TY - JOUR A1 - Wiesmeier, Isabella K. A1 - Dalin, Daniela A1 - Wehrle, Anja A1 - Granacher, Urs A1 - Muehlbauer, Thomas A1 - Dietterle, Jörg A1 - Weiller, Cornelius A1 - Gollhofer, Albert A1 - Maurer, Christoph T1 - Balance training enhances vestibular function and reduces overactive proprioceptive feedback in elderly JF - Frontiers in aging neuroscience N2 - Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training programon these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits. KW - age KW - balance KW - vestibular KW - proprioception KW - training Y1 - 2017 U6 - https://doi.org/10.3389/fnagi.2017.00273 SN - 1663-4365 VL - 9 PB - Frontiers Research Foundation CY - Lausanne ER - TY - GEN A1 - Stelzel, Christine A1 - Bohle, Hannah A1 - Schauenburg, Gesche A1 - Walter, Henrik A1 - Granacher, Urs A1 - Rapp, Michael Armin A1 - Heinzel, Stephan T1 - Contribution of the Lateral Prefrontal Cortex to Cognitive-Postural Multitasking T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - There is evidence for cortical contribution to the regulation of human postural control. Interference from concurrently performed cognitive tasks supports this notion, and the lateral prefrontal cortex (lPFC) has been suggested to play a prominent role in the processing of purely cognitive as well as cognitive-postural dual tasks. The degree of cognitive-motor interference varies greatly between individuals, but it is unresolved whether individual differences in the recruitment of specific lPFC regions during cognitive dual tasking are associated with individual differences in cognitive-motor interference. Here, we investigated inter-individual variability in a cognitive-postural multitasking situation in healthy young adults (n = 29) in order to relate these to inter-individual variability in lPFC recruitment during cognitive multitasking. For this purpose, a oneback working memory task was performed either as single task or as dual task in order to vary cognitive load. Participants performed these cognitive single and dual tasks either during upright stance on a balance pad that was placed on top of a force plate or during fMRI measurement with little to no postural demands. We hypothesized dual one-back task performance to be associated with lPFC recruitment when compared to single one-back task performance. In addition, we expected individual variability in lPFC recruitment to be associated with postural performance costs during concurrent dual one-back performance. As expected, behavioral performance costs in postural sway during dual-one back performance largely varied between individuals and so did lPFC recruitment during dual one-back performance. Most importantly, individuals who recruited the right mid-lPFC to a larger degree during dual one-back performance also showed greater postural sway as measured by larger performance costs in total center of pressure displacements. This effect was selective to the high-load dual one-back task and suggests a crucial role of the right lPFC in allocating resources during cognitivemotor interference. Our study provides further insight into the mechanisms underlying cognitive-motor multitasking and its impairments. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 489 KW - balance KW - dual task KW - fMRI KW - postural control KW - working memory Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-421140 SN - 1866-8364 IS - 489 ER - TY - JOUR A1 - Stelzel, Christine A1 - Bohle, Hannah A1 - Schauenburg, Gesche A1 - Walter, Henrik A1 - Granacher, Urs A1 - Rapp, Michael Armin A1 - Heinzel, Stephan T1 - Contribution of the Lateral Prefrontal Cortex to Cognitive-Postural Multitasking JF - Frontiers in psychologie N2 - There is evidence for cortical contribution to the regulation of human postural control. Interference from concurrently performed cognitive tasks supports this notion, and the lateral prefrontal cortex (lPFC) has been suggested to play a prominent role in the processing of purely cognitive as well as cognitive-postural dual tasks. The degree of cognitive-motor interference varies greatly between individuals, but it is unresolved whether individual differences in the recruitment of specific lPFC regions during cognitive dual tasking are associated with individual differences in cognitive-motor interference. Here, we investigated inter-individual variability in a cognitive-postural multitasking situation in healthy young adults (n = 29) in order to relate these to inter-individual variability in lPFC recruitment during cognitive multitasking. For this purpose, a oneback working memory task was performed either as single task or as dual task in order to vary cognitive load. Participants performed these cognitive single and dual tasks either during upright stance on a balance pad that was placed on top of a force plate or during fMRI measurement with little to no postural demands. We hypothesized dual one-back task performance to be associated with lPFC recruitment when compared to single one-back task performance. In addition, we expected individual variability in lPFC recruitment to be associated with postural performance costs during concurrent dual one-back performance. As expected, behavioral performance costs in postural sway during dual-one back performance largely varied between individuals and so did lPFC recruitment during dual one-back performance. Most importantly, individuals who recruited the right mid-lPFC to a larger degree during dual one-back performance also showed greater postural sway as measured by larger performance costs in total center of pressure displacements. This effect was selective to the high-load dual one-back task and suggests a crucial role of the right lPFC in allocating resources during cognitivemotor interference. Our study provides further insight into the mechanisms underlying cognitive-motor multitasking and its impairments. KW - balance KW - dual task KW - fMRI KW - postural control KW - working memory Y1 - 2018 U6 - https://doi.org/10.3389/fpsyg.2018.01075 SN - 1664-1078 VL - 9 PB - Frontiers CY - Lausanne ER - TY - GEN A1 - Prieske, Olaf A1 - Krüger, Tom A1 - Aehle, Markus A1 - Bauer, Erik A1 - Granacher, Urs T1 - Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults BT - A Randomized Controlled Trial T2 - Postprints der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45–60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5% for RST [90%CI: (−1.1%;10.1%), d = 1.23] and 2.6% for TPT [90%CI: (0.4%;4.8%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to −6.3% for RST [90%CI: (−11.4%;−1.1%), d = 1.45) and −2.7% for TPT [90%CI: (−4.2%;−1.2%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 383 KW - specificity KW - sprinting KW - jumping KW - change-of-direction speed KW - balance Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409645 IS - 383 ER - TY - JOUR A1 - Prieske, Olaf A1 - Krüger, Tom A1 - Aehle, Markus A1 - Bauer, Erik A1 - Granacher, Urs T1 - Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults BT - A Randomized Controlled Trial JF - Frontiers in Physiology N2 - Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45–60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5% for RST [90%CI: (−1.1%;10.1%), d = 1.23] and 2.6% for TPT [90%CI: (0.4%;4.8%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to −6.3% for RST [90%CI: (−11.4%;−1.1%), d = 1.45) and −2.7% for TPT [90%CI: (−4.2%;−1.2%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development. KW - specificity KW - sprinting KW - jumping KW - change-of-direction speed KW - balance Y1 - 2018 U6 - https://doi.org/10.3389/fphys.2018.00156 SN - 1664-042X VL - 9 SP - 1 EP - 10 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Negra, Yassine A1 - Chaabene, Helmi A1 - Sammoud, Senda A1 - Bouguezzi, Raja A1 - Mkaouer, Bessem A1 - Hachana, Younes A1 - Granacher, Urs T1 - EFFECTS OF PLYOMETRIC TRAINING ON COMPONENTS OF PHYSICAL FITNESS IN PREPUBERAL MALE SOCCER ATHLETES: THE ROLE OF SURFACE INSTABILITY JF - Journal of strength and conditioning research : the research journal of the NSCA N2 - Previous studies contrasted the effects of plyometric training (PT) conducted on stable vs. unstable surfaces on components of physical fitness in child and adolescent soccer players. Depending on the training modality (stable vs. unstable), specific performance improvements were found for jump (stable PT) and balance performances (unstable PT). In an attempt to combine the effects of both training modalities, this study examined the effects of PT on stable surfaces compared with combined PT on stable and unstable surfaces on components of physical fitness in prepuberal male soccer athletes. Thirty-three boys were randomly assigned to either a PT on stable surfaces (PTS; n = 17; age = 12.1 +/- 0.5 years; height = 151.6 +/- 5.7 cm; body mass = 39.2 +/- 6.5 kg; and maturity offset = 22.3 +/- 0.5 years) or a combined PT on stable and unstable surfaces (PTC; n = 16; age = 12.2 +/- 0.6 years; height = 154.6 +/- 8.1 cm; body mass = 38.7 +/- 5.0 kg; and maturity offset = 22.2 +/- 0.6 years). Both intervention groups conducted 4 soccer-specific training sessions per week combined with either 2 PTS or PTC sessions. Before and after 8 weeks of training, proxies of muscle power (e.g., countermovement jump [CMJ], standing long jump [SLJ]), muscle strength (e.g., reactive strength index [RSI]), speed (e.g., 20-m sprint test), agility (e.g., modified Illinois change of direction test [MICODT]), static balance (e.g., stable stork bal-ance test [SSBT]), and dynamic balance (unstable stork balance test [USBT]) were tested. An analysis of covariance model was used to test between-group differences (PTS vs. PTC) at posttest using baseline outcomes as covariates. No significant between-group differences at posttest were observed for CMJ (p > 0.05, d = 0.41), SLJ (p > 0.05, d = 0.36), RSI (p > 0.05, d = 0.57), 20-m sprint test (p > 0.05, d = 0.06), MICODT (p > 0.05, d = 0.23), and SSBT (p > 0.05, d = 0.20). However, statistically significant between-group differences at posttest were noted for the USBT (p < 0.01, d = 1.49) in favor of the PTC group. For most physical fitness tests (except RSI), significant pre-to-post improvements were observed for both groups (p < 0.01, d = 0.55-3.96). Eight weeks of PTS or PTC resulted in similar performance improvements in components of physical fitness except for dynamic balance. From a performance-enhancing perspective, PTC is recommended for pediatric strength and conditioning coaches because it produced comparable training effects as PTS on proxies of muscle power, muscle strength, speed, agility, static balance, and additional effects on dynamic balance. KW - youth KW - football KW - stretch-shortening cycle KW - athletic performance KW - balance Y1 - 2017 SN - 1064-8011 SN - 1533-4287 VL - 31 SP - 3295 EP - 3304 PB - Lippincott Williams & Wilkins CY - Philadelphia ER - TY - JOUR A1 - Negra, Yassine A1 - Chaabene, Helmi A1 - Sammoud, Senda A1 - Bouguezzi, Raja A1 - Abbes, Mohamed Aymen A1 - Hachana, Younes A1 - Granacher, Urs T1 - Effects of Plyometric Training on Physical Fitness in Prepuberal Soccer Athletes JF - International journal of sports medicine N2 - This study aimed at examining the effects of plyometric training on stable (SPT) vs. unstable (UPT) surfaces on physical fitness in prepuberal soccer players. Male athletes were randomly assigned to SPT (n = 18; age = 12.7 +/- 0.2 years) or UPT (n = 16; age = 12.2 +/- 0.5 years). Both groups conducted 3 regular soccer training sessions per week combined with either 2 SPT or UPT sessions. Assessment of jumping ability (countermovement jump [CMJ], and standing long jump [SLJ]), speed (10-m, 20-m, 30-m sprint), agility (Illinois agility test [IAT]), and balance (stable [SSBT], unstable [USBT] stork balance test; stable [SYBT], unstable [UYBT] Y balance test) was conducted pre-and post-training. An ANCO-VA model was used to test for between-group differences (SPT vs. UPT) at post-test using baseline values as covariates. No significant differences were found for CMJ height (p > 0.05, d = 0.54), SLJ (p > 0.05; d = 0.81), 10-m, 20-m, and 30-m sprint performances (p > 0.05, d = 0.00-0.24), IAT (p > 0.05, d = 0.48), and dynamic balance (SYBT and UYBT, both p > 0.05, d = 0.39, 0.08, respectively). Statistically significant between-group differences were detected for the USBT (p < 0.01, d = 1.86) and the SSBT (p < 0.01, d = 1.75) in favor of UPT. Following 8 weeks of SPT or UPT in prepuberal athletes, similar performance levels were observed in both groups for measures of jumping ability, speed, dynamic balance, and agility. However, if the goal is to additionally enhance static balance, UPT has an advantage over SPT. KW - youth KW - balance KW - jumping ability KW - athletic performance KW - football Y1 - 2017 U6 - https://doi.org/10.1055/s-0042-122337 SN - 0172-4622 SN - 1439-3964 VL - 38 SP - 370 EP - 377 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Granacher, Urs A1 - Prieske, Olaf A1 - Majewski, M. A1 - Büsch, Dirk A1 - Mühlbauer, Thomas T1 - The Role of Instability with Plyometric Training in Sub-elite Adolescent Soccer Players JF - International journal of sports medicine N2 - The purpose of this study was to investigate the effects of plyometric training on stable (SPT) vs. highly unstable surfaces (IPT) on athletic performance in adolescent soccer players. 24 male sub-elite soccer players (age: 15 +/- 1 years) were assigned to 2 groups performing plyometric training for 8 weeks (2 sessions/week, 90min each). The SPT group conducted plyometrics on stable and the IPT group on unstable surfaces. Tests included jump performance (countermovement jump [CMJ] height, drop jump [DJ] height, DJ performance index), sprint time, agility and balance. Statistical analysis revealed significant main effects of time for CMJ height (p<0.01, f=1.44), DJ height (p<0.01, f=0.62), DJ performance index (p<0.05, f=0.60), 0-10-m sprint time (p<0.05, f=0.58), agility (p<0.01, f=1.15) and balance (p<0.05, 0.46f1.36). Additionally, a Training groupxTime interaction was found for CMJ height (p<0.01, f=0.66) in favor of the SPT group. Following 8 weeks of training, similar improvements in speed, agility and balance were observed in the IPT and SPT groups. However, the performance of IPT appears to be less effective for increasing CMJ height compared to SPT. It is thus recommended that coaches use SPT if the goal is to improve jump performance. KW - strength KW - jump KW - speed KW - agility KW - balance Y1 - 2015 U6 - https://doi.org/10.1055/s-0034-1395519 SN - 0172-4622 SN - 1439-3964 VL - 36 IS - 5 SP - 386 EP - 394 PB - Thieme CY - Stuttgart ER - TY - JOUR A1 - Gebel, Arnd A1 - Lehmann, Tim A1 - Granacher, Urs T1 - Balance task difficulty affects postural sway and cortical activity in healthy adolescents JF - Experimental brain research N2 - Electroencephalographic (EEG) research indicates changes in adults' low frequency bands of frontoparietal brain areas executing different balance tasks with increasing postural demands. However, this issue is unsolved for adolescents when performing the same balance task with increasing difficulty. Therefore, we examined the effects of a progressively increasing balance task difficulty on balance performance and brain activity in adolescents. Thirteen healthy adolescents aged 16-17 year performed tests in bipedal upright stance on a balance board with six progressively increasing levels of task difficulty. Postural sway and cortical activity were recorded simultaneously using a pressure sensitive measuring system and EEG. The power spectrum was analyzed for theta (4-7 Hz) and alpha-2 (10-12 Hz) frequency bands in pre-defined frontal, central, and parietal clusters of electrocortical sources. Repeated measures analysis of variance (rmANOVA) showed a significant main effect of task difficulty for postural sway (p < 0.001; d = 6.36). Concomitantly, the power spectrum changed in frontal, bilateral central, and bilateral parietal clusters. RmANOVAs revealed significant main effects of task difficulty for theta band power in the frontal (p < 0.001, d = 1.80) and both central clusters (left: p < 0.001, d = 1.49; right: p < 0.001, d = 1.42) as well as for alpha-2 band power in both parietal clusters (left: p < 0.001, d = 1.39; right: p < 0.001, d = 1.05) and in the central right cluster (p = 0.005, d = 0.92). Increases in theta band power (frontal, central) and decreases in alpha-2 power (central, parietal) with increasing balance task difficulty may reflect increased attentional processes and/or error monitoring as well as increased sensory information processing due to increasing postural demands. In general, our findings are mostly in agreement with studies conducted in adults. Similar to adult studies, our data with adolescents indicated the involvement of frontoparietal brain areas in the regulation of postural control. In addition, we detected that activity of selected brain areas (e.g., bilateral central) changed with increasing postural demands. KW - balance KW - postural control KW - EEG KW - Theta KW - Alpha-2 KW - ICA KW - youth Y1 - 2020 U6 - https://doi.org/10.1007/s00221-020-05810-1 SN - 0014-4819 SN - 1432-1106 VL - 238 IS - 5 SP - 1323 EP - 1333 PB - Springer CY - New York ER - TY - GEN A1 - Gebel, Arnd A1 - Busch, Aglaja A1 - Stelzel, Christine A1 - Hortobágyi, Tibor A1 - Granacher, Urs T1 - Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults T2 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe N2 - Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - 793 KW - balance KW - cognitive/muscular fatigue KW - EEG KW - theta KW - alpha-2 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-564419 SN - 1866-8364 SP - 1 EP - 14 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Gebel, Arnd A1 - Busch, Aglaja A1 - Stelzel, Christine A1 - Hortobágyi, Tibor A1 - Granacher, Urs T1 - Effects of Physical and Mental Fatigue on Postural Sway and Cortical Activity in Healthy Young Adults JF - Frontiers in Human Neuroscience N2 - Physical fatigue (PF) negatively affects postural control, resulting in impaired balance performance in young and older adults. Similar effects on postural control can be observed for mental fatigue (MF) mainly in older adults. Controversial results exist for young adults. There is a void in the literature on the effects of fatigue on balance and cortical activity. Therefore, this study aimed to examine the acute effects of PF and MF on postural sway and cortical activity. Fifteen healthy young adults aged 28 ± 3 years participated in this study. MF and PF protocols comprising of an all-out repeated sit-to-stand task and a computer-based attention network test, respectively, were applied in random order. Pre and post fatigue, cortical activity and postural sway (i.e., center of pressure displacements [CoPd], velocity [CoPv], and CoP variability [CV CoPd, CV CoPv]) were tested during a challenging bipedal balance board task. Absolute spectral power was calculated for theta (4–7.5 Hz), alpha-2 (10.5–12.5 Hz), beta-1 (13–18 Hz), and beta-2 (18.5–25 Hz) in frontal, central, and parietal regions of interest (ROI) and baseline-normalized. Inference statistics revealed a significant time-by-fatigue interaction for CoPd (p = 0.009, d = 0.39, Δ 9.2%) and CoPv (p = 0.009, d = 0.36, Δ 9.2%), and a significant main effect of time for CoP variability (CV CoPd: p = 0.001, d = 0.84; CV CoPv: p = 0.05, d = 0.62). Post hoc analyses showed a significant increase in CoPd (p = 0.002, d = 1.03) and CoPv (p = 0.003, d = 1.03) following PF but not MF. For cortical activity, a significant time-by-fatigue interaction was found for relative alpha-2 power in parietal (p < 0.001, d = 0.06) areas. Post hoc tests indicated larger alpha-2 power increases after PF (p < 0.001, d = 1.69, Δ 3.9%) compared to MF (p = 0.001, d = 1.03, Δ 2.5%). In addition, changes in parietal alpha-2 power and measures of postural sway did not correlate significantly, irrespective of the applied fatigue protocol. No significant changes were found for the other frequency bands, irrespective of the fatigue protocol and ROI under investigation. Thus, the applied PF protocol resulted in increased postural sway (CoPd and CoPv) and CoP variability accompanied by enhanced alpha-2 power in the parietal ROI while MF led to increased CoP variability and alpha-2 power in our sample of young adults. Potential underlying cortical mechanisms responsible for the greater increase in parietal alpha-2 power after PF were discussed but could not be clearly identified as cause. Therefore, further future research is needed to decipher alternative interpretations. KW - balance KW - cognitive/muscular fatigue KW - EEG KW - theta KW - alpha-2 Y1 - 2022 U6 - https://doi.org/10.3389/fnhum.2022.871930 SN - 1662-5161 VL - 16 SP - 1 EP - 14 PB - Frontiers Media S.A. CY - Lausanne, Schweiz ER - TY - JOUR A1 - Chaouachi, Mehdi A1 - Granacher, Urs A1 - Makhlouf, Issam A1 - Hammami, Raouf A1 - Behm, David G. A1 - Chaouachi, Anis T1 - Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes JF - Journal of sports science & medicine N2 - The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players ( 13.9 +/- 0.3 years) participated in an 8-week training program that either alternated individual balance (e. g., exercises on unstable surfaces) and plyometric (e. g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately > 30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence. KW - Power KW - strength KW - jumps KW - sprints KW - balance KW - children Y1 - 2017 SN - 1303-2968 VL - 16 SP - 125 EP - 136 PB - Department of Sports Medicine, Medical Faculty of Uludag University CY - Bursa ER - TY - JOUR A1 - Ben Othman, Aymen A1 - Chaouachi, Anis A1 - Chaouachi, Mehdi A1 - Makhlouf, Issam A1 - Farthing, Jonathan P. A1 - Granacher, Urs A1 - Behm, David George T1 - Dominant and nondominant leg press training induce similar contralateral and ipsilateral limb training adaptations with children JF - Applied Physiology, Nutrition, and Metabolism N2 - Cross-education has been extensively investigated with adults. Adult studies report asymmetrical cross-education adaptations predominately after dominant limb training. The objective of the study was to examine unilateral leg press (LP) training of the dominant or nondominant leg on contralateral and ipsilateral strength and balance measures. Forty-two youth (10-13 years) were placed (random allocation) into a dominant (n = 15) or nondominant (n = 14) leg press training group or nontraining control (n = 13). Experimental groups trained 3 times per week for 8 weeks and were tested pre-/post-training for ipsilateral and contralateral 1-repetition maximum (RM) horizontal LP, maximum voluntary isometric contraction (MVIC) of knee extensors (KE) and flexors (KF), countermovement jump (CMJ), triple hop test (THT), MVIC strength of elbow flexors (EF) and handgrip, as well as the stork and Y balance tests. Both dominant and nondominant LP training significantly (p < 0.05) increased both ipsilateral and contralateral lower body strength (LP 1RM (dominant: 59.6%-81.8%; nondominant: 59.5%-96.3%), KE MVIC (dominant: 12.4%-18.3%; nondominant: 8.6%-18.6%), KF MVIC (dominant: 7.9%-22.3%; nondominant: nonsignificant-3.8%), and power (CMJ: dominant: 11.1%-18.1%; nondominant: 7.7%-16.6%)). The exception was that nondominant LP training demonstrated a nonsignificant change with the contralateral KF MVIC. Other significant improvements were with nondominant LP training on ipsilateral EF 1RM (6.2%) and THT (9.6%). There were no significant changes with EF and handgrip MVIC. The contralateral leg stork balance test was impaired following dominant LP training. KF MVIC exhibited the only significant relative post-training to pretraining (post-test/pre-test) ratio differences between dominant versus nondominant LP cross-education training effects. In conclusion, children exhibit symmetrical cross-education or global training adaptations with unilateral training of dominant or nondominant upper leg. KW - resistance training KW - cross-education KW - youth KW - strength KW - power KW - balance Y1 - 2019 U6 - https://doi.org/10.1139/apnm-2018-0766 SN - 1715-5312 SN - 1715-5320 VL - 44 IS - 9 SP - 973 EP - 984 PB - NRC Research Press CY - Ottawa ER -