TY - JOUR A1 - Schlosser, Rainer A1 - Walther, Carsten A1 - Boissier, Martin A1 - Uflacker, Matthias T1 - Automated repricing and ordering strategies in competitive markets JF - AI communications : AICOM ; the European journal on artificial intelligence N2 - Merchants on modern e-commerce platforms face a highly competitive environment. They compete against each other using automated dynamic pricing and ordering strategies. Successfully managing both inventory levels as well as offer prices is a challenging task as (i) demand is uncertain, (ii) competitors strategically interact, and (iii) optimized pricing and ordering decisions are mutually dependent. We show how to derive optimized data-driven pricing and ordering strategies which are based on demand learning techniques and efficient dynamic optimization models. We verify the superior performance of our self-adaptive strategies by comparing them to different rule-based as well as data-driven strategies in duopoly and oligopoly settings. Further, to study and to optimize joint dynamic ordering and pricing strategies on online marketplaces, we built an interactive simulation platform. To be both flexible and scalable, the platform has a microservice-based architecture and allows handling dozens of competing merchants and streams of consumers with configurable characteristics. KW - Dynamic pricing KW - inventory management KW - demand learning KW - oligopoly competition KW - e-commerce Y1 - 2019 U6 - https://doi.org/10.3233/AIC-180603 SN - 0921-7126 SN - 1875-8452 VL - 32 IS - 1 SP - 15 EP - 29 PB - IOS Press CY - Amsterdam ER - TY - GEN A1 - Schlosser, Rainer A1 - Kossmann, Jan A1 - Boissier, Martin T1 - Efficient Scalable Multi-Attribute Index Selection Using Recursive Strategies T2 - 2019 IEEE 35th International Conference on Data Engineering (ICDE) N2 - An efficient selection of indexes is indispensable for database performance. For large problem instances with hundreds of tables, existing approaches are not suitable: They either exhibit prohibitive runtimes or yield far from optimal index configurations by strongly limiting the set of index candidates or not handling index interaction explicitly. We introduce a novel recursive strategy that does not exclude index candidates in advance and effectively accounts for index interaction. Using large real-world workloads, we demonstrate the applicability of our approach. Further, we evaluate our solution end to end with a commercial database system using a reproducible setup. We show that our solutions are near-optimal for small index selection problems. For larger problems, our strategy outperforms state-of-the-art approaches in both scalability and solution quality. Y1 - 2019 SN - 978-1-5386-7474-1 U6 - https://doi.org/10.1109/ICDE.2019.00113 SN - 1084-4627 SP - 1238 EP - 1249 PB - IEEE CY - New York ER - TY - JOUR A1 - Schlosser, Rainer A1 - Boissier, Martin T1 - Dealing with the dimensionality curse in dynamic pricing competition BT - Using frequent repricing to compensate imperfect market anticipations JF - Computers & Operations Research N2 - Most sales applications are characterized by competition and limited demand information. For successful pricing strategies, frequent price adjustments as well as anticipation of market dynamics are crucial. Both effects are challenging as competitive markets are complex and computations of optimized pricing adjustments can be time-consuming. We analyze stochastic dynamic pricing models under oligopoly competition for the sale of perishable goods. To circumvent the curse of dimensionality, we propose a heuristic approach to efficiently compute price adjustments. To demonstrate our strategy’s applicability even if the number of competitors is large and their strategies are unknown, we consider different competitive settings in which competitors frequently and strategically adjust their prices. For all settings, we verify that our heuristic strategy yields promising results. We compare the performance of our heuristic against upper bounds, which are obtained by optimal strategies that take advantage of perfect price anticipations. We find that price adjustment frequencies can have a larger impact on expected profits than price anticipations. Finally, our approach has been applied on Amazon for the sale of used books. We have used a seller’s historical market data to calibrate our model. Sales results show that our data-driven strategy outperforms the rule-based strategy of an experienced seller by a profit increase of more than 20%. KW - Dynamic pricing KW - Oligopoly competition KW - Dynamic programming KW - Data-driven strategies KW - E-commerce Y1 - 2018 U6 - https://doi.org/10.1016/j.cor.2018.07.011 SN - 0305-0548 SN - 1873-765X VL - 100 SP - 26 EP - 42 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Richly, Keven A1 - Schlosser, Rainer A1 - Boissier, Martin T1 - Budget-conscious fine-grained configuration optimization for spatio-temporal applications JF - Proceedings of the VLDB Endowment N2 - Based on the performance requirements of modern spatio-temporal data mining applications, in-memory database systems are often used to store and process the data. To efficiently utilize the scarce DRAM capacities, modern database systems support various tuning possibilities to reduce the memory footprint (e.g., data compression) or increase performance (e.g., additional indexes). However, the selection of cost and performance balancing configurations is challenging due to the vast number of possible setups consisting of mutually dependent individual decisions. In this paper, we introduce a novel approach to jointly optimize the compression, sorting, indexing, and tiering configuration for spatio-temporal workloads. Further, we consider horizontal data partitioning, which enables the independent application of different tuning options on a fine-grained level. We propose different linear programming (LP) models addressing cost dependencies at different levels of accuracy to compute optimized tuning configurations for a given workload and memory budgets. To yield maintainable and robust configurations, we extend our LP-based approach to incorporate reconfiguration costs as well as a worst-case optimization for potential workload scenarios. Further, we demonstrate on a real-world dataset that our models allow to significantly reduce the memory footprint with equal performance or increase the performance with equal memory size compared to existing tuning heuristics. KW - General Earth and Planetary Sciences KW - Water Science and Technology KW - Geography, Planning and Development Y1 - 2022 U6 - https://doi.org/10.14778/3565838.3565858 SN - 2150-8097 VL - 15 IS - 13 SP - 4079 EP - 4092 PB - Association for Computing Machinery (ACM) CY - [New York] ER - TY - GEN A1 - Boissier, Martin A1 - Kurzynski, Daniel T1 - Workload-Driven Horizontal Partitioning and Pruning for Large HTAP Systems T2 - 2018 IEEE 34th International Conference on Data Engineering Workshops (ICDEW) N2 - Modern server systems with large NUMA architectures necessitate (i) data being distributed over the available computing nodes and (ii) NUMA-aware query processing to enable effective parallel processing in database systems. As these architectures incur significant latency and throughout penalties for accessing non-local data, queries should be executed as close as possible to the data. To further increase both performance and efficiency, data that is not relevant for the query result should be skipped as early as possible. One way to achieve this goal is horizontal partitioning to improve static partition pruning. As part of our ongoing work on workload-driven partitioning, we have implemented a recent approach called aggressive data skipping and extended it to handle both analytical as well as transactional access patterns. In this paper, we evaluate this approach with the workload and data of a production enterprise system of a Global 2000 company. The results show that over 80% of all tuples can be skipped in average while the resulting partitioning schemata are surprisingly stable over time. Y1 - 2018 SN - 978-1-5386-6306-6 U6 - https://doi.org/10.1109/ICDEW.2018.00026 SP - 116 EP - 121 PB - IEEE CY - New York ER -