TY - JOUR A1 - Lischeid, Gunnar A1 - Webber, Heidi A1 - Sommer, Michael A1 - Nendel, Claas A1 - Ewert, Frank T1 - Machine learning in crop yield modelling BT - A powerful tool, but no surrogate for science JF - Agricultural and forest meteorology N2 - Provisioning a sufficient stable source of food requires sound knowledge about current and upcoming threats to agricultural production. To that end machine learning approaches were used to identify the prevailing climatic and soil hydrological drivers of spatial and temporal yield variability of four crops, comprising 40 years yield data each from 351 counties in Germany. Effects of progress in agricultural management and breeding were subtracted from the data prior the machine learning modelling by fitting smooth non-linear trends to the 95th percentiles of observed yield data. An extensive feature selection approach was followed then to identify the most relevant predictors out of a large set of candidate predictors, comprising various soil and meteorological data. Particular emphasis was placed on studying the uniqueness of identified key predictors. Random Forest and Support Vector Machine models yielded similar although not identical results, capturing between 50% and 70% of the spatial and temporal variance of silage maize, winter barley, winter rapeseed and winter wheat yield. Equally good performance could be achieved with different sets of predictors. Thus identification of the most reliable models could not be based on the outcome of the model study only but required expert's judgement. Relationships between drivers and response often exhibited optimum curves, especially for summer air temperature and precipitation. In contrast, soil moisture clearly proved less relevant compared to meteorological drivers. In view of the expected climate change both excess precipitation and the excess heat effect deserve more attention in breeding as well as in crop modelling. KW - Crop modelling KW - Machine learning KW - Random forests KW - Support vector KW - machine KW - Feature selection KW - Equivocality Y1 - 2021 U6 - https://doi.org/10.1016/j.agrformet.2021.108698 SN - 0168-1923 SN - 1873-2240 VL - 312 PB - Elsevier CY - Amsterdam ER -