TY - JOUR A1 - Sundelof, Andreas A1 - Grimm, Volker A1 - Ulmestrand, Mats A1 - Fiksen, Oyvind T1 - Modelling harvesting strategies for the lobster fishery in northern Europe: the importance of protecting egg-bearing females JF - Population ecology KW - European lobster KW - Female moratorium KW - Individual-based model KW - Management KW - Minimum landing size KW - Yield per recruit (YPR) Y1 - 2015 U6 - https://doi.org/10.1007/s10144-014-0460-3 SN - 1438-3896 SN - 1438-390X VL - 57 IS - 1 SP - 237 EP - 251 PB - Springer CY - Tokyo ER - TY - JOUR A1 - Teckentrup, Lisa A1 - Grimm, Volker A1 - Kramer-Schadt, Stephanie A1 - Jeltsch, Florian T1 - Community consequences of foraging under fear JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Non-consumptive effects of predators within ecosystems can alter the behavior of individual prey species, and have cascading effects on other trophic levels. In this context, an understanding of non-consumptive predator effects on the whole prey community is crucial for predicting community structure and composition, hence biodiversity patterns. We used an individual-based, spatially-explicit modelling approach to investigate the consequences of landscapes of fear on prey community metrics. The model spans multiple hierarchical levels from individual home range formation based on food availability and perceived predation risk to consequences on prey community structure and composition. This mechanistic approach allowed us to explore how important factors such as refuge availability and foraging strategy under fear affect prey community metrics. Fear of predators affected prey space use, such as home range formation. These adaptations had broader consequences for the community leading to changes in community structure and composition. The strength of community responses to perceived predation risk was driven by refuge availability in the landscape and the foraging strategy of prey animals. Low refuge availability in the landscape strongly decreased diversity and total biomass of prey communities. Additionally, body mass distributions in prey communities facing high predation risk were shifted towards small prey animals. With increasing refuge availability the consequences of non-consumptive predator effects were reduced, diversity and total biomass of the prey community increased. Prey foraging strategies affected community composition. Under medium refuge availability, risk-averse prey communities consisted of many small animals while risk-taking prey communities showed a more even body mass distribution. Our findings reveal that non-consumptive predator effects can have important implications for prey community diversity and should therefore be considered in the context of conservation and nature management. KW - Predator-prey interactions KW - Individual-based model KW - Landscape of fear KW - Home range KW - Biodiversity KW - Foraging Y1 - 2018 U6 - https://doi.org/10.1016/j.ecolmodel.2018.05.015 SN - 0304-3800 SN - 1872-7026 VL - 383 SP - 80 EP - 90 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Weiß, Lina A1 - Jeltsch, Florian T1 - The response of simulated grassland communities to the cessation of grazing JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Changes in land-use are supposed to be among the severest prospective threats to plant diversity worldwide. In semi-natural temperate grasslands, the cessation of traditional land use like livestock grazing is considered to be one of the most important drivers of the diversity loss witnessed within the last decades. Despite of the enormous number of studies on successional pathways following grazing abandonment there is no general pattern of how grassland communities are affected in terms of diversity, trait composition and pace of succession. To gain a comprehensive picture is difficult given the heterogeneity of environments and the time and effort needed for long-term investigations. We here use a proven individual- and trait-based grassland community model to analyze short- and long-term consequences of grazing abandonment under different assumptions of resource availability, pre-abandonment grazing intensity and regional isolation of communities. Grazing abandonment led to a decrease of plant functional type (PFT) diversity in all but two scenarios in the long-term. In short-term we also found an increase or no change in Shannon diversity for several scenarios. With grazing abandonment we overall found an increase in maximum plant mass, clonal integration and longer lateral spread, a decrease in rosette plant types and in stress tolerant plants, as well as an increase in grazing tolerant and a decrease in grazing avoiding plant types. Observed changes were highly dependent on the regional configuration of communities, prevalent resource conditions and land use intensity before abandonment. While long-term changes took around 10-20 years in resource rich conditions, new equilibria established in resource poor conditions only after 30-40 years. Our results confirm the potential threats caused by recent land-use changes and the assumption that oligotrophic communities are more resistant than mesotrophic communities also for long-term abandonment. Moreover, results revealed that species-rich systems are not per se more resistant than species-poor grasslands. (C) 2015 Elsevier B.V. All rights reserved. KW - Diversity KW - Individual-based model KW - Land use intensity KW - Seed immigration KW - Abandonment KW - Resistance Y1 - 2015 U6 - https://doi.org/10.1016/j.ecolmodel.2015.02.002 SN - 0304-3800 SN - 1872-7026 VL - 303 SP - 1 EP - 11 PB - Elsevier CY - Amsterdam ER -