TY - THES A1 - Olivotos, Spyros-Christos T1 - Reconstructing the Landscape Evolution of South Central Africa by Surface Exposure Dating of Waterfalls N2 - The East African Rift System (EARS) is a significant example of active tectonics, which provides opportunities to examine the stages of continental faulting and landscape evolution. The southwest extension of the EARS is one of the most significant examples of active tectonics nowadays, however, seismotectonic research in the area has been scarce, despite the fundamental importance of neotectonics. Our first study area is located between the Northern Province of Zambia and the southeastern Katanga Province of the Democratic Republic of Congo. Lakes Mweru and Mweru Wantipa are part of the southwest extension of the EARS. Fault analysis reveals that, since the Miocene, movements along the active Mweru-Mweru Wantipa Fault System (MMFS) have been largely responsible for the reorganization of the landscape and the drainage patterns across the southwestern branch of the EARS. To investigate the spatial and temporal patterns of fluvial-lacustrine landscape development, we determined in-situ cosmogenic 10Be and 26Al in a total of twenty-six quartzitic bedrock samples that were collected from knickpoints across the Mporokoso Plateau (south of Lake Mweru) and the eastern part of the Kundelungu Plateau (north of Lake Mweru). Samples from the Mporokoso Plateau and close to the MMFS provide evidence of temporary burial. By contrast, surfaces located far from the MMFS appear to have remained uncovered since their initial exposure as they show consistent 10Be and 26Al exposure ages ranging up to ~830 ka. Reconciliation of the observed burial patterns with morphotectonic and stratigraphic analysis reveals the existence of an extensive paleo-lake during the Pleistocene. Through hypsometric analyses of the dated knickpoints, the potential maximum water level of the paleo-lake is constrained to ~1200 m asl (present lake lavel: 917 m asl). High denudation rates (up to ~40 mm ka-1) along the eastern Kundelungu Plateau suggest that footwall uplift, resulting from normal faulting, caused river incision, possibly controlling paleo-lake drainage. The lake level was reduced gradually reaching its current level at ~350 ka. Parallel to the MMFS in the north, the Upemba Fault System (UFS) extends across the southeastern Katanga Province of the Democratic Republic of Congo. This part of our research is focused on the geomorphological behavior of the Kiubo Waterfalls. The waterfalls are the currently active knickpoint of the Lufira River, which flows into the Upemba Depression. Eleven bedrock samples along the Lufira River and its tributary stream, Luvilombo River, were collected. In-situ cosmogenic 10Be and 26Al were used in order to constrain the K constant of the Stream Power Law equation. Constraining the K constant allowed us to calculate the knickpoint retreat rate of the Kiubo Waterfalls at ~0.096 m a-1. Combining the calculated retreat rate of the knickpoint with DNA sequencing from fish populations, we managed to present extrapolation models and estimate the location of the onset of the Kiubo Waterfalls, revealing its connection to the seismicity of the UFS. N2 - Die südwestliche Ausdehnung des Ostafrikanischen Grabenbruchsystems (East African Rift System, EARS) ist eines der bedeutendsten Beispiele aktiver Tektonik heutzutage, welches die Möglichkeit bietet, die Phasen der kontinentalen Verwerfung und der Landschaftsentwicklung zu untersuchen. Allerdings ist seismotektonische Forschung in diesem Gebiet trotz der fundamentalen Bedeutung der Neotektonik nur in geringem Umfang durchgeführt worden. Unser erstes Untersuchungsgebiet befindet sich zwischen der Nordprovinz Sambias und der Provinz Katanga im südöstlichen Teil der Demokratischen Republik Kongo. Die Seen Mweru und Mweru Wantipa sind Teil der südwestlichen Ausdehnung des EARS. Verwerfungsanalysen zeigen, dass seit dem Miozän Bewegungen entlang des aktiven Mweru–Mweru-Wantipa-Verwerfungssystems (MMFS) maßgeblich für die Reorganisation der Landschaft und der Entwässerungsmuster im südwestlichen Zweig des EARS verantwortlich sind. Um die räumlichen und zeitlichen Muster der fluvial-lakustrischen Landschaftsentwicklung zu untersuchen, haben wir in-situ kosmogenes 10Be und 26Al in insgesamt sechsundzwanzig Quarzit-Grundgesteinsproben bestimmt, die vorwiegend von Knickpunkten auf dem Mporokoso-Plateau (südlich des Mweru-Sees) und dem östlichen Teil des Kundelungu-Plateaus (nördlich des Mweru-Sees) gesammelt wurden. Proben vom Mporokoso-Plateau aus der Nähe des MMFS liefern Hinweise auf eine temporäre Bedeckung. Im Gegensatz dazu scheinen Oberflächen, die weit vom MMFS entfernt liegen, seit ihrer ersten Freilegung unbedeckt geblieben zu sein, da sie konsistente 10Be- und 26Al-Freilegungsalter bis zu ~830 ka aufweisen. Der Abgleich der beobachteten Bedeckungsmuster mit morphotektonischen und stratigraphischen Analysen zeigt die Existenz eines ausgedehnten Paläosees während des Pleistozäns. Durch hypsometrische Analysen der datierten Knickpunkte wird der potentielle maximale Wasserstand des Paläosees auf ~1200 m (heutige Seehöhe: 917 m) eingegrenzt. Hohe Denudationsraten (bis zu ~40 mm ka-1) entlang des östlichen Kundelungu-Plateaus deuten darauf hin, dass die durch normale Verwerfungen hervorgerufene Hebung des Fußes einen Flusseinschnitt verursachte, der möglicherweise die Entwässerung des Paläosees kontrollierte. Der Seespiegel wurde allmählich abgesenkt und erreichte sein heutiges Niveau bei ~350 ka. Parallel zum MMFS im Norden erstreckt sich das Upemba-Verwerfungssystem (UFS) über die südöstliche Katanga-Provinz der Demokratischen Republik Kongo. Dort konzentriert sich unsere Forschung auf das geomorphologische Verhalten der Kiubo-Wasserfälle. Diese Fälle sind der derzeit aktive Knickpunkt des Lufira-Flusses, der in die Upemba-Senke mündet. Elf Gesteinsproben entlang des Lufira-Flusses und seines Nebenflusses, des Luvilombo-Flusses, wurden gesammelt. In-situ kosmogenes 10Be und 26Al wurden verwendet, um die K-Konstante der „Strom-Power-Law“-Gleichung einzuschränken. Die Eingrenzung der K-Konstante ermöglichte uns die Berechnung der Rückzugsrate der Kiubo-Wasserfälle auf ~0,096 m a-1. Durch die Kombination der berechneten Rückzugsrate des Knickpunkts mit der DNA-Sequenzierung von Fischpopulationen konnten wir Extrapolationsmodelle formulieren und den Entstehungsort der Kiubo-Wasserfälle abschätzen. Diese Abschätzung legt einen Zusammenhang mit der Seismizität der UFS nahe. T2 - Rekonstruktion der Landschaftsentwicklung im südlichen Zentralafrika durch Datierung der Oberflächenexposition von Wasserfällen KW - Quaternary KW - paleo-lake Mweru KW - East African Rift System KW - Knickpoint KW - Geochronology KW - Cosmogenic nuclides KW - Landscape Evolution KW - Neotectonics KW - Knickpoint retreat KW - Stream Power Law KW - Kosmogene Nuklide KW - Ostafrikanisches Grabensystem KW - Geochronologie KW - Knickpunkt KW - Knickpunkt-Rückzug KW - Landschaftsentwicklung KW - Neotektonik KW - Quartär KW - Paläo-See Mweru Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-601699 ER - TY - THES A1 - Olaka, Lydia Atieno T1 - Hydrology across scales : sensitivity of East African lakes to climate changes T1 - Sensitivität auf Ostafrikanischen Riftseen zu Klimawandel N2 - The lakes of the East African Rift System (EARS) have been intensively studied to better understand the influence of climate change on hydrological systems. The exceptional sensitivity of these rift lakes, however, is both a challenge and an opportunity when trying to reconstruct past climate changes from changes in the hydrological budget of lake basins on timescales 100 to 104 years. On one hand, differences in basin geometrics (shape, area, volume, depth), catchment rainfall distributions and varying erosion-deposition rates complicate regional interpretation of paleoclimate information from lacustrine sediment proxies. On the other hand, the sensitivity of rift lakes often provides paleoclimate records of excellent quality characterized by a high signal-to-noise ratio. This study aims at better understanding of the climate-proxy generating process in rift lakes by parameterizing the geomorphological and hydroclimatic conditions of a particular site providing a step towards the establishment of regional calibrations of transfer functions for climate reconstructions. The knowledge of the sensitivity of a lake basin to climate change furthermore is crucial for a better assessment of the probability of catastrophic changes in the future, which bear risks for landscapes, ecosystems, and organisms of all sorts, including humans. Part 1 of this thesis explores the effect of the morphology and the effective moisture of a lake catchment. The availability of digital elevation models (DEM) and gridded climate data sets facilitates the comparison of the morphological and hydroclimatic conditions of rift lakes. I used the hypsometric integral (HI) calculated from Shuttle Radar Topography Mission (SRTM) data to describe the morphology of ten lake basins in Kenya and Ethiopia. The aridity index (AI) describing the difference in the precipitation/evaporation balance within a catchment was used to compare the hydroclimatic of these basins. Correlating HI and AI with published Holocene lake-level variations revealed that lakes responding sensitively to relatively moderate climate change are typically graben shaped and characterized by a HI between 0.23-0.30, and relatively humid conditions with AI >1. These amplifier lakes, a term first introduced but not fully parameterized by Alayne Street-Perrott in the early 80s, are unexceptionally located in the crest of the Kenyan and Ethiopian domes. The non-amplifier lakes in the EARS either have lower HI 0.13-0.22 and higher AI (>1) or higher HI (0.31-0.37) and low AI (<1), reflecting pan-shaped morphologies with more arid hydroclimatic conditions. Part 2 of this work addresses the third important factor to be considered when using lake-level and proxy records to unravel past climate changes in the EARS: interbasin connectivity and groundwater flow through faulted and porous subsurface lithologies in a rift setting. First, I have compiled the available hydrogeological data including lithology, resistivity and water-well data for the adjacent Naivasha and Elmenteita-Nakuru basins in the Central Kenya Rift. Using this subsurface information and established records of lake-level decline at the last wet-dry climate transitions, i.e., the termination of the African Humid Period (AHP, 15 to 5 kyr BP), I used a linear decay model to estimate typical groundwater flow between the two basins. The results suggest a delayed response of the groundwater levels of ca. 5 kyrs if no recharge of groundwater occurs during the wet-dry transition, whereas the lag is 2-2.7 kyrs only using the modern recharge of ca. 0.52 m/yr. The estimated total groundwater flow from higher Lake Naivasha (1,880 m a.s.l. during the AHP) to Nakuru-Elmenteita (1,770 m) was 40 cubic kilometers. The unexpectedly large volume, more than half of the volume of the paleo-Lake Naivasha during the Early Holocene, emphasizes the importance of groundwater in hydrological modeling of paleo-lakes in rifts. Moreover, the subsurface connectivity of rift lakes also causes a significant lag time to the system introducing a nonlinear component to the system that has to be considered while interpreting paleo-lake records. Part 3 of this thesis investigated the modern intraseasonal precipitation variability within eleven lake basins discussed in the first section of the study excluding Lake Victoria and including Lake Tana. Remotely sensed rainfall estimates (RFE) from FEWS NET for 1996-2010, are used for the, March April May (MAM) July August September (JAS), October November (ON) and December January February (DJF). The seasonal precipitation are averaged and correlated with the prevailing regional and local climatic mechanisms. Results show high variability with Biennial to Triennial precipitation patterns. The spatial distribution of precipitation in JAS are linked to the onset and strength of the Congo Air Boundary (CAB) and Indian Summer Monsoon (ISM) dynamics. while in ON they are related to the strength of Positive ENSO and IOD phases This study describes the influence of graben morphologies, extreme climate constrasts within catchments and basins connectivity through faults and porous lithologies on rift lakes. Hence, it shows the importance of a careful characterization of a rift lake by these parameters prior to concluding from lake-level and proxy records to climate changes. Furthermore, this study highlights the exceptional sensitivity of rift lakes to relatively moderate climate change and its consequences for water availability to the biosphere including humans. N2 - Die Seen des Ostafrikanischen Riftsystems (EARS) wurden bereits intensiv untersucht, um den Einfluss des Klimawandels auf das hydrologische Systeme besser verstehen zu können. Dabei stellt die außergewöhnliche Sensitivität dieser Riftseen sowohl eine Herausforderung als auch eine Möglichkeit dar, um den historischen Klimawandel von dem hydrologischen Budget der Seebecken auf Zeitskalen von 10 bis 10000 Jahre abzuleiten. Auf der einen Seite verkomplizieren verschiedene Beckengeometrien (Form, Fläche, Volumen, Tiefe), unterschiedliche Niederschlagsverteilungen der einzelnen Zuflüsse und variierende Erosions- und Sedimentationsraten, die aus den Informationen von Seesedimenten generierten, regionalen Interpretationen des Paleoklimas. Andererseits ergibt sich aus der hohen Sensitivität der Riftseen eine exzellente Datenqualität, was sich in dem hohen Signal - Rausch-Verhältnis widerspiegelt. Das Ziel meiner Untersuchungen ist das verbesserte Verständlichkeit der Klimainformationen generierenden Prozesse in den Riftseen als Voraussetzung für weitere Klimarekonstruktion. Fortschritte gab es vor allem in der Entwicklung von regionalen Kalibrationen durch die Parametrisierung der geomorphologischen und hydroklimatischen Gegebenheiten einer wichtigen Lokalität, wodurch es jetzt möglich ist, von Sedimentfunden auf die Umgebungsbedingungen Rückschlüsse zu ziehen. Das Wissen um die Reaktion der Seebecken auf Klimaschwankungen ist unerlässlich für eine bessere Abschätzung der Wahrscheinlichkeit von katastrophalen Änderungen in der Zukunft:ein Szenario das sowohl für Umwelt, Ökosysteme und Organismen, einschließlich des Menschen, Risiken birgt. Im ersten Teil meiner Doktorarbeit untersuche ich den Effekt der Morphologie und der effektiven Feuchtigkeit auf das Einzugsgebiet eines Sees. Die Verfügbarkeit von digitalen Höhenmodellen (DEM) und gerasterten Klimadatensätzen ermöglicht den Vergleich von morphologischen und hydroklimatischen Bedingungen der Riftseen. Ich nutzte das hypsometrische Integral (HI), berechnet aus Daten der “Shuttle Radar Topography Mission (SRTM)”, um die Morphologie von zehn Seebecken in Kenia und Äthopien zu beschreiben. Der Dürreindex (AI), der die Differenz von Niederschlag zu Verdunstung innerhalb eines Einzugsgebietes beschreibt, wurde benutzt, um das Hydroklima dieser Becken zu vergleichen. Die Korrelation von hypsometrischem Integral und Dürreindex mit publizierten holozänen Seespiegelschwankungen zeigte, dass vor allem Seen mit kleiner Oberfläche und großer Tiefe (Grabenform), charakterisiert durch ein HI von 0.23-0.30 und feuchte Bedingungen mit einem AI > 1, empfindlich auf relativ moderate Klimaänderungen reagieren. Diese “verstärkenden” Seen (amplifier lakes), ein Begriff der von Alayne Street-Perrott in den Achzigerjahren eingeführt wurde aber bis heute nicht völlig quantitativ definiert ist, sind ohne Ausnahme in den tiefen Gräben der kenianischen und äthiopischen Dome zu finden. Seen innerhalb des EARS, die nicht derart empfindlich reagieren, haben entweder ein niedrigeres HI von 0.13-0.22 und einen höheren AI (>1) oder ein höherers HI (0.31-0.37) aber einen niedrigen AI (<1) und zeigen großflächige, flache Morphologien (Pfannenform) unter trockenen klimatischen Bedingungen. Der zweite Teil der Arbeit beschäftigt sich mit einem weiteren wichtigen Faktor innerhalb der Klimarekonstruktion, wenn Seespiegelschwankungen und indirekte Messungen (Proxies) betrachtet werden:den störungsbezogenen und porösen Gesteinsschichten geschuldeten Grundwasserverbindungen zwischen den Becken. Als erstes habe ich die vorhandenen hydrogeologischen Daten bestehend aus den Gesteinsformationen, deren Widerstandsfähigkeit und den wasserbezogenen Bohrdaten für die Seen Naivasha und Elementaita-Nakuru zusammengestellt. Mit diesen bereits etablierten Untergrunddaten, z.B. zum Seespiegelrückgang am letzten Übergang von feuchtem zum trockeneren Klima am Ende der afrikanischen Feuchtperiode (AHP) um 15000 bis 5000 Jahre vor heute, schätzte ich den typischen Grundwasserfluss zwischen den beiden benachbarten Becken mittels eines linearen Modells ab. Die Ergebnisse zeigen eine Zeitverzögerung der Grundwasserspiegelanpassung um ca. 5000 Jahre an, falls keine Auffüllung der Grundwasserzufuhr zum Ende der letzten Feuchtperiode eintrat. In heutiger Zeit, ist bedingt durch die Grundwassererzufuhr von ca. 0.52 m/Jahr, nur eine Zeitverzögerung um ca. 2000-2700 Jahre zu sehen. Der geschätzte totale Grundwasserfluss vom höher gelegenden Naivasha See (1880 m über dem Meeresspiegel zum Ende der AHP) zum Elementaita-Nakuru See (1770 m) betrug 40 km3. Dieses unerwartet große Volumen, mehr als die Hälfte des Volumens vom Naivasha See während des frühen Holozäns, verdeutlicht, dass das Grundwasser für die hydrologische Modellierung von Paleoseen in Riftgebieten unbedingt mit einbezogen werden muss. Darüber hinaus führt die Grundwasserverbindung dieser Riftseen zu einer Zeitverzögerung in deren Reaktionen, was eine nichtlineare Komponente darstellt und bei jeder Interpretation von Paleoseespiegeldaten beachtet werden muss. Der dritte Teil dieser Arbeit untersucht die intrasaisonale Niederschlagsvariabilität innerhalb von 11 Einzugsgebieten die im ersten Teil Arbeit vorgestellt wurden, mit Ausnahme des Viktoriasees, aber inklusive des Tanasees. Aus Satellitenbilddaten des FEWS NET der Jahre 1996-2010 wurden Niederschlagsabschätzungen für die Monatsreihen März-April-Mai (MAM), Juli-August-September (JAS), Oktober-November (ON) und Dezember-Januar-Februar (DJF) berechnet. Der jahreszeitliche Niederschlag wurde gemittelt und mit den dominierenden regionalen und lokalen Klimafaktoren korreliert. Die Ergebnisse zeigen eine deutliche zwei- bis dreijährige Niederschlagsvariabilität. Die räumliche Niederschlagsverteilung innerhalb des Ostafrikanische Rifts im JAS ist an die Ausbildung und Stärke der Kongoluftmassengrenze (CAB) und an die Dynamik des Indischen Sommermonsuns gekoppelt, während sie im ON an die Stärke der positiven ENSO und IOD Phasen gebunden ist. Diese Doktorarbeit beschreibt den Einfluss von Grabenmorphologien, extremen Klimakontrasten innerhalb der Zuflussgebiete und die unterirdischen Beckenverbindung durch Störungszonen und poröse Gesteinsschichten zwischen den Riftseen. Damit zeigt sie die Unerlässlichkeit einer genauen Charakterisierung von Riftseen durch morphologische und klimatische Parameter, bevor von Seespiegelschwankungen und indirekten Datensätzen auf Klimaänderungen geschlossen werden kann. Desweiteren stellt diese Arbeit die hohe Empfindsamkeit dieser Seen gegenüber relativ moderaten Klimaänderungen und deren Konsequenzen für die insgesamte Wasserverfügbarkeit heraus. KW - Ostafrikanisches Riftsystem KW - Klima KW - verstärkende Seen KW - Grundwasser KW - Skalierung KW - East African Rift System KW - Climate KW - Amplifier Lakes KW - Groundwater KW - Scaling Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-55029 ER - TY - THES A1 - Junginger, Annett T1 - East African climate variability on different time scales : the Suguta Valley in the African-Asian Monsoon Domain T1 - Ostafrikanische Klimavariabilität auf unterschiedlichen Zeitskalen : das Suguta Valley in der Afrikanisch-Asiatischen Monsun Region N2 - Motivation | Societal and economic needs of East Africa rely entirely on the availability of water, which is governed by the regular onset and retreat of the rainy seasons. Fluctuations in the amounts of rainfall has tremendous impact causing widespread famine, disease outbreaks and human migrations. Efforts towards high resolution forecasting of seasonal precipitation and hydrological systems are therefore needed, which requires high frequency short to long-term analyses of available climate data that I am going to present in this doctoral thesis by three different studies. 15,000 years - Suguta Valley | The main study of this thesis concentrated on the understanding of humidity changes within the last African Humid Period (AHP, 14.8-5.5 ka BP). The nature and causes of intensity variations of the West-African (WAM) and Indian Summer monsoons (ISM) during the AHP, especially their exact influence on regional climate relative to each other, is currently intensely debated. Here, I present a high-resolution multiproxy lake-level record spanning the AHP from the remote Suguta Valley in the northern Kenya Rift, located between the WAM and ISM domains. The presently desiccated valley was during the AHP filled by a 300 m deep and 2200 km2 large palaeo-lake due to an increase in precipitation of only 26%. The record explains the synchronous onset of large lakes in the East African Rift System (EARS) with the longitudinal shift of the Congo Air Boundary (CAB) over the East African and Ethiopian Plateaus, as the direct consequence of an enhanced atmospheric pressure gradient between East-Africa and India due to a precessional-forced northern hemisphere insolation maximum. Pronounced, and abrupt lake level fluctuations during the generally wet AHP are explained by small-scale solar irradiation changes weakening this pressure gradient atmospheric moisture availability preventing the CAB from reaching the study area. Instead, the termination of the AHP occurred, in a non-linear manner due to a change towards an equatorial insolation maximum ca. 6.5 ka ago extending the AHP over Ethiopia and West-Africa. 200 years - Lake Naivasha | The second part of the thesis focused on the analysis of a 200 year-old sediment core from Lake Naivasha in the Central Kenya Rift, one of the very few present freshwater lakes in East Africa. The results revealed and confirmed, that the appliance of proxy records for palaeo-climate reconstruction for the last 100 years within a time of increasing industrialisation and therefore human impact to the proxy-record containing sites are broadly limited. Since the middle of the 20th century, intense anthropogenic activity around Lake Naivasha has led to cultural eutrophication, which has overprinted the influence of natural climate variation to the lake usually inferred from proxy records such as diatoms, transfer-functions, geochemical and sedimentological analysis as used in this study. The results clarify the need for proxy records from remote unsettled areas to contribute with pristine data sets to current debates about anthropologic induced global warming since the past 100 years. 14 years - East African Rift | In order to avoid human influenced data sets and validate spatial and temporal heterogeneities of proxy-records from East Africa, the third part of the thesis therefore concentrated on the most recent past 14 years (1996-2010) detecting climate variability by using remotely sensed rainfall data. The advancement in the spatial coverage and temporal resolutions of rainfall data allow a better understanding of influencing climate mechanisms and help to better interpret proxy-records from the EARS in order to reconstruct past climate conditions. The study focuses on the dynamics of intraseasonal rainfall distribution within catchments of eleven lake basins in the EARS that are often used for palaeo-climate studies. We discovered that rainfall in adjacent basins exhibits high complexities in the magnitudes of intraseasonal variability, biennial to triennial precipitation patterns and even are not necessarily correlated often showing opposite trends. The variability among the watersheds is driven by the complex interaction of topography, in particular the shape, length and elevation of the catchment and its relative location to the East African Rift System and predominant influence of the ITCZ or CAB, whose locations and intensities are dependent on the strength of low pressure cells over India, SST variations in the Atlantic, Pacific or Indian Ocean, QBO phases and the 11-year solar cycle. Among all seasons we observed, January-September is the season of highest and most complex rainfall variability, especially for the East African Plateau basins, most likely due to the irregular penetration and sensitivity of the CAB. N2 - Motivation | Die sozialen und ökonomischen Bedürfnisse Ostafrikas sind in erster Linie von der Wasserverfügbarkeit abhängig, welche durch das regelmäßige Einsetzen der Regenzeiten bestimmt wird. Jegliche Veränderungen der Wasserverfügbarkeit innerhalb der Regenzeiten verursachen Hungersnöte, Ausbruch von Krankheiten oder auch Bevölkerungswanderungen. Klärung der Ursachen von Niederschlagsvariabilitäten erfordert die Auswertung von hochauflösenden Kurz- als auch Langzeitanalysen, welche ich in dieser Arbeit durch drei Studien präsentieren werde. 15,000 Jahre - Suguta Valley | Die Hauptstudie dieser Doktorarbeit befasste sich mit dem Verständnis von Feuchtigkeitsschwankungen innerhalb der Afrikanischen Feuchtperiode (AHP, 5.5 - 14.8 ka BP). In dieser Studie präsentiere ich einen hoch-auflösenden Seespiegel Datensatz aus dem abgeschiedenen, unbewohnten Suguta Tal im nördlichen Grabenbruch in Kenia. Das momentan extrem trockene Tal war während der AHP mit einem 300 m tiefen und 2200 km2 großen Paläo-See bedeckt, was aus nur 26% zusätzlichem Niederschlag resultierte. Diese Erhöhung wurde vermutlich aus der Kombination aus erhöhter atmosphärer Feuchteverfügbarkeit infolge erhöhter früh-Holozäner präzessionsgesteuerten Einstrahlung auf der nördlichen Hemisphere sowie der Verschiebung der feuchten Kongo Luftmassengrenze (CAB) ostwärts über das Ostafrikanische und Äthiopische Plateau erreicht als direkte Folge eines erhöhten atmosphärischen Druckgradienten. Abrupte, starkte Seespiegelschwankungen innerhalb der generellen Feuchtphase sind auf geringe Veränderungen in der solaren Ausstrahlung zurückzufühen, welche zu einer Schwächung des Druckgradienten führten und damit den Einfluss der CAB im Untersuchungsgebiet verhinderten zusammen mit einer allgemeinene Reduktion der atmosphärischen Feuchteverfügbarkeit. Das Ende der AHP erfolgte im Gegensatz dazu eher nicht-linear aufgrund des Wechsels zu einem äquatorialen Einstrahlungsmaximum vor 6.5 ka, welches die AHP in Äthiopien und West-Afrika verlängerte. 200 Jahre - Lake Naivasha | Der zweite Teil dieser Arbeit konzentrierte sich auf die Analyse eines Sedimentkern des Naivasha See aus dem zentralen Kenia Rift über die letzten 200 Jahre, einem der wenigen Frischwasserseen in Ostafrika. Die natürliche Klimavariabilität sollte mittels Proxy-Datensätzen von Diatomeen, Transferfunktionen, geochemischen und sedimentologischen Analysen in dieser Studie aufgedeckt werden. Die Ergebnisse zeigten, dass seit Mitte des 20. Jahrhundert der zunehmende Einfluss des Menschen um den Naivasha See zu kultureller Eutrophierung geführt, welche den Einfluss der natürlichen Klimavariabilität auf den See überprägte. Die Gründe liegen in der Zeit, welche von steigender Industrialisierung und deshalb erhöhtem menschlichen Einfluss auf die Proxy-Daten enthaltenden Seen geprägt ist. Die Ergebnisse verdeutlichen die Notwendigkeit von Proxy-Daten aus unbesiedelten Gebieten, wenn man ,reine‘ Daten zur momentanen Debatte über den anthropogen gesteuerten Klimawandel der letzten 100 Jahre beitragen will. 14 Jahre - Ostafrikanisches Rift | Um räumliche Unregelmäßigkeiten in Proxy-Daten von Ostafrika richtig zu verstehen, konzentrierte sich der dritte Teil dieser Arbeit auf die Auswertung von ausschließlich fernerkundlich erworbenen heutigen, täglichen Niederschlagsreihen (1996-2010). Dies erlaubt ein besseres Verständnis über die möglichen klimatischen Einflussmechanismen und die Abschätzung ihres Einflusses auf die Paläo-Variabilität. Die Studie beschäftigt sich mit der Dynamik saisonaler Niederschlagsverteilung innerhalb der Einzugsgebiete von elf Seebecken im Ostafrikanischen Riftsystem, welche oft für Paläo-Klimastudien benutzt werden. Die Studie ergab, dass Niederschläge in angrenzenden Becken tatsächlich höchst unterschiedlich in ihrer Intensität sein können und dabei zwei- bis dreijährigen Niederschlagsmuster folgen oder sogar gegensätzliche Trends zeigen. Die Variabilität der einzelnen Seebecken wird durch die komplexe Wechselwirkung der Topographie, Form, Länge und Höhe des Einzugsgebietes, der relativen Lage im EARS, sowie dem Einfluss und Intensität der ITCZ und CAB bestimmt, welche z.B. abhängig von der Entwicklung besonders starker Tiefdruckgebiet über Indien, Veränderungen der Meeres-oberflächentemperaturen, QBO und dem 11-Jahres Sonnenzyklus sind. Im direkten Vergleich aller untersuchten Monate stellte sich heraus, dass Juli-September die Jahreszeit mit komplexester Niederschlagsvariabilität ist, besonders für die Becken des Ostafrikanischen Plateau, was durch den unregelmäßigen Einfluss der CAB verursacht wird. KW - Ostafrikanisches Grabensystem KW - Suguta Tal KW - Kongo Luftmassengrenze KW - Solare Austrahlung KW - Naivasha See KW - East African Rift System KW - Suguta Valley KW - Congo Air Boundary KW - Solar irradiation KW - Lake Naivasha Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-56834 ER -