TY - JOUR A1 - Hocher, Berthold A1 - Reichetzeder, Christoph A1 - Alter, Markus L. T1 - Renal and cardiac effects of DPP-4 inhibitors - from preclinical development to clinical research JF - Kidney & blood pressure research : official organ of the Gesellschaft für Nephrologie N2 - Inhibitors of type 4 dipeptidyl peptidase (DDP-4) were developed and approved for the oral treatment of type 2 diabetes. Its mode of action is to inhibit the degradation of incretins, such as type 1 glucagon like peptide (GLP-1), and GIP. GLP-1 stimulates glucose-dependent insulin secretion from pancreatic beta-cells and suppresses glucagon release from alpha-cells, thereby improving glucose control. Besides its action on the pancreas type 1 glucagon like peptide has direct effects on the heart, vessels and kidney mainly via the type 1 glucagon like peptide receptor (GLP-1R). Moreover, there are substrates of DPP-4 beyond incretins that have proven renal and cardiovascular effects such as BNP/ANP, NPY, PYY or SDF-1 alpha. Preclinical evidence suggests that DPP-4 inhibitors may be effective in acute and chronic renal failure as well as in cardiac diseases like myocardial infarction and heart failure. Interestingly, large cardiovascular meta-analyses of combined Phase II/III clinical trials with DPP-4 inhibitors point all in the same direction: a potential reduction of cardiovascular events in patients treated with these agents. A pooled analysis of pivotal Phase III, placebo-controlled, registration studies of linagliptin further showed a significant reduction of urinary albumin excretion after 24 weeks of treatment. The observation suggests direct renoprotective effects of DPP-4 inhibition that may go beyond its glucose-lowering potential. Type 4 dipeptidyl peptidase inhibitors have been shown to be very well tolerated in general, but for those excreted via the kidney dose adjustments according to renal function are needed to avoid side effects. In conclusion, the direct cardiac and renal effects seen in preclinical studies as well as meta-analysis of clinical trials may offer additional potentials - beyond improvement of glycemic control - for this newer class of drugs, such as acute kidney failure, chronic kidney failure as well as acute myocardial infarction and heart failure. KW - DDP-4 inhibition KW - Diabetes KW - GLP-1 KW - Cardiovascular effects KW - Myocardial infarction KW - Kidney KW - Diabetic nephropathy KW - Acute renal failure Y1 - 2012 U6 - https://doi.org/10.1159/000339028 SN - 1420-4096 VL - 36 IS - 1 SP - 65 EP - 84 PB - Karger CY - Basel ER - TY - JOUR A1 - Hansen, Dominique A1 - Kraenkel, Nicolle A1 - Kemps, Hareld A1 - Wilhelm, Matthias A1 - Abreu, Ana A1 - Pfeiffer, Andreas F. H. A1 - Jordao, Alda A1 - Cornelissen, Veronique A1 - Völler, Heinz T1 - Management of patients with type 2 diabetes in cardiovascular rehabilitation JF - European journal of preventive cardiology : the official ESC journal for primary & secondary cardiovascular prevention, rehabilitation and sports cardiology N2 - The clinical benefits of rehabilitation in cardiovascular disease are well established. Among cardiovascular disease patients, however, patients with type 2 diabetes mellitus require a distinct approach. Specific challenges to clinicians and healthcare professionals in patients with type 2 diabetes include the prevalence of peripheral and autonomic neuropathy, retinopathy, nephropathy, but also the intake of glucose-lowering medication. In addition, the psychosocial wellbeing, driving ability and/or occupational status can be affected by type 2 diabetes. As a result, the target parameters of cardiovascular rehabilitation and the characteristics of the cardiovascular rehabilitation programme in patients with type 2 diabetes often require significant reconsideration and a multidisciplinary approach. This review explains how to deal with diabetes-associated comorbidities in the intake screening of patients with type 2 diabetes entering a cardiovascular rehabilitation programme. Furthermore, we discuss diabetes-specific target parameters and characteristics of cardiovascular rehabilitation programmes for patients with type 2 diabetes in a multidisciplinary context, including the implementation of guideline-directed medical therapy. KW - Diabetes KW - cardiovascular rehabilitation KW - intake screening KW - exercise Y1 - 2019 U6 - https://doi.org/10.1177/2047487319882820 SN - 2047-4873 SN - 2047-4881 VL - 26 IS - 2_SUPPL SP - 133 EP - 144 PB - Sage Publ. CY - London ER - TY - THES A1 - Frey, Simone K. T1 - Investigations on extra- and intracellular retinol-binding proteins T1 - Untersuchungen zu extra- und intrazellulären Retinol-Bindungsproteinen N2 - The fat-soluble vitamin A, which is chemically referred to retinol (ROH), is known to be essential for the process of vision, the immune system but also for cell differentiation and proliferation. Recently, ROH itself has been reported to be involved in adipogenesis and a ROH transport protein, the retinol-binding protein 4 (RBP4), in insulin resistance and type 2 diabetes. However, there is still considerable scientific debate about this relation. With the increasing amount of studies investigating the relation of ROH in obesity and type 2 diabetes, basic research is an essential prerequisite for interpreting these results. This thesis enhances the knowledge on this relation by reviewing ROH metabolism on extra- and intracellular level. Aim 1: In the blood stream ROH is transported in a complex with RBP4 and a second protein, transthyretin (TTR), to the target cells. The levels of RBP4 and TTR are influenced by several factors but mainly by liver and kidney function. The reason for that is that liver and the kidneys are the sites of RBP4 synthesis and catabolism, respectively. Interestingly, obesity and type 2 diabetes involve disorders of the liver and the kidneys. Therefore the aim was to investigate factors that influence RBP4 and TTR levels in relation to obesity and type 2 diabetes (Part 1). Aim 2: Once arrived in the target cell ROH is bound to cellular retinol-binding protein type I (CRBP-I) and metabolised: ROH can either be stored as retinylesters or it can be oxidised to retinoic acid (RA). By acting as a transcription factor in the nucleus RA may influence processes such as adipogenesis. Therefore vitamin A has been postulated to be involved in obesity and type 2 diabetes. CRBP-I is known to mediate the storage of ROH in the liver, but the extra-hepatic metabolism and the functions of CRBP-I are not well known. This has been investigated in Part 2 of this work. Material & Methods: RBP4 and TTR levels were investigated by ELISA in serum samples of human subjects with overweight, type 2 diabetes, kidney or liver dysfunction. Molecular alterations of the RBP4 and TTR protein structure were analysed by MALDI-TOF mass spectrometry. The functions of intracellular CRBP-I were investigated in CRBP-I knock-out mice in liver and extra-hepatic tissues by measuring ROH levels as well as the levels of its storage form, the retinylesters, using reverse phase HPLC. The postprandial uptake of ROH into tissues was analysed using labelled ROH. The mRNA levels of enzymes that metabolize ROH were examined by real-time polymerase chain reaction (RCR). Results: The previous published results showing increased RBP4 levels in type 2 diabetic patients could not be confirmed in this work. However, it could be shown that during kidney dysfunction RBP4 levels are increased and that RBP4 and TTR levels are decreased during liver dysfunction. The important new finding of this work is that increased RBP4 levels in type 2 diabetic mice were increased when kidney function was decreased. Thus an increase in RBP4 levels in type 2 diabetes may be the effect of a reduced kidney function which is common in type 2 diabetes. Interestingly, during severe kidney dysfunction the molecular structure of RBP4 and TTR was altered in a specific manner which was not the case during liver diseases and type 2 diabetes. This underlines the important function of the kidneys in RBP4 metabolism. CRBP-I has been confirmed to be responsible for the ROH storage in the liver since CRBP-I knock-out mice had decreased ROH and retinylesters (the storage form of ROH) levels in the liver. Interestingly, in the adipose tissue (the second largest ROH storage tissue in the body) ROH and retinylesters levels were higher in the CRBP-I knock-out compared to the wild-type mice. It could be shown in this work that a different ROH binding protein, cellular retinol-binding protein type III, is upregulated in CRBP-I knock-out mice. Moreover enzymes were identified which mediate very efficiently ROH esterification in the adipose tissue of the knock-out mice. In the pancreas there was a higher postprandial ROH uptake in the CRBP-I knock-out compard to wild-type mice. Even under a vitamin A deficient diet the knock-out animals had ROH and retinylesters levels which were comparable to wild-type animals. These results underline the important role of ROH for insulin secretion in the pancreas. Summing up, there is evidence that RBP4 levels are more determined by kidney function than by type 2 diabetes and that specific molecular modifications occur during kidney dysfunction. The results in adipose tissue and pancreas of CRBP-I knock-out mice support the hypothesis that ROH plays an important role in glucose and lipid metabolism. N2 - Vitamin A gehört zur Gruppe der fettlöslichen Vitamine und wird chemisch als Retinol bezeichnet. Es ist essentiell für den Prozess des Sehvorgangs und der Zelldifferenzierung und kann daher bestimmte Entwicklungsprozesse wie die Bildung des Fettgewebes beeinflussen. Aufgrund seiner Fettlöslichkeit muss Retinol im Blut (= extrazellulär) sowie in der Zelle (= intrazellulär) an sogenannte Transport-Moleküle, die Retinol-bindenden Proteine (RBPs) gebunden werden. Die zwei bekanntesten Vertreter der RBPs sind das Retinol-bindende Protein 4 (RBP4) und das intrazelluläre Retinol-bindende Protein Typ I (CRBP-I). RBP4 transportiert Vitamin A im Blut von der Leber zur Zielzelle und zum Abbauorgan für Vitamin A, der Niere. CRBP-I ist in der Leber für die Speicherung von Vitamin A zuständig. In den letzten Jahren wurden neben der Beteiligung des Retinols an der Bildung des Fettgewebes auch Studien veröffentlicht, in denen ein Zusammenhang zwischen erhöhten RBP4-Werte im Blut und Typ-2-Diabetes gezeigt wurde. Bis heute ist der mögliche Zusammenhang zwischen RBP4, CRBP-I und Übergewicht nicht ausreichend erforscht. Im ersten Teil der Arbeit war daher das Ziel, Einflussfaktoren, die zu Veränderungen der RBP4-Werte im Blut führen können, zu untersuchen. Dazu wurden Blutproben von Personen mit Übergewicht und/oder Typ-2-Diabetes und Patienten mit Nierenfunktionsstörungen oder mit Leberfunktionsstörungen analysiert. Es konnte gezeigt werden, dass bereits geringe Nierenfunktionsstörungen zu erhöhten RBP4-Konzentrationen im Blut führten. Bei Typ-2-Diabetikern, die sehr oft an Nierenfunktionsstörungen leiden, war eine Erhöhung der RBP4-Konzentration mit einer Abnahme der Nierenfunktion verbunden. Somit lässt sich zusammenfassen, dass nicht Typ-2-Diabetes sondern vielmehr die dabei auftretenden Nierenfunktionsstörungen zu einer Erhöhung der RBP4-Werte führen. Bei Lebererkrankten konnte ein Absinken der RBP4-Werte nachgewiesen werden, was der verminderten Bildung von RBP4 in der Leber bei diesen Patienten zuzuschreiben ist. Im zweiten Teil sollte der Frage nachgegangen werden, wie Retinol intrazellulär verstoffwechselt wird. Dabei lag der Fokus auf der Erforschung der bisher nicht bekannten Funktionen von CRBP-I im Fettgewebe und der Bauchspeicheldrüse. Zur Untersuchung der Funktionen von CRBP-I wurden Mäuse gezüchtet, bei denen das Gen für CRBP-I gelöscht wurde. Da CRBP-I für die Speicherung von Vitamin A in der Leber verantwortlich ist, zeigen diese Mäuse sehr geringe Vitamin-A-Speicher in der Leber. Das gleiche zeigte sich für die Bauchspeicheldrüse, die für die Sekretion von Insulin Vitamin A benötigt: In den Mäusen ohne CRBP-I waren die Retinol-Werte drastisch gesunken. Interessanterweise zeigte sich im Fettgewebe ein gegenteiliges Bild: Die Konzentrationen an Retinol und dessen Speicher waren in den Mäusen ohne CRBP-I höher im Vergleich zu den normalen Mäusen. Mit bestimmten Nachweismethoden konnte herausgefunden werden, dass Retinol im Fettgewebe an ein anderes RBP, das CRBP-III, gebunden wird und dadurch effektiver gespeichert werden kann als durch CRBP-I. KW - Vitamin A KW - retinol KW - RBP KW - Retinol-Bindungsprotein 4 KW - Diabetes KW - Vitamin A KW - retinol KW - RBP KW - Retinol-binding protein 4 KW - diabetes Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-31428 ER - TY - THES A1 - Aga-Barfknecht, Heja T1 - Investigation of the phenotype and genetic variant(s) of the diabetes locus Nidd/DBA N2 - Diabetes is a major public health problem with increasing global prevalence. Type 2 diabetes (T2D), which accounts for 90% of all diagnosed cases, is a complex polygenic disease also modulated by epigenetics and lifestyle factors. For the identification of T2D-associated genes, linkage analyses combined with mouse breeding strategies and bioinformatic tools were useful in the past. In a previous study in which a backcross population of the lean and diabetes-prone dilute brown non-agouti (DBA) mouse and the obese and diabetes-susceptible New Zealand obese (NZO) mouse was characterized, a major diabetes quantitative trait locus (QTL) was identified on chromosome 4. The locus was designated non-insulin dependent diabetes from DBA (Nidd/DBA). The aim of this thesis was (i) to perform a detailed phenotypic characterization of the Nidd/DBA mice, (ii) to further narrow the critical region and (iii) to identify the responsible genetic variant(s) of the Nidd/DBA locus. The phenotypic characterization of recombinant congenic mice carrying a 13.6 Mbp Nidd/DBA fragment with 284 genes presented a gradually worsening metabolic phenotype. Nidd/DBA allele carriers exhibited severe hyperglycemia (~19.9 mM) and impaired glucose clearance at 12 weeks of age. Ex vivo perifusion experiments with islets of 13-week-old congenic mice revealed a tendency towards reduced insulin secretion in homozygous DBA mice. In addition, 16-week-old mice showed a severe loss of β-cells and reduced pancreatic insulin content. Pathway analysis of transcriptome data from islets of congenic mice pointed towards a downregulation of cell survival genes. Morphological analysis of pancreatic sections displayed a reduced number of bi-hormonal cells co-expressing glucagon and insulin in homozygous DBA mice, which could indicate a reduced plasticity of endocrine cells in response to hyperglycemic stress. Further generation and phenotyping of recombinant congenic mice enabled the isolation of a 3.3 Mbp fragment that was still able to induce hyperglycemia and contained 61 genes. Bioinformatic analyses including haplotype mapping, sequence and transcriptome analysis were integrated in order to further reduce the number of candidate genes and to identify the presumable causative gene variant. Four putative candidate genes (Ttc39a, Kti12, Osbpl9, Calr4) were defined, which were either differentially expressed or carried a sequence variant. In addition, in silico ChIP-Seq analyses of the 3.3 Mbp region indicated a high number of SNPs located in active regions of binding sites of β-cell transcription factors. This points towards potentially altered cis-regulatory elements that could be responsible for the phenotype conferred by the Nidd/DBA locus. In summary, the Nidd/DBA locus mediates impaired glucose homeostasis and reduced insulin secretion capacity which finally leads to β-cell death. The downregulation of cell survival genes and reduced plasticity of endocrine cells could further contribute to the β-cell loss. The critical region was narrowed down to a 3.3 Mbp fragment containing 61 genes, of which four might be involved in the development of the diabetogenic Nidd/DBA phenotype. N2 - Die Diabetesprävalenz nimmt seit Jahren weltweit zu, wobei etwa 90% der diagnostizierten Diabeteserkrankungen einem Typ-2-Diabetes (T2D) zuzuordnen sind. T2D ist eine komplexe polygene Stoffwechselerkrankung, die auch durch epigenetische Faktoren und den Lebensstil beeinflusst wird. Die Identifizierung und Untersuchung von Diabetes-assoziierten Genen wird unter anderem durch Kopplungsanalysen und darauf aufbauende zuchtstrategische und bioinformatische Analysen ermöglicht. In einer vorangegangenen Studie wurde der schlanke, Diabetes-anfällige dilute brown non-agouti (DBA)-Mausstamm mit der adipösen und ebenfalls Diabetes-suszeptiblen New Zealand obese (NZO)-Maus verpaart und die erste Rückkreuzungsgeneration einer Kopplungsanalyse unterzogen. Hierbei wurde ein hoch signifikanter quantitative trait locus (QTL) für Diabetes auf Chromosom 4 nachgewiesen. Dieser Locus ist mit erhöhten Blutzuckerwerten, reduzierten Plasmainsulinkonzentrationen und einem niedrigen pankreatischen Insulingehalt assoziiert und wurde als Nidd/DBA (engl. für nicht insulinabhängiger Diabetes von DBA-Allelen) bezeichnet. Das Ziel der vorliegenden Arbeit war es, (i) das kritische Fragment des Nidd/DBA-Locus‘ zu verkleinern, (ii) die phänotypische Ausprägung des Nidd/DBA-Locus‘ zu untersuchen sowie (iii) die ursächliche(n) genetische(n) Variante(n) zu identifizieren. Die phänotypische Charakterisierung von kongenen Mäusen mit einem kritischen Fragment von 13.6 Mbp, welches 284 Gene enthält, zeigte bereits im Alter von 12 Wochen eine starke Hyperglykämie (~19.9 mM) und eine unzureichende Glucose-Clearance bei Nidd/DBA-Allelträgern. Ex-vivo Perifusionsversuche mit isolierten Inseln von 13 Wochen alten kongenen Mäusen zeigten eine tendenziell reduzierte Insulinsekretion in homozygoten DBA-Allelträgern. Im Alter von 16 Wochen wiesen die Tiere einen erheblichen Verlust der β-Zellen, sowie eine Abnahme der pankreatischen Insulinkonzentration auf. Transkriptomdaten der Langerhans-Inseln mit anschließender Signalweganalyse deuteten darauf hin, dass Nidd/DBA-Allelträger eine verminderte Expression von Genen aufzeigen, die für das Überleben von Zellen essentiell sind. In homozygoten DBA-Allelträgern wurde eine reduzierte Anzahl von Glucagon/Insulin-bi-hormonellen Zellen nachgewiesen, was auf eine verminderte Plastizität der endokrinen Zellen hinweisen könnte. Die Zucht weiterer kongener Mäuse und ihre Phänotypisierung ermöglichten die Isolierung eines 3.3 Mbp großen Fragments, das 61 Gene enthielt und eine Hyperglykämie auslöste. Bioinformatische Analysen, wie die Kartierung von Haplotypen und Datenbank-, Sequenz- sowie Transkriptomanalysen, wurden integriert, um die Anzahl der Kandidatengene weiter zu reduzieren und die Hyperglykämie auslösende(n) Genvariante(n) zu identifizieren. Es konnten vier potentielle Kandidatengene (Ttc39a, Osbpl9, Kti12, Calr4) definiert werden, die entweder eine differenzielle Expression oder eine Sequenzvariante aufwiesen. Mit Hilfe von in-silico-Analysen von ChIP-Seq-Daten wurden SNPs in aktiven Bindungsstellen von β-Zell-Transkriptionsfaktoren identifiziert. Diese könnten cis-regulatorische Elemente darstellen, die Gene außerhalb dieses 3.3 Mbp großen Fragments beeinflussen und möglichweise für den Phänotyp verantwortlich sind. Zusammenfassend konnte gezeigt werden, dass der Nidd/DBA-Locus für eine beeinträchtigte Glucosehomöostase und eine Verschlechterung der Insulinsekretion verantwortlich ist, welche langfristig zum Verlust von β-Zellen führen. Die bisherigen Ergebnisse deuten darauf hin, dass sowohl die verringerte Expression der für das Zellüberleben essentiellen Gene als auch eine verringerte Plastizität der endokrinen Zellen zum Untergang von Langerhans-Inseln beitragen. Das kritische Fragment wurde auf eine Größe von 3.3 Mbp mit 61 Genen reduziert, von denen vier Gene als verantwortliche Kandidaten für den beschriebenen Nidd/DBA-Phänotyp bedeutsam sein können KW - Diabetes KW - Genetics KW - Glucose intolerance KW - Insulin secretion KW - Susceptibility-genes KW - Diabetes KW - Genetik KW - Glukoseintoleranz KW - Insulinsekretion KW - Suszeptibilitätsgene Y1 - 2021 ER -