonmenge wurden Beobachtungsdaten von Satellitenmessinstrumenten und Ozonsonden sowie Modellsimulationen des Lagrangschen Chemie/Transportmodells ATLAS verwandt. Die über die Fläche (45–75°N) und Zeit (August-November) gemittelte Vertikalkomponente des Eliassen-Palm-Flussvektors durch die 100hPa-Fläche zeigt eine Verbindung zwischen der frühwinterlichen wirbelinneren Luftmassenzusammensetzung und der Wirbelbildungsphase auf. Diese ist jedoch nur für die untere Stratosphäre gültig, da die Vertikalkomponente die sich innerhalb der Stratosphäre ändernden Wellenausbreitungsbedingungen nicht erfasst. Für eine verbesserte Höhendarstellung des Signals wurde eine neue integrale auf der Wellenamplitude und dem Charney-Drazin-Kriterium basierende Größe definiert. Diese neue Größe verbindet die Wellenaktivität während der Wirbelbildungsphase sowohl mit der Luftmassenzusammensetzung im Polarwirbel als auch mit der Ozonverteilung über die Breite. Eine verstärkte Wellenaktivität führt zu mehr Luft aus niedrigeren ozonreichen Breiten im Polarwirbel. Aber im Herbst und Frühwinter zerstören chemische Prozesse, die das Ozon ins Gleichgewicht bringen, die interannuale wirbelinnere Ozonvariablität, die durch dynamische Prozesse während der arktischen Polarwirbelbildungsphase hervorgerufen wird. Eine Analyse in Hinblick auf den Fortbestand einer dynamisch induzierten Ozonanomalie bis in den Mittwinter ermöglicht eine Abschätzung des Einflusses dieser dynamischen Prozesse auf den arktischen Ozongehalt. Zu diesem Zweck wurden für den Winter 1999–2000 Modellläufe mit dem Lagrangesche Chemie/Transportmodell ATLAS gerechnet, die detaillierte Informationen über den Erhalt der künstlichen Ozonvariabilität hinsichtlich Zeit, Höhe und Breite liefern. Zusammengefasst, besteht die dynamisch induzierte Ozonvariabilität während der Wirbelbildungsphase länger im Inneren als im Äußeren des Polarwirbels und verliert oberhalb von 750K potentieller Temperatur ihre signifikante Wirkung auf die mittwinterliche Ozonvariabilität. In darunterliegenden Höhenbereichen ist der Anteil an der ursprünglichen Störung groß, bis zu 90% auf der 450K. Innerhalb dieses Höhenbereiches üben die dynamischen Prozesse während der Wirbelbildungsphase einen entscheidenden Einfluss auf den Ozongehalt im Mittwinter aus. N2 - The ozone amount in early winter provides an indication of the ozone amount in late winter/early spring. The early winter amount is highly variable from year to year due to modification by subsidence, chemical loss and wave activity. This thesis shows that this variability is mainly caused by the dynamics during the Arctic polar vortex formation. Furthermore, it explains the still missing link between early and late winter ozone amount due to dynamics and chemistry. Observational ozone data from satellite based instruments, ozone probes and simulations are used for the investigation of the connection between the composition of the air and the ozone enclosed in the polar vortex. The simulations are calculated with the Lagrangian chemistry/transport model ATLAS. The over area (45–75°N) and time (August-November) averaged vertical component of the Eliassen-Palm flux at 100hPa points to a link between the early winter composition of the air enclosed in the polar vortex and the vortex formation phase. This is only valid for the lower stratosphere, because the component does not satisfy changing conditions for wave propagation throughout the stratosphere by itself. Due to this deficit a new integral quantity based on wave amplitude and properties of the Charney-Drazin criterion is defined to achieve an improvement with height. This new quantity connects the wave activity during vortex formation to the composition of air inside the vortex as well as the distribution of ozone over latitude. An enhanced wave activity leads to a higher proportion of ozone rich air from lower latitudes inside the polar vortex. But chemistry in autumn and early winter removes the interannual variability in the amount of ozone enclosed in the vortex induced by dynamical processes during the formation phase of the Artic polar vortex because ozone relaxes towards equilibrium. An estimation of how relevant these variable dynamical processes are for the Arctic winter ozone abundances is obtained by analysing which fraction of dynamically induced anomalies in ozone persists until mid winter. Model runs with the Lagrangian Chemistry-Transport-Model ATLAS for the winter 1999–2000 are used to assess the fate of ozone anomalies artificially introduced during the vortex formation phase. These runs provide detailed information about the persistence of the induced ozone variability over time, height and latitude. Overall, dynamically induced ozone variability from the vortex formation phase survives longer inside the polar vortex compared to outside and can not significantly contribute to mid-winter variability at levels above 750K potential temperature level. At lower levels increasingly larger fractions of the initial perturbation survive, reaching 90% at 450K potential temperature level. In this vertical range dynamical processes during the vortex formation phase are crucial for the ozone abundance in mid-winter. KW - Stratosphäre KW - Ozon KW - Variabilität KW - Dynamik KW - Chemie-Transport-Modell KW - stratosphere KW - ozone KW - variability KW - dynamics KW - chemistry-transport-model Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-51394 ER -