TY - JOUR A1 - Stelzel, Christine A1 - Bohle, Hannah A1 - Schauenburg, Gesche A1 - Walter, Henrik A1 - Granacher, Urs A1 - Rapp, Michael Armin A1 - Heinzel, Stephan T1 - Contribution of the Lateral Prefrontal Cortex to Cognitive-Postural Multitasking JF - Frontiers in psychologie N2 - There is evidence for cortical contribution to the regulation of human postural control. Interference from concurrently performed cognitive tasks supports this notion, and the lateral prefrontal cortex (lPFC) has been suggested to play a prominent role in the processing of purely cognitive as well as cognitive-postural dual tasks. The degree of cognitive-motor interference varies greatly between individuals, but it is unresolved whether individual differences in the recruitment of specific lPFC regions during cognitive dual tasking are associated with individual differences in cognitive-motor interference. Here, we investigated inter-individual variability in a cognitive-postural multitasking situation in healthy young adults (n = 29) in order to relate these to inter-individual variability in lPFC recruitment during cognitive multitasking. For this purpose, a oneback working memory task was performed either as single task or as dual task in order to vary cognitive load. Participants performed these cognitive single and dual tasks either during upright stance on a balance pad that was placed on top of a force plate or during fMRI measurement with little to no postural demands. We hypothesized dual one-back task performance to be associated with lPFC recruitment when compared to single one-back task performance. In addition, we expected individual variability in lPFC recruitment to be associated with postural performance costs during concurrent dual one-back performance. As expected, behavioral performance costs in postural sway during dual-one back performance largely varied between individuals and so did lPFC recruitment during dual one-back performance. Most importantly, individuals who recruited the right mid-lPFC to a larger degree during dual one-back performance also showed greater postural sway as measured by larger performance costs in total center of pressure displacements. This effect was selective to the high-load dual one-back task and suggests a crucial role of the right lPFC in allocating resources during cognitivemotor interference. Our study provides further insight into the mechanisms underlying cognitive-motor multitasking and its impairments. KW - balance KW - dual task KW - fMRI KW - postural control KW - working memory Y1 - 2018 U6 - https://doi.org/10.3389/fpsyg.2018.01075 SN - 1664-1078 VL - 9 PB - Frontiers CY - Lausanne ER - TY - GEN A1 - Stelzel, Christine A1 - Bohle, Hannah A1 - Schauenburg, Gesche A1 - Walter, Henrik A1 - Granacher, Urs A1 - Rapp, Michael Armin A1 - Heinzel, Stephan T1 - Contribution of the Lateral Prefrontal Cortex to Cognitive-Postural Multitasking T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - There is evidence for cortical contribution to the regulation of human postural control. Interference from concurrently performed cognitive tasks supports this notion, and the lateral prefrontal cortex (lPFC) has been suggested to play a prominent role in the processing of purely cognitive as well as cognitive-postural dual tasks. The degree of cognitive-motor interference varies greatly between individuals, but it is unresolved whether individual differences in the recruitment of specific lPFC regions during cognitive dual tasking are associated with individual differences in cognitive-motor interference. Here, we investigated inter-individual variability in a cognitive-postural multitasking situation in healthy young adults (n = 29) in order to relate these to inter-individual variability in lPFC recruitment during cognitive multitasking. For this purpose, a oneback working memory task was performed either as single task or as dual task in order to vary cognitive load. Participants performed these cognitive single and dual tasks either during upright stance on a balance pad that was placed on top of a force plate or during fMRI measurement with little to no postural demands. We hypothesized dual one-back task performance to be associated with lPFC recruitment when compared to single one-back task performance. In addition, we expected individual variability in lPFC recruitment to be associated with postural performance costs during concurrent dual one-back performance. As expected, behavioral performance costs in postural sway during dual-one back performance largely varied between individuals and so did lPFC recruitment during dual one-back performance. Most importantly, individuals who recruited the right mid-lPFC to a larger degree during dual one-back performance also showed greater postural sway as measured by larger performance costs in total center of pressure displacements. This effect was selective to the high-load dual one-back task and suggests a crucial role of the right lPFC in allocating resources during cognitivemotor interference. Our study provides further insight into the mechanisms underlying cognitive-motor multitasking and its impairments. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 489 KW - balance KW - dual task KW - fMRI KW - postural control KW - working memory Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-421140 SN - 1866-8364 IS - 489 ER - TY - JOUR A1 - Lorenz, Robert C. A1 - Gleich, Tobias A1 - Beck, Anne A1 - Poehland, Lydia A1 - Raufelder, Diana A1 - Sommer, Werner A1 - Rapp, Michael Armin A1 - Kuehn, Simone A1 - Gallinat, Jürgen T1 - Reward anticipation in the adolescent and aging brain JF - Human brain mapping : a journal devoted to functional neuroanatomy and neuroimaging N2 - Processing of reward is the basis of adaptive behavior of the human being. Neural correlates of reward processing seem to be influenced by developmental changes from adolescence to late adulthood. The aim of this study is to uncover these neural correlates during a slot machine gambling task across the lifespan. Therefore, we used functional magnetic resonance imaging to investigate 102 volunteers in three different age groups: 34 adolescents, 34 younger adults, and 34 older adults. We focused on the core reward areas ventral striatum (VS) and ventromedial prefrontal cortex (VMPFC), the valence processing associated areas, anterior cingulate cortex (ACC) and insula, as well as information integration associated areas, dorsolateral prefrontal cortex (DLPFC), and inferior parietal lobule (IPL). Results showed that VS and VMPFC were characterized by a hyperactivation in adolescents compared with younger adults. Furthermore, the ACC and insula were characterized by a U-shape pattern (hypoactivation in younger adults compared with adolescents and older adults), whereas the DLPFC and IPL were characterized by a J-shaped form (hyperactivation in older adults compared with younger groups). Furthermore, a functional connectivity analysis revealed an elevated negative functional coupling between the inhibition-related area rIFG and VS in younger adults compared with adolescents. Results indicate that lifespan-related changes during reward anticipation are characterized by different trajectories in different reward network modules and support the hypothesis of an imbalance in maturation of striatal and prefrontal cortex in adolescents. Furthermore, these results suggest compensatory age-specific effects in fronto-parietal regions. Hum Brain Mapp 35:5153-5165, 2014. (c) 2014 Wiley Periodicals, Inc. KW - reward anticipation KW - lifespan KW - aging KW - adolescence KW - fMRI KW - connectivity Y1 - 2014 U6 - https://doi.org/10.1002/hbm.22540 SN - 1065-9471 SN - 1097-0193 VL - 35 IS - 10 SP - 5153 EP - 5165 PB - Wiley-Blackwell CY - Hoboken ER - TY - GEN A1 - Hägele, Claudia A1 - Schlagenhauf, Florian A1 - Rapp, Michael Armin A1 - Sterzer, Philipp A1 - Beck, Anne A1 - Bermpohl, Felix A1 - Stoy, Meline A1 - Ströhle, Andreas A1 - Wittchen, Hans-Ulrich A1 - Dolan, Raymond J. A1 - Heinz, Andreas T1 - Dimensional psychiatry BT - reward dysfunction and depressive mood across psychiatric disorders T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - A dimensional approach in psychiatry aims to identify core mechanisms of mental disorders across nosological boundaries. We compared anticipation of reward between major psychiatric disorders, and investigated whether reward anticipation is impaired in several mental disorders and whether there is a common psychopathological correlate (negative mood) of such an impairment. We used functional magnetic resonance imaging (fMRI) and a monetary incentive delay (MID) task to study the functional correlates of reward anticipation across major psychiatric disorders in 184 subjects, with the diagnoses of alcohol dependence (n = 26), schizophrenia (n = 44), major depressive disorder (MDD, n = 24), bipolar disorder (acute manic episode, n = 13), attention deficit/hyperactivity disorder (ADHD, n = 23), and healthy controls (n = 54). Subjects' individual Beck Depression Inventory-and State-Trait Anxiety Inventory-scores were correlated with clusters showing significant activation during reward anticipation. During reward anticipation, we observed significant group differences in ventral striatal (VS) activation: patients with schizophrenia, alcohol dependence, and major depression showed significantly less ventral striatal activation compared to healthy controls. Depressive symptoms correlated with dysfunction in reward anticipation regardless of diagnostic entity. There was no significant correlation between anxiety symptoms and VS functional activation. Our findings demonstrate a neurobiological dysfunction related to reward prediction that transcended disorder categories and was related to measures of depressed mood. The findings underline the potential of a dimensional approach in psychiatry and strengthen the hypothesis that neurobiological research in psychiatric disorders can be targeted at core mechanisms that are likely to be implicated in a range of clinical entities. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 653 KW - dimensional KW - fMRI KW - reward system KW - ventral striatum KW - monetary incentive delay task KW - depressive symptoms Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-431064 SN - 1866-8364 IS - 653 SP - 331 EP - 341 ER - TY - GEN A1 - Heinzel, Stephan A1 - Rimpel, Jérôme A1 - Stelzel, Christine A1 - Rapp, Michael Armin T1 - Transfer Effects to a Multimodal Dual-Task after Working Memory Training and Associated Neural Correlates in Older Adults BT - A Pilot Study N2 - Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 343 KW - aging KW - cognitive training KW - dual-task KW - fMRI KW - modality KW - neuroimaging KW - transfer KW - working memory Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-401921 ER - TY - JOUR A1 - Heinzel, Stephan A1 - Rimpel, Jérôme A1 - Stelzel, Christine A1 - Rapp, Michael Armin T1 - Transfer Effects to a Multimodal Dual-Task after Working Memory Training and Associated Neural Correlates in Older Adults BT - A Pilot Study JF - Frontiers in human neuroscience N2 - Working memory (WM) performance declines with age. However, several studies have shown that WM training may lead to performance increases not only in the trained task, but also in untrained cognitive transfer tasks. It has been suggested that transfer effects occur if training task and transfer task share specific processing components that are supposedly processed in the same brain areas. In the current study, we investigated whether single-task WM training and training-related alterations in neural activity might support performance in a dual-task setting, thus assessing transfer effects to higher-order control processes in the context of dual-task coordination. A sample of older adults (age 60–72) was assigned to either a training or control group. The training group participated in 12 sessions of an adaptive n-back training. At pre and post-measurement, a multimodal dual-task was performed in all participants to assess transfer effects. This task consisted of two simultaneous delayed match to sample WM tasks using two different stimulus modalities (visual and auditory) that were performed either in isolation (single-task) or in conjunction (dual-task). A subgroup also participated in functional magnetic resonance imaging (fMRI) during the performance of the n-back task before and after training. While no transfer to single-task performance was found, dual-task costs in both the visual modality (p < 0.05) and the auditory modality (p < 0.05) decreased at post-measurement in the training but not in the control group. In the fMRI subgroup of the training participants, neural activity changes in left dorsolateral prefrontal cortex (DLPFC) during one-back predicted post-training auditory dual-task costs, while neural activity changes in right DLPFC during three-back predicted visual dual-task costs. Results might indicate an improvement in central executive processing that could facilitate both WM and dual-task coordination. KW - working memory KW - cognitive training KW - modality KW - dual-task KW - aging KW - transfer KW - fMRI KW - neuroimaging Y1 - 2017 U6 - https://doi.org/10.3389/fnhum.2017.00085 VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Heinzel, Stephan A1 - Lorenz, Robert C. A1 - Pelz, Patricia A1 - Heinz, Andreas A1 - Walter, Henrik A1 - Kathmann, Norbert A1 - Rapp, Michael Armin A1 - Stelzel, Christine T1 - Neural correlates of training and transfer effects in working memory in older adults JF - NeuroImage : a journal of brain function N2 - As indicated by previous research, aging is associated with a decline in working memory (WM) functioning, related to alterations in fronto-parietal neural activations. At the same time, previous studies showed that WM training in older adults may improve the performance in the trained task (training effect), and more importantly, also in untrained WM tasks (transfer effects). However, neural correlates of these transfer effects that would improve understanding of its underlying mechanisms, have not been shown in older participants as yet. In this study, we investigated blood-oxygen-level-dependent (BOLD) signal changes during n-back performance and an untrained delayed recognition (Sternberg) task following 12 sessions (45 min each) of adaptive n-back training in older adults. The Sternberg task used in this study allowed to test for neural training effects independent of specific task affordances of the trained task and to separate maintenance from updating processes. Thirty-two healthy older participants (60-75 years) were assigned either to an n-back training or a no-contact control group. Before (t1) and after (t2) training/waiting period, both the n-back task and the Sternberg task were conducted while BOLD signal was measured using functional Magnetic Resonance Imaging (fMRI) in all participants. In addition, neuropsychological tests were performed outside the scanner. WM performance improved with training and behavioral transfer to tests measuring executive functions, processing speed, and fluid intelligence was found. In the training group, BOLD signal in the right lateral middle frontal gyrus/caudal superior frontal sulcus (Brodmann area, BA 6/8) decreased in both the trained n-back and the updating condition of the untrained Sternberg task at t2, compared to the control group. fMRI findings indicate a training-related increase in processing efficiency of WM networks, potentially related to the process of WM updating. Performance gains in untrained tasks suggest that transfer to other cognitive tasks remains possible in aging. (C) 2016 Elsevier Inc. All rights reserved. KW - Aging KW - Working memory KW - Training KW - Transfer KW - Neuroimaging KW - fMRI KW - Updating KW - Executive functions KW - Fluid intelligence Y1 - 2016 U6 - https://doi.org/10.1016/j.neuroimage.2016.03.068 SN - 1053-8119 SN - 1095-9572 VL - 134 SP - 236 EP - 249 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Heinzel, Stephan A1 - Lorenz, Robert C. A1 - Brockhaus, Wolf-Ruediger A1 - Wuestenberg, Torsten A1 - Kathmann, Norbert A1 - Heinz, Andreas A1 - Rapp, Michael Armin T1 - Working memory load-dependent brain response predicts behavioral training gains in older adults JF - The journal of neuroscience N2 - In the domain of working memory (WM), a sigmoid-shaped relationship between WM load and brain activation patterns has been demonstrated in younger adults. It has been suggested that age-related alterations of this pattern are associated with changes in neural efficiency and capacity. At the same time, WM training studies have shown that some older adults are able to increase their WM performance through training. In this study, functional magnetic resonance imaging during an n-back WM task at different WM load levels was applied to compare blood oxygen level-dependent (BOLD) responses between younger and older participants and to predict gains in WM performance after a subsequent 12-session WM training procedure in older adults. We show that increased neural efficiency and capacity, as reflected by more "youth-like" brain response patterns in regions of interest of the frontoparietal WM network, were associated with better behavioral training outcome beyond the effects of age, sex, education, gray matter volume, and baseline WM performance. Furthermore, at low difficulty levels, decreases in BOLD response were found after WM training. Results indicate that both neural efficiency (i. e., decreased activation at comparable performance levels) and capacity (i. e., increasing activation with increasing WM load) of a WM-related network predict plasticity of the WM system, whereas WM training may specifically increase neural efficiency in older adults. KW - aging KW - fMRI KW - neuroimaging KW - plasticity KW - training KW - working memory Y1 - 2014 U6 - https://doi.org/10.1523/JNEUROSCI.2463-13.2014 SN - 0270-6474 VL - 34 IS - 4 SP - 1224 EP - 1233 PB - Society for Neuroscience CY - Washington ER - TY - JOUR A1 - Haegele, Claudia A1 - Schlagenhauf, Florian A1 - Rapp, Michael Armin A1 - Sterzer, Philipp A1 - Beck, Anne A1 - Bermpohl, Felix A1 - Stoy, Meline A1 - Stroehle, Andreas A1 - Wittchen, Hans-Ulrich A1 - Dolan, Raymond J. A1 - Heinz, Andreas T1 - Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders JF - Psychopharmacology N2 - A dimensional approach in psychiatry aims to identify core mechanisms of mental disorders across nosological boundaries. We compared anticipation of reward between major psychiatric disorders, and investigated whether reward anticipation is impaired in several mental disorders and whether there is a common psychopathological correlate (negative mood) of such an impairment. During reward anticipation, we observed significant group differences in ventral striatal (VS) activation: patients with schizophrenia, alcohol dependence, and major depression showed significantly less ventral striatal activation compared to healthy controls. Depressive symptoms correlated with dysfunction in reward anticipation regardless of diagnostic entity. There was no significant correlation between anxiety symptoms and VS functional activation. Our findings demonstrate a neurobiological dysfunction related to reward prediction that transcended disorder categories and was related to measures of depressed mood. The findings underline the potential of a dimensional approach in psychiatry and strengthen the hypothesis that neurobiological research in psychiatric disorders can be targeted at core mechanisms that are likely to be implicated in a range of clinical entities. KW - Dimensional KW - fMRI KW - Reward system KW - Ventral striatum KW - Monetary incentive delay task KW - Depressive symptoms Y1 - 2015 U6 - https://doi.org/10.1007/s00213-014-3662-7 SN - 0033-3158 SN - 1432-2072 VL - 232 IS - 2 SP - 331 EP - 341 PB - Springer CY - New York ER - TY - CHAP A1 - Haegele, Claudia A1 - Friedel, Eva A1 - Schlagenhauf, Florian A1 - Sterzer, Philipp A1 - Beck, Anne A1 - Bermpohl, Felix A1 - Rapp, Michael Armin A1 - Stoy, Meline A1 - Stroehle, Andreas A1 - Dolan, Raymond J. A1 - Heinz, Andreas T1 - Reward expectation and affective responses across psychiatric disorders - A dimensional approach T2 - Biological psychiatry : a journal of psychiatric neuroscience and therapeutics ; a publication of the Society of Biological Psychiatry KW - dimensional KW - transdiagnostic KW - reward system KW - ventral striatum KW - fMRI Y1 - 2014 SN - 0006-3223 SN - 1873-2402 VL - 75 IS - 9 SP - 91S EP - 92S PB - Elsevier CY - New York ER - TY - JOUR A1 - Deserno, Lorenz A1 - Beck, Anne A1 - Huys, Quentin J. M. A1 - Lorenz, Robert C. A1 - Buchert, Ralph A1 - Buchholz, Hans-Georg A1 - Plotkin, Michail A1 - Kumakara, Yoshitaka A1 - Cumming, Paul A1 - Heinze, Hans-Jochen A1 - Grace, Anthony A. A1 - Rapp, Michael Armin A1 - Schlagenhauf, Florian A1 - Heinz, Andreas T1 - Chronic alcohol intake abolishes the relationship between dopamine synthesis capacity and learning signals in the ventral striatum JF - European journal of neuroscience N2 - Drugs of abuse elicit dopamine release in the ventral striatum, possibly biasing dopamine-driven reinforcement learning towards drug-related reward at the expense of non-drug-related reward. Indeed, in alcohol-dependent patients, reactivity in dopaminergic target areas is shifted from non-drug-related stimuli towards drug-related stimuli. Such hijacked' dopamine signals may impair flexible learning from non-drug-related rewards, and thus promote craving for the drug of abuse. Here, we used functional magnetic resonance imaging to measure ventral striatal activation by reward prediction errors (RPEs) during a probabilistic reversal learning task in recently detoxified alcohol-dependent patients and healthy controls (N=27). All participants also underwent 6-[F-18]fluoro-DOPA positron emission tomography to assess ventral striatal dopamine synthesis capacity. Neither ventral striatal activation by RPEs nor striatal dopamine synthesis capacity differed between groups. However, ventral striatal coding of RPEs correlated inversely with craving in patients. Furthermore, we found a negative correlation between ventral striatal coding of RPEs and dopamine synthesis capacity in healthy controls, but not in alcohol-dependent patients. Moderator analyses showed that the magnitude of the association between dopamine synthesis capacity and RPE coding depended on the amount of chronic, habitual alcohol intake. Despite the relatively small sample size, a power analysis supports the reported results. Using a multimodal imaging approach, this study suggests that dopaminergic modulation of neural learning signals is disrupted in alcohol dependence in proportion to long-term alcohol intake of patients. Alcohol intake may perpetuate itself by interfering with dopaminergic modulation of neural learning signals in the ventral striatum, thus increasing craving for habitual drug intake. KW - alcohol addiction KW - dopamine KW - fMRI KW - PET KW - prediction error Y1 - 2015 U6 - https://doi.org/10.1111/ejn.12802 SN - 0953-816X SN - 1460-9568 VL - 41 IS - 4 SP - 477 EP - 486 PB - Wiley-Blackwell CY - Hoboken ER -