TY - JOUR A1 - De Becker, M. A1 - del Valle, Maria Victoria A1 - Romero, G. E. A1 - Peri, C. S. A1 - Benaglia, P. T1 - X- ray study of bow shocks in runaway stars JF - Monthly notices of the Royal Astronomical Society N2 - Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories. KW - acceleration of particles KW - radiation mechanisms: non-thermal KW - stars: earlytype KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx1826 SN - 0035-8711 SN - 1365-2966 VL - 471 SP - 4452 EP - 4464 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - de Zea Bermudez, Veronica A1 - Leroux, Fabrice A1 - Rabu, Pierre A1 - Taubert, Andreas T1 - Hybrid nanomaterials: from the laboratory to the market T2 - Beilstein journal of nanotechnology KW - hybrid nanomaterials Y1 - 2017 U6 - https://doi.org/10.3762/bjnano.8.87 SN - 2190-4286 VL - 8 SP - 861 EP - 862 PB - Beilstein-Institut zur Förderung der Chemischen Wissenschaften CY - Frankfurt, Main ER - TY - JOUR A1 - Delle Side, Domenico A1 - Nassisi, Vincenzo A1 - Pennetta, Cecilia A1 - Alifano, Pietro A1 - Di Salvo, Marco A1 - Tala, Adelfia A1 - Chechkin, Aleksei V. A1 - Seno, Flavio A1 - Trovato, Antonio T1 - Bacterial bioluminescence onset and quenching: a dynamical model for a quorum sensing-mediated property JF - Royal Society Open Science N2 - We present an effective dynamical model for the onset of bacterial bioluminescence, one of the most studied quorum sensing-mediated traits. Our model is built upon simple equations that describe the growth of the bacterial colony, the production and accumulation of autoinducer signal molecules, their sensing within bacterial cells, and the ensuing quorum activation mechanism that triggers bioluminescent emission. The model is directly tested to quantitatively reproduce the experimental distributions of photon emission times, previously measured for bacterial colonies of Vibrio jasicida, a luminescent bacterium belonging to the Harveyi clade, growing in a highly drying environment. A distinctive and novel feature of the proposed model is bioluminescence ‘quenching’ after a given time elapsed from activation. Using an advanced fitting procedure based on the simulated annealing algorithm, we are able to infer from the experimental observations the biochemical parameters used in the model. Such parameters are in good agreement with the literature data. As a further result, we find that, at least in our experimental conditions, light emission in bioluminescent bacteria appears to originate from a subtle balance between colony growth and quorum activation due to autoinducers diffusion, with the two phenomena occurring on the same time scale. This finding is consistent with a negative feedback mechanism previously reported for Vibrio harveyi. KW - quorum sensing KW - bioluminescence KW - biophysical model KW - Vibrio Harveyi clade KW - oxygen quenching KW - Gompertz growth function Y1 - 2017 U6 - https://doi.org/10.1098/rsos.171586 SN - 2054-5703 VL - 4 PB - Royal Society CY - London ER - TY - JOUR A1 - Dolmatova, Anastasiya V. A1 - Goldobin, Denis S. A1 - Pikovskij, Arkadij T1 - Synchronization of coupled active rotators by common noise JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We study the effect of common noise on coupled active rotators. While such a noise always facilitates synchrony, coupling may be attractive (synchronizing) or repulsive (desynchronizing). We develop an analytical approach based on a transformation to approximate angle-action variables and averaging over fast rotations. For identical rotators, we describe a transition from full to partial synchrony at a critical value of repulsive coupling. For nonidentical rotators, the most nontrivial effect occurs at moderate repulsive coupling, where a juxtaposition of phase locking with frequency repulsion (anti-entrainment) is observed. We show that the frequency repulsion obeys a nontrivial power law. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevE.96.062204 SN - 2470-0045 SN - 2470-0053 VL - 96 SP - E10648 EP - E10657 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Drozdov, Alexander A1 - Shprits, Yuri Y. A1 - Usanova, Maria E. A1 - Aseev, Nikita A1 - Kellerman, Adam C. A1 - Zhu, H. T1 - EMIC wave parameterization in the long-term VERB code simulation JF - Journal of geophysical research : Space physics N2 - Electromagnetic ion cyclotron (EMIC) waves play an important role in the dynamics of ultrarelativistic electron population in the radiation belts. However, as EMIC waves are very sporadic, developing a parameterization of such wave properties is a challenging task. Currently, there are no dynamic, activity-dependent models of EMIC waves that can be used in the long-term (several months) simulations, which makes the quantitative modeling of the radiation belt dynamics incomplete. In this study, we investigate Kp, Dst, and AE indices, solar wind speed, and dynamic pressure as possible parameters of EMIC wave presence. The EMIC waves are included in the long-term simulations (1year, including different geomagnetic activity) performed with the Versatile Electron Radiation Belt code, and we compare results of the simulation with the Van Allen Probes observations. The comparison shows that modeling with EMIC waves, parameterized by solar wind dynamic pressure, provides a better agreement with the observations among considered parameterizations. The simulation with EMIC waves improves the dynamics of ultrarelativistic fluxes and reproduces the formation of the local minimum in the phase space density profiles. KW - radiation belts KW - VERB code KW - EMIC Y1 - 2017 U6 - https://doi.org/10.1002/2017JA024389 SN - 2169-9380 SN - 2169-9402 VL - 122 SP - 8488 EP - 8501 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Dzhanoev, Arsen R. A1 - Sokolov, Igor M. T1 - The effect of the junction model on the anomalous diffusion in the 3D comb structure JF - Chaos, solitons & fractals : applications in science and engineering ; an interdisciplinary journal of nonlinear science N2 - The diffusion in the comb structures is a popular model of geometrically induced anomalous diffusion. In the present work we concentrate on the diffusion along the backbone in a system where sidebranches are planes, and the diffusion thereon is anomalous and described by continuous time random walks (CTRW). We show that the mean squared displacement (MSD) in the backbone of the comb behaves differently depending on whether the waiting time periods in the sidebranches are reset after the step in the backbone is done (a rejuvenating junction model), or not (a non-rejuvenating junction model). In the rejuvenating case the subdiffusion in the sidebranches only changes the prefactor in the ultra-slow (logarithmic) diffusion along the backbone, while in the non-rejuvenating case the ultraslow, logarithmic subdiffusion is changed to a much faster power-law subdiffusion (with a logarithmic correction) as it was found earlier by Iomin and Mendez [25]. Moreover, in the first case the result does not change if the diffusion in the backbone is itself anomalous, while in the second case it does. Two of the special cases of the considered models (the non-rejuvenating junction under normal diffusion in the backbone, and rejuvenating junction for the same waiting time distribution in the sidebranches and in junction points) were also investigated within the approach based on the corresponding generalized Fokker-Planck equations. (c) 2017 Elsevier Ltd. All rights reserved. KW - Comb model KW - Comb-lattice model KW - Cylindrical comb KW - Junction model KW - Anomalous diffusion Y1 - 2017 U6 - https://doi.org/10.1016/j.chaos.2017.12.001 SN - 0960-0779 SN - 1873-2887 VL - 106 SP - 330 EP - 336 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Eckert, Sebastian A1 - Niskanen, Johannes A1 - Jay, Raphael Martin A1 - Miedema, Piter S. A1 - Fondell, Mattis A1 - Kennedy, Brian A1 - Quevedo, Wilson A1 - Iannuzzi, Marcella A1 - Föhlisch, Alexander T1 - Valence orbitals and local bond dynamics around N atoms of histidine under X-ray irradiation JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - The valence orbitals of aqueous histidine under basic, neutral and acidic conditions and their X-ray induced transformations have been monitored through N 1s resonant inelastic X-ray scattering. Using density functional ab initio molecular dynamics simulations in the core-hole state within the Z + 1 approximation, core-excitation-induced molecular transformations are quantified. Spectroscopic evidence for a highly directional X-ray-induced local N-H dissociation within the scattering duration is presented for acidic histidine. Our report demonstrates a protonation-state and chemical-environment dependent propensity for a molecular dissociation, which is induced by the absorption of high energy photons. This case study indicates that structural deformations in biomolecules under exposure to ionizing radiation, yielding possible alteration or loss of function, is highly dependent on the physiological state of the molecule upon irradiation. Y1 - 2017 U6 - https://doi.org/10.1039/c7cp05713j SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 32091 EP - 32098 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Eckert, Sebastian A1 - Norell, Jesper A1 - Miedema, Piter S. A1 - Beye, Martin A1 - Fondell, Mattis A1 - Quevedo, Wilson A1 - Kennedy, Brian A1 - Hantschmann, Markus A1 - Pietzsch, Annette A1 - Van Kuiken, Benjamin E. A1 - Ross, Matthew A1 - Minitti, Michael P. A1 - Moeller, Stefan P. A1 - Schlotter, William F. A1 - Khalil, Munira A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering JF - Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition N2 - The femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort time-scale. KW - nitrogen KW - photochemistry KW - protonation KW - RIXS (resonant inelastic X-ray scattering) KW - selective bond cleavage Y1 - 2017 U6 - https://doi.org/10.1002/anie.201700239 SN - 1433-7851 SN - 1521-3773 VL - 56 SP - 6088 EP - 6092 PB - Wiley-VCH CY - Weinheim ER - TY - GEN A1 - Eckert, Sebastian A1 - Norell, Jesper A1 - Miedema, Piter S. A1 - Beye, Martin A1 - Fondell, Mattis A1 - Quevedo, Wilson A1 - Kennedy, Brian A1 - Hantschmann, Markus A1 - Pietzsch, Annette A1 - van Kuiken, Benjamin E. A1 - Ross, Matthew A1 - Minitti, Michael P. A1 - Moeller, Stefan P. A1 - Schlotter, William F. A1 - Khalil, Munira A1 - Odelius, Michael A1 - Föhlisch, Alexander T1 - Ultrafast Independent N-H and N-C Bond Deformation Investigated with Resonant Inelastic X-Ray Scattering T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The femtosecond excited-state dynamics following resonant photoexcitation enable the selective deformation of N-H and N-C chemical bonds in 2-thiopyridone in aqueous solution with optical or X-ray pulses. In combination with multiconfigurational quantum-chemical calculations, the orbital-specific electronic structure and its ultrafast dynamics accessed with resonant inelastic X-ray scattering at the N 1s level using synchrotron radiation and the soft X-ray free-electron laser LCLS provide direct evidence for this controlled photoinduced molecular deformation and its ultrashort time-scale. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1115 KW - nitrogen KW - photochemistry KW - protonation KW - RIXS (resonant inelastic X-ray scattering) KW - selective bond cleavage Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-436873 SN - 1866-8372 IS - 1115 ER - TY - THES A1 - Ehrig, Sebastian T1 - 3D curvature and its role on tissue organization N2 - Shape change is a fundamental process occurring in biological tissues during embryonic development and regeneration of tissues and organs. This process is regulated by cells that are constrained within a complex environment of biochemical and physical cues. The spatial constraint due to geometry has a determining role on tissue mechanics and the spatial distribution of force patterns that, in turn, influences the organization of the tissue structure. An understanding of the underlying principles of tissue organization may have wide consequences for the understanding of healing processes and the development of organs and, as such, is of fundamental interest for the tissue engineering community. This thesis aims to further our understanding of how the collective behaviour of cells is influenced by the 3D geometry of the environment. Previous research studying the role of geometry on tissue growth has mainly focused either on flat surfaces or on substrates where at least one of the principal curvatures is zero. In the present work, tissue growth from MC3T3-E1 pre-osteoblasts was investigated on surfaces of controlled mean curvature. One key aspect of this thesis was the development of substrates of controlled mean curvature and their visualization in 3D. It was demonstrated that substrates of controlled mean curvature suitable for cell culture can be fabricated using liquid polymers and surface tension effects. Using these substrates, it was shown that the mean surface curvature has a strong impact on the rate of tissue growth and on the organization of the tissue structure. It was thereby not only demonstrated that the amount of tissue produced (i.e. growth rates) by the cells depends on the mean curvature of the substrate but also that the tissue surface behaves like a viscous fluid with an equilibrium shape governed by the Laplace-Young-law. It was observed that more tissue was formed on highly concave surfaces compared to flat or convex surfaces. Motivated by these observations, an analytical model was developed, where the rate of tissue growth is a function of the mean curvature, which could successfully describe the growth kinetics. This model was also able to reproduce the growth kinetics of previous experiments where tissues have been cultured in straight-sided prismatic pores. A second part of this thesis focuses on the tissue structure, which influences the mechanical properties of the mature bone tissue. Since the extracellular matrix is produced by the cells, the cell orientation has a strong impact on the direction of the tissue fibres. In addition, it was recently shown that some cell types exhibit collective alignment similar to liquid crystals. Based on this observation, a computational model of self-propelled active particles was developed to explore in an abstract manner how the collective behaviour of cells is influenced by 3D curvature. It was demonstrated that the 3D curvature has a strong impact on the self-organization of active particles and gives, therefore, first insights into the principles of self-organization of cells on curved surfaces. N2 - Formänderung ist ein fundamentaler Vorgang während der embryonalen Entwicklung und der Regeneration von Geweben und Organen. Dieser Prozess wird von Zellen reguliert die in einer komplexen Umgebung von biochemischen und physikalischen Signalen eingebettet sind. Die räumliche Begrenzung der Zellen führt dabei zu Unterschieden in der Gewebemechanik und der räumlichen Verteilung von Kräften und hat damit einen Einfluss auf die Organisation der Gewebestruktur. Ein Verständnis der Organisationsprozesse von Geweben hat weitreichende Konsequenzen im Hinblick auf das Verständnis von Heilungsprozessen und der Entwicklung von Organen bis hin zu medizinischen Anwendungen wie der Entwicklung von Implantaten. Die vorliegende Arbeit zielt auf ein besseres Verständnis wie das kollektive Verhalten von Gewebezellen von der dreidimensionalen Krümmung der Umgebung beeinflusst wird. Die bisherige Forschung war bislang limitiert auf flache Oberflächen oder auf Substrate in denen zumindest eine der beiden Hauptkrümmungen Null ist. In dieser Arbeit wurde daher das Gewebewachstum von MC3T3-E1 Pre-Osteoblasten auf Oberflächen mit konstanter mittlerer Krümmung studiert. Ein wichtiger Teil der Arbeit war die Entwicklung von Substraten mit kontrollierter mittlerer Krümmung und deren Visualisierung in 3D. Es wurde gezeigt, dass sich die Oberflächen- spannung von Polymerlösungen nutzen lässt um eben solche Substrate zu erzeugen. Mit Hilfe dieser Substrate wurde gezeigt, dass die mittlere Krümmung der Oberfläche einen entscheidenden Einfluss auf die Wachstumsrate und die Organisation der Gewebestruktur hat. Es konnte nicht nur gezeigt werden dass die Menge an gebildetem Gewebe von der mittleren Krümmung abhängig ist, sondern auch dass die Oberfläche des Gewebes sich dabei wie eine Flüssigkeit verhält und dem Laplace-Young Gesetz folgt. Es wurde beobachtet dass sich mehr Gewebe auf konkaven als auf flachen oder konvexen Oberflächen gebildet hat. Basierend auf diesen Beobachtungen wurde ein analytisches Modell entwickelt, welches die Wachstumsrate als Funktion der mittleren Krümmung beschreibt und mit Hilfe dessen sich das Gewebewachstum erfolgreich beschreiben lässt. Dieses Modell kann auch die Ergebnisse früherer Arbeiten reproduzieren, in denen Gewebe in prismatischen Poren kultiviert wurden. Ein weiterer Teil der Arbeit befasste sich mit der Struktur des Gewebes, welche einen Einfluss auf die späteren mechanischen Eigenschaften des maturierten Knochengewebes hat. Da die extrazelluläre Matrix des Gewebes von den Zellen gebildet wird, hat die Orientierung der Zellen einen entscheidenden Einfluss auf die Ausrichtung der Gewebefasern. Außerdem wurde vor kurzem gezeigt, dass sich manche Zellen wie Flüssigkristalle anordnen können. Basierend auf dieser Beobachtung wurde ein Computermodell aktiver Partikel entwickelt, mit dessen Hilfe sich der Einfluss des kollektiven Verhaltens der Zellen auf dreidimensional gekrümmten Oberflächen abstrahieren lässt. Es konnte dabei gezeigt werden, dass die dreidimensionale Krümmung einen entscheidenden Einfluss auf die Selbstorganisation dieser Partikel hat und gibt damit erste Einblicke in ein mögliches Organisationsverhalten von Zellen auf 3D Oberflächen. KW - biophysics KW - tissue engineering KW - mechanobiology Y1 - 2017 ER - TY - JOUR A1 - El-Nagar, Gumaa A. A1 - Sarhan, Radwan Mohamed A1 - Abouserie, Ahed A1 - Maticiuc, Natalia A1 - Bargheer, Matias A1 - Lauermann, Iver A1 - Roth, Christina T1 - Efficient 3D-Silver Flower-like Microstructures for Non-Enzymatic Hydrogen Peroxide (H2O2) Amperometric Detection JF - Scientific reports Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-11965-9 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - GEN A1 - Erra, Ramon Guevara A1 - Velazquez, Jose L. Perez A1 - Rosenblum, Michael T1 - Neural Synchronization from the Perspective of Non-linear Dynamics T2 - Frontiers in computational neuroscience / Frontiers Research Foundation KW - brain synchronization KW - non-linear dynamics KW - neural synchonization KW - brain rhythms KW - epilepsy Y1 - 2017 U6 - https://doi.org/10.3389/fncom.2017.00098 SN - 1662-5188 VL - 11 PB - Frontiers Research Foundation CY - Lausanne ER - TY - JOUR A1 - Fandrich, Artur A1 - Buller, Jens A1 - Memczak, Henry A1 - Stoecklein, W. A1 - Hinrichs, K. A1 - Wischerhoff, E. A1 - Schulz, B. A1 - Laschewsky, André A1 - Lisdat, Fred T1 - Responsive Polymer-Electrode Interface-Study of its Thermo- and pH-Sensitivity and the Influence of Peptide Coupling JF - Electrochimica acta : the journal of the International Society of Electrochemistry (ISE) N2 - This study introduces a thermally responsive, polymer-based electrode system. The key component is a surface-attached, temperature-responsive poly(oligoethylene glycol) methacrylate (poly(OEGMA)) type polymer bearing photoreactive benzophenone and carboxy groups containing side chains. The responsive behavior of the polymer in aqueous media has been investigated by turbidimetry measurements. Polymer films are formed on gold substrates by means of the photoreactive 2(dicyclohexylphosphino)benzophenone (DPBP) through photocrosslinking. The electrochemical behavior of the resulting polymer-substrate interface has been investigated in buffered [Fe(CN)6](3-)/[Fe (CN)6](4-)solutions at room temperature and under temperature variation by cyclic voltammetry (CV). The CV experiments show that with increasing temperature structural changes of the polymer layer occur, which alter the output of the electrochemical measurement. Repeated heating/cooling cycles analyzed by CV measurements and pH changes analyzed by quartz crystal microbalance with dissipation monitoring (QCM-D) reveal the reversible nature of the restructuring process. The immobilized films are further modified by covalent coupling of two small biomolecules - a hydrophobic peptide and a more hydrophilic one. These attached components influence the hydrophobicity of the layer in a different way the resulting change of the temperature-caused behavior has been studied by CV indicating a different state of the polymer after coupling of the hydrophobic peptide. KW - Stimuli-responsive materials KW - electroanalysis KW - modified electrode KW - bioreceptors KW - peptides KW - surface modification KW - cyclic voltammetry KW - IR ellipsometry KW - quartz crystal microbalance Y1 - 2017 U6 - https://doi.org/10.1016/j.electacta.2017.01.080 SN - 0013-4686 SN - 1873-3859 VL - 229 SP - 325 EP - 333 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Fang, Peng A1 - Ma, Xingchen A1 - Li, Xiangxin A1 - Qiu, Xunlin A1 - Gerhard, Reimund A1 - Zhang, Xiaoqing A1 - Li, Guanglin T1 - Fabrication, Structure Characterization, and Performance Testing of Piezoelectret-Film Sensors for Recording Body Motion JF - IEEE Sensors Journal N2 - During muscle contractions, radial-force distributions are generated on muscle surfaces due to muscle-volume changes, from which the corresponding body motions can be recorded by means of so-called force myography (FMG). Piezo- or ferroelectrets are flexible piezoelectric materials with attractive materials and sensing properties. In addition to several other applications, they are suitable for detecting force variations by means of wearable devices. In this paper, we prepared piezoelectrets from cellular polypropylene films by optimizing the fabrication procedures, and developed an FMG-recording system based on piezoelectret sensors. Different hand and wrist movements were successfully detected on able-bodied subjects with the FMG system. The FMG patterns were evaluated and identified by means of linear discriminant analysis and artificial neural network algorithms, and average motion-classification accuracies of 96.1% and 94.8%, respectively, were obtained. This paper demonstrates the feasibility of using piezoelectret-film sensors for FMG and may thus lead to alternative methods for detecting body motion and to related applications, e.g., in biomedical engineering or structural-health monitoring. KW - Forcemyography KW - motion registration KW - piezoelectret KW - film sensor KW - wearable Y1 - 2017 U6 - https://doi.org/10.1109/JSEN.2017.2766663 SN - 1530-437X SN - 1558-1748 VL - 18 IS - 1 SP - 401 EP - 412 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Feldmann, Johannes A1 - Levermann, Anders T1 - From cyclic ice streaming to Heinrich-like events: the grow-and-surge instability in the Parallel Ice Sheet Model JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Here we report on a cyclic, physical ice-discharge instability in the Parallel Ice Sheet Model, simulating the flow of a three-dimensional, inherently buttressed ice-sheet-shelf system which periodically surges on a millennial timescale. The thermomechanically coupled model on 1 km horizontal resolution includes an enthalpy-based formulation of the thermodynamics, a nonlinear stress-balance-based sliding law and a very simple subglacial hydrology. The simulated unforced surging is characterized by rapid ice streaming through a bed trough, resulting in abrupt discharge of ice across the grounding line which is eventually calved into the ocean. We visualize the central feedbacks that dominate the subsequent phases of ice buildup, surge and stabilization which emerge from the interaction between ice dynamics, thermodynamics and the subglacial till layer. Results from the variation of surface mass balance and basal roughness suggest that ice sheets of medium thickness may be more susceptible to surging than relatively thin or thick ones for which the surge feedback loop is damped. We also investigate the influence of different basal sliding laws (ranging from purely plastic to nonlinear to linear) on possible surging. The presented mechanisms underlying our simulations of self-maintained, periodic ice growth and destabilization may play a role in large-scale ice-sheet surging, such as the surging of the Laurentide Ice Sheet, which is associated with Heinrich events, and ice-stream shutdown and reactivation, such as observed in the Siple Coast region of West Antarctica. Y1 - 2017 U6 - https://doi.org/10.5194/tc-11-1913-2017 SN - 1994-0416 SN - 1994-0424 VL - 11 SP - 1913 EP - 1932 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Feudel, Fred A1 - Tuckerman, Laurette S. A1 - Zaks, Michael A1 - Hollerbach, Rainer T1 - Hysteresis of dynamos in rotating spherical shell convection JF - Physical review fluids / American Physical Society N2 - Bifurcations of dynamos in rotating and buoyancy-driven spherical Rayleigh-Benard convection in an electrically conducting fluid are investigated numerically. Both nonmagnetic and magnetic solution branches comprised of rotating waves are traced by path-following techniques, and their bifurcations and interconnections for different Ekman numbers are determined. In particular, the question of whether the dynamo branches bifurcate super- or sub-critically and whether a direct link to the primary pure convective states exists is answered. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevFluids.2.053902 SN - 2469-990X VL - 2 PB - American Physical Society CY - College Park ER - TY - THES A1 - Feulner, Georg T1 - The influence of solar radiation changes on the energy budget of Earth's climate Y1 - 2017 ER - TY - JOUR A1 - Finley, Hayley A1 - Bouche, Nicolas A1 - Contini, Thierry A1 - Epinat, Benoit A1 - Bacon, Roland A1 - Brinchmann, Jarle A1 - Cantalupo, Sebastiano A1 - Erroz-Ferrer, Santiago A1 - Marino, Aella Anna A1 - Maseda, Michael A1 - Richard, Johan A1 - Schroetter, Ilane A1 - Verhamme, Anne A1 - Weilbacher, Peter Michael A1 - Wendt, Martin A1 - Wisotzki, Lutz T1 - Galactic winds with MUSE: A direct detection of Fe II* emission from a z=1.29 galaxy JF - Astronomy and astrophysics : an international weekly journal N2 - Emission signatures from galactic winds provide an opportunity to directly map the outflowing gas, but this is traditionally challenging because of the low surface brightness. Using very deep observations (27 h) of the Hubble Deep Field South with the Multi Unit Spectroscopic Explorer (MUSE) instrument, we identify signatures of an outflow in both emission and absorption from a spatially resolved galaxy at z = 1.29 with a stellar mass M-star = 8 x 10(9) M-circle dot, star formation rate SFR = 77(-25)(+40) M-circle dot yr(-1), and star formation rate surface brightness Sigma(SFR) = 1.6 M-circle dot kpc(-2) within the [OII] lambda lambda 3727, 3729 half-light radius R-1/2, ([OII]) = 2.76 +/- 0.17 kpc. From a component of the strong resonant Mg II and Fe II absorptions at -350 km s(-1), we infer a mass outflow rate that is comparable to the star formation rate. We detect non-resonant Fe II* emission, at lambda 2365, lambda 2396, lambda 2612, and lambda 2626, at 1.2-2.4-1.5-2.7 x 10-(18) erg s(-1) cm(-2) respectively. The flux ratios are consistent with the expectations for optically thick gas. By combining the four non-resonant Fe II* emission lines, we spatially map the Fe II* emission from an individual galaxy for the first time. The Fe II* emission has an elliptical morphology that is roughly aligned with the galaxy minor kinematic axis, and its integrated half-light radius, R-1/2, (Fe II*) = 4.1 +/- 0.4 kpc, is 70% larger than the stellar continuum (R-1/2,(star) similar or equal to 2.34 +/- 0.17) or the [O II] nebular line. Moreover, the Fe II* emission shows a blue wing extending up to -400 km s(-1), which is more pronounced along the galaxy minor kinematic axis and reveals a C-shaped pattern in a p - v diagram along that axis. These features are consistent with a bi-conical outflow. KW - galaxies: evolution KW - galaxies: formation KW - galaxies: starburst KW - galaxies: ISM KW - ISM: jets and outflows KW - ultraviolet: ISM Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730428 SN - 1432-0746 VL - 605 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Fondell, Mattis A1 - Eckert, Sebastian A1 - Jay, Raphael Martin A1 - Weniger, Christian A1 - Quevedo, Wilson A1 - Niskanen, Johannes A1 - Kennedy, Brian A1 - Sorgenfrei, Nomi A1 - Schick, Daniel A1 - Giangrisostomi, Erika A1 - Ovsyannikov, Ruslan A1 - Adamczyk, Katrin A1 - Huse, Nils A1 - Wernet, Philippe A1 - Mitzner, Rolf A1 - Föhlisch, Alexander T1 - Time-resolved soft X-ray absorption spectroscopy in transmission mode on liquids at MHz repetition rates JF - Structural dynamics N2 - We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II)-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology. (C) 2017 Author(s). Y1 - 2017 U6 - https://doi.org/10.1063/1.4993755 SN - 2329-7778 VL - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Fraschetti, F. A1 - Pohl, Martin T1 - Particle acceleration model for the broad-band baseline spectrum of the Crab nebula JF - Monthly notices of the Royal Astronomical Society N2 - We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks. KW - acceleration of particles KW - shock waves KW - cosmic rays KW - ISM: supernova remnants Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx1833 SN - 0035-8711 SN - 1365-2966 VL - 471 SP - 4866 EP - 4874 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Fraschetti, Federico A1 - Pohl, Martin T1 - Two-zone model for the broadband crab nebula spectrum BT - microscopic interpretation T2 - The European physical journal : Web of Conferences : proceedings N2 - We develop a simple two-zone interpretation of the broadband baseline Crab nebula spectrum between 10(-5) eV and similar to 100 TeV by using two distinct log-parabola energetic electrons distributions. We determine analytically the very-high energy photon spectrum as originated by inverse-Compton scattering of the far-infrared soft ambient photons within the nebula off a first population of electrons energized at the nebula termination shock. The broad and flat 200 GeV peak jointly observed by Fermi/LAT and MAGIC is naturally reproduced. The synchrotron radiation from a second energetic electron population explains the spectrum from the radio range up to similar to 10 keV. We infer from observations the energy dependence of the microscopic probability of remaining in proximity of the shock of the accelerating electrons. Y1 - 2017 U6 - https://doi.org/10.1051/epjconf/201713602009 SN - 2100-014X VL - 136 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Gao, Shan A1 - Pohl, Martin A1 - Winter, Walter T1 - On the Direct Correlation between Gamma-Rays and PeV Neutrinos from Blazars JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We study the frequently used assumption in multi-messenger astrophysics that the gamma-ray and neutrino fluxes are directly connected because they are assumed to be produced by the same photohadronic production chain. An interesting candidate source for this test is the flat-spectrum radio quasar PKS B1424-418, which recently called attention to a potential correlation between an IceCube PeV neutrino event and its burst phase. We simulate both the multi-waveband photon and the neutrino emission from this source using a self-consistent radiation model. We demonstrate that a simple hadronic model cannot adequately describe the spectral energy distribution for this source, but a lepto-hadronic model with a subdominant hadronic component can reproduce the multi-waveband photon spectrum observed during various activity phases of the blazar. As a conclusion, up to about 0.3 neutrino events may coincide with the burst, which implies that the leptonic contribution dominates in the relevant energy band. We also demonstrate that the time-wise correlation between the neutrino event and burst phase is weak. KW - galaxies: jets KW - gamma rays: general KW - neutrinos Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa7754 SN - 0004-637X SN - 1538-4357 VL - 843 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Garakani, Tayebeh Mirzaei A1 - Richter, Marina Juliane A1 - Böker, Alexander T1 - Controlling the bio-inspired synthesis of silica JF - Journal of colloid and interface science N2 - The influence of different parameters on the silicification procedure using lysozyme is reported. When polyethoxysiloxane (PEOS), an internally crosslinked silica reservoir, is used, regular structures with a narrow size distribution could be obtained only via introducing the silica precursor in two steps including initial dropping and subsequent addition of residual oil phase in one portion. We found that mixing sequence of mineralizing agents in the presence of a positively charged surfactant plays a key role in terms of silica precipitation when tetraethoxyorthosilicate (TEOS) is the oil phase. In contrast, well mineralized crumpled features with high specific surface area could be synthesized in the presence of PEOS as a silica precursor polymer, regardless of mixing sequence. Moreover, introducing sodium dodecyl sulfate (SDS) as a negatively charged surfactant resulted in regular silica sphere formation only in combination with hexylene glycol (MPD) as a specific co-solvent. Finally, it is demonstrated that by inclusion of different nanoparticles even more sophisticated hybrid materials can be generated. KW - Silicification KW - Lysozyme KW - Polyetlioxysiloxane KW - High specific surface area KW - Surfactant KW - Nanoparticles KW - Hybrid materials Y1 - 2016 U6 - https://doi.org/10.1016/j.jcis.2016.10.069 SN - 0021-9797 SN - 1095-7103 VL - 488 SP - 322 EP - 334 PB - Elsevier CY - San Diego ER - TY - GEN A1 - Geiger, Tobias A1 - Frieler, Katja A1 - Levermann, Anders T1 - Reply to Comment on: High-income does not protect against hurricane losses (Environmental research letters. - 12 (2017)) T2 - Environmental research letters N2 - Recently a multitude of empirically derived damage models have been applied to project future tropical cyclone (TC) losses for the United States. In their study (Geiger et al 2016 Environ. Res. Lett. 11 084012) compared two approaches that differ in the scaling of losses with socio-economic drivers: the commonly-used approach resulting in a sub-linear scaling of historical TC losses with a nation's affected gross domestic product (GDP), and the disentangled approach that shows a sub-linear increase with affected population and a super-linear scaling of relative losses with per capita income. Statistics cannot determine which approach is preferable but since process understanding demands that there is a dependence of the loss on both GDP per capita and population, an approach that accounts for both separately is preferable to one which assumes a specific relation between the two dependencies. In the accompanying comment, Rybski et al argued that there is no rigorous evidence to reach the conclusion that high-income does not protect against hurricane losses. Here we affirm that our conclusion is drawn correctly and reply to further remarks raised in the comment, highlighting the adequateness of our approach but also the potential for future extension of our research. KW - climate change KW - tropical cyclones KW - damage KW - meteorological extremes KW - vulnerability Y1 - 2017 U6 - https://doi.org/10.1088/1748-9326/aa88d6 SN - 1748-9326 VL - 12 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Ghaisari, Sara T1 - Magnetic anisotropy analysis of magnetic nanoparticles in magnetotactic bacteria Y1 - 2017 ER - TY - JOUR A1 - Godec, Aljaž A1 - Metzler, Ralf T1 - First passage time statistics for two-channel diffusion JF - Journal of physics : A, Mathematical and theoretical N2 - We present rigorous results for the mean first passage time and first passage time statistics for two-channel Markov additive diffusion in a 3-dimensional spherical domain. Inspired by biophysical examples we assume that the particle can only recognise the target in one of the modes, which is shown to effect a non-trivial first passage behaviour. We also address the scenario of intermittent immobilisation. In both cases we prove that despite the perfectly non-recurrent motion of two-channel Markov additive diffusion in 3 dimensions the first passage statistics at long times do not display Poisson-like behaviour if none of the phases has a vanishing diffusion coefficient. This stands in stark contrast to the standard (one-channel) Markov diffusion counterpart. We also discuss the relevance of our results in the context of cellular signalling. KW - first passage time KW - Markov additive processes KW - Fokker-Planck equation KW - random search processes KW - coupled initial boundary value problem KW - cellular signalling KW - asymptotic analysis Y1 - 2017 U6 - https://doi.org/10.1088/1751-8121/aa5204 SN - 1751-8113 SN - 1751-8121 VL - 50 IS - 8 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Goldobin, Denis S. A1 - Pimenova, Anastasiya V. A1 - Rosenblum, Michael A1 - Pikovskij, Arkadij T1 - Competing influence of common noise and desynchronizing coupling on synchronization in the Kuramoto-Sakaguchi ensemble JF - European physical journal special topics N2 - We describe analytically synchronization and desynchronization effects in an ensemble of phase oscillators driven by common noise and by global coupling. Adopting the Ott-Antonsen ansatz, we reduce the dynamics to closed stochastic equations for the order parameters, and study these equations for the cases of populations of identical and nonidentical oscillators. For nonidentical oscillators we demonstrate a counterintuitive effect of divergence of individual frequencies for moderate repulsive coupling, while the order parameter remains large. Y1 - 2017 U6 - https://doi.org/10.1140/epjst/e2017-70039-y SN - 1951-6355 SN - 1951-6401 VL - 226 SP - 1921 EP - 1937 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Gong, Chen Chris A1 - Klumpp, Stefan T1 - Modeling sRNA-Regulated Plasmid Maintenance JF - PLoS one N2 - We study a theoretical model for the toxin-antitoxin (hok/sok) mechanism for plasmid maintenance in bacteria. Toxin-antitoxin systems enforce the maintenance of a plasmid through post-segregational killing of cells that have lost the plasmid. Key to their function is the tight regulation of expression of a protein toxin by an sRNA antitoxin. Here, we focus on the nonlinear nature of the regulatory circuit dynamics of the toxin-antitoxin mechanism. The mechanism relies on a transient increase in protein concentration rather than on the steady state of the genetic circuit. Through a systematic analysis of the parameter dependence of this transient increase, we confirm some known design features of this system and identify new ones: for an efficient toxin-antitoxin mechanism, the synthesis rate of the toxin’s mRNA template should be lower that of the sRNA antitoxin, the mRNA template should be more stable than the sRNA antitoxin, and the mRNA-sRNA complex should be more stable than the sRNA antitoxin. Moreover, a short half-life of the protein toxin is also beneficial to the function of the toxin-antitoxin system. In addition, we study a therapeutic scenario in which a competitor mRNA is introduced to sequester the sRNA antitoxin, causing the toxic protein to be expressed. Y1 - 2017 U6 - https://doi.org/10.1371/journal.pone.0169703 SN - 1932-6203 VL - 12 PB - PLoS CY - San Fransisco ER - TY - THES A1 - González Manrique, Sergio Javier T1 - High-Resolution Observations of Emerging Flux Regions Y1 - 2017 ER - TY - JOUR A1 - Gorobtsov, O. Yu. A1 - Mercurio, G. A1 - Brenner, G. A1 - Lorenz, Ulf A1 - Gerasimova, N. A1 - Kurta, R. P. A1 - Hieke, F. A1 - Skopintsev, P. A1 - Zaluzhnyy, I. A1 - Lazarev, S. A1 - Dzhigaev, D. A1 - Rose, M. A1 - Singer, A. A1 - Wurth, W. A1 - Vartanyants, I. A. T1 - Statistical properties of a free-electron laser revealed by Hanbury Brown-Twiss interferometry JF - Physical review : A, Atomic, molecular, and optical physics N2 - We present a comprehensive experimental analysis of statistical properties of the self-amplified spontaneous emission free-electron laser (FEL) FLASH by means of Hanbury Brown and Twiss interferometry. The experiments were performed at FEL wavelengths of 5.5, 13.4, and 20.8 nm. We determined the second-order intensity correlation function for all wavelengths and different operation conditions of FLASH. In all experiments a high degree of spatial coherence (above 50%) was obtained. Our analysis performed in spatial and spectral domains provided us with the independent measurements of an average pulse duration of the FEL that were below 60 fs. To explain the complicated behavior of the second-order intensity correlation function we developed an advanced theoretical model that includes the presence of multiple beams and external positional jitter of the FEL pulses. By this analysis we determined that in one of the experiments external positional jitter was about 25% of the beam size. We envision that methods developed in our study will be used widely for analysis and diagnostics of FEL radiation. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevA.95.023843 SN - 2469-9926 SN - 2469-9934 VL - 95 IS - 2 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Gout, Julien A1 - Quade, Markus A1 - Shafi, Kamran A1 - Niven, Robert K. A1 - Abel, Markus T1 - Synchronization control of oscillator networks using symbolic regression JF - Nonlinear Dynamics N2 - Networks of coupled dynamical systems provide a powerful way to model systems with enormously complex dynamics, such as the human brain. Control of synchronization in such networked systems has far-reaching applications in many domains, including engineering and medicine. In this paper, we formulate the synchronization control in dynamical systems as an optimization problem and present a multi-objective genetic programming-based approach to infer optimal control functions that drive the system from a synchronized to a non-synchronized state and vice versa. The genetic programming-based controller allows learning optimal control functions in an interpretable symbolic form. The effectiveness of the proposed approach is demonstrated in controlling synchronization in coupled oscillator systems linked in networks of increasing order complexity, ranging from a simple coupled oscillator system to a hierarchical network of coupled oscillators. The results show that the proposed method can learn highly effective and interpretable control functions for such systems. KW - Dynamical systems KW - Synchronization control KW - Genetic programming Y1 - 2017 U6 - https://doi.org/10.1007/s11071-017-3925-z SN - 0924-090X SN - 1573-269X VL - 91 IS - 2 SP - 1001 EP - 1021 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Goychuk, Igor T1 - Fractional Bhatnagar-Gross-Krook kinetic equation JF - The European physical journal : B, Condensed matter and complex systems N2 - The linear Boltzmann equation approach is generalized to describe fractional superdiffusive transport of the Levy walk type in external force fields. The time distribution between scattering events is assumed to have a finite mean value and infinite variance. It is completely characterized by the two scattering rates, one fractional and a normal one, which defines also the mean scattering rate. We formulate a general fractional linear Boltzmann equation approach and exemplify it with a particularly simple case of the Bohm and Gross scattering integral leading to a fractional generalization of the Bhatnagar, Gross and Krook kinetic equation. Here, at each scattering event the particle velocity is completely randomized and takes a value from equilibrium Maxwell distribution at a given fixed temperature. We show that the retardation effects are indispensable even in the limit of infinite mean scattering rate and argue that this novel fractional kinetic equation provides a viable alternative to the fractional Kramers-Fokker-Planck (KFP) equation by Barkai and Silbey and its generalization by Friedrich et al. based on the picture of divergent mean time between scattering events. The case of divergent mean time is also discussed at length and compared with the earlier results obtained within the fractional KFP. Also a phenomenological fractional BGK equation without retardation effects is proposed in the limit of infinite scattering rates. It cannot be, however, rigorously derived from a scattering model, being rather clever postulated. It this respect, this retardationless equation is similar to the fractional KFP by Barkai and Silbey. However, it corresponds to the opposite, much more physical limit and, therefore, also presents a viable alternative. Y1 - 2017 U6 - https://doi.org/10.1140/epjb/e2017-80297-x SN - 1434-6028 SN - 1434-6036 VL - 90 PB - Springer CY - New York ER - TY - JOUR A1 - Goychuk, Igor T1 - Quantum ergodicity breaking in semi-classical electron transfer dynamics JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Can the statistical properties of single-electron transfer events be correctly predicted within a common equilibrium ensemble description? This fundamental in nanoworld question of ergodic behavior is scrutinized within a very basic semi-classical curve-crossing problem. It is shown that in the limit of non-adiabatic electron transfer (weak tunneling) well-described by the Marcus-Levich-Dogonadze (MLD) rate the answer is yes. However, in the limit of the so-called solvent-controlled adiabatic electron transfer, a profound breaking of ergodicity occurs. Namely, a common description based on the ensemble reduced density matrix with an initial equilibrium distribution of the reaction coordinate is not able to reproduce the statistics of single-trajectory events in this seemingly classical regime. For sufficiently large activation barriers, the ensemble survival probability in a state remains nearly exponential with the inverse rate given by the sum of the adiabatic curve crossing (Kramers) time and the inverse MLD rate. In contrast, near to the adiabatic regime, the single-electron survival probability is clearly non-exponential, even though it possesses an exponential tail which agrees well with the ensemble description. Initially, it is well described by a Mittag-Leffler distribution with a fractional rate. Paradoxically, the mean transfer time in this classical on the ensemble level regime is well described by the inverse of the nonadiabatic quantum tunneling rate on a single particle level. An analytical theory is developed which perfectly agrees with stochastic simulations and explains our findings. Y1 - 2016 U6 - https://doi.org/10.1039/c6cp07206b SN - 1463-9076 SN - 1463-9084 VL - 19 SP - 3056 EP - 3066 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Graves, Timothy A1 - Franzke, Christian L. E. A1 - Watkins, Nicholas W. A1 - Gramacy, Robert B. A1 - Tindale, Elizabeth T1 - Systematic inference of the long-range dependence and heavy-tail distribution parameters of ARFIMA models JF - Physica : europhysics journal ; A, Statistical mechanics and its applications KW - Long-range dependence KW - Heavy-tails KW - Bayesian estimation KW - ARFIMA Y1 - 2017 U6 - https://doi.org/10.1016/j.physa.2017.01.028 SN - 0378-4371 SN - 1873-2119 VL - 473 SP - 60 EP - 71 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains JF - New journal of physics : the open-access journal for physics N2 - We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry-characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. A similar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA. We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters. We analyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. KW - first passage time KW - cylindrical geometry KW - aspect ratio KW - protein search Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa8ed9 SN - 1367-2630 VL - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains N2 - We study the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 391 KW - aspect ratio KW - cylindrical geometry KW - first passage time KW - protein search Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403726 ER - TY - JOUR A1 - Grebenkov, Denis S. A1 - Metzler, Ralf A1 - Oshanin, Gleb T1 - Effects of the target aspect ratio and intrinsic reactivity onto diffusive search in bounded domains JF - New journal of physics N2 - Westudy the mean first passage time (MFPT) to a reaction event on a specific site in a cylindrical geometry—characteristic, for instance, for bacterial cells, with a concentric inner cylinder representing the nuclear region of the bacterial cell. Asimilar problem emerges in the description of a diffusive search by a transcription factor protein for a specific binding region on a single strand of DNA.We develop a unified theoretical approach to study the underlying boundary value problem which is based on a self-consistent approximation of the mixed boundary condition. Our approach permits us to derive explicit, novel, closed-form expressions for the MFPT valid for a generic setting with an arbitrary relation between the system parameters.Weanalyse this general result in the asymptotic limits appropriate for the above-mentioned biophysical problems. Our investigation reveals the crucial role of the target aspect ratio and of the intrinsic reactivity of the binding region, which were disregarded in previous studies. Theoretical predictions are confirmed by numerical simulations. KW - first passage time KW - cylindrical geometry KW - aspect ratio KW - protein search Y1 - 2017 U6 - https://doi.org/10.1088/1367-2630/aa8ed9 SN - 1367-2630 VL - 19 SP - 1 EP - 11 PB - IOP CY - London ER - TY - JOUR A1 - Grinberg, Victoria A1 - Hell, Natalie A1 - El Mellah, Ileyk A1 - Neilsen, Joseph A1 - Sander, Andreas Alexander Christoph A1 - Leutenegger, Maurice A1 - Fürst, Felix A1 - Huenemoerder, David P. A1 - Kretschmar, Peter A1 - Kuehnel, Matthias A1 - Martinez-Nunez, Silvia A1 - Niu, Shu A1 - Pottschmidt, Katja A1 - Schulz, Norbert S. A1 - Wilms, Joern A1 - Nowak, Michael A. T1 - The clumpy absorber in the high-mass X-ray binary Vela X-1 JF - Astronomy and astrophysics : an international weekly journal N2 - Bright and eclipsing, the high-mass X-ray binary Vela X-1 offers a unique opportunity to study accretion onto a neutron star from clumpy winds of O/B stars and to disentangle the complex accretion geometry of these systems. In Chandra-HETGS spectroscopy at orbital phase similar to 0.25, when our line of sight towards the source does not pass through the large-scale accretion structure such as the accretion wake, we observe changes in overall spectral shape on timescales of a few kiloseconds. This spectral variability is, at least in part, caused by changes in overall absorption and we show that such strongly variable absorption cannot be caused by unperturbed clumpy winds of O/B stars. We detect line features from high and low ionization species of silicon, magnesium, and neon whose strengths and presence depend on the overall level of absorption. These features imply a co-existence of cool and hot gas phases in the system, which we interpret as a highly variable, structured accretion flow close to the compact object such as has been recently seen in simulations of wind accretion in high-mass X-ray binaries. KW - X-rays: individuals: Vela X-1 KW - X-rays: binaries KW - stars: winds, outflows KW - stars: massive Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731843 SN - 1432-0746 VL - 608 PB - EDP Sciences CY - Les Ulis ER - TY - THES A1 - Guber, Christoph Rudolf T1 - Dust depletion of Ca and Ti in quasar absorption-line systems Y1 - 2017 ER - TY - GEN A1 - Gudowska-Nowak, Ewa A1 - Lindenberg, Katja A1 - Metzler, Ralf T1 - Preface: Marian Smoluchowski’s 1916 paper—a century of inspiration T2 - Journal of physics : A, Mathematical and theoretical Y1 - 2017 U6 - https://doi.org/10.1088/1751-8121/aa8529 SN - 1751-8113 SN - 1751-8121 VL - 50 IS - 38 PB - IOP Publ. Ltd. CY - Bristol ER - TY - THES A1 - Guidi, Giovanni T1 - Connecting simulations and observations in galaxy formation studies T1 - Verknüpfung von Simulationen und Beobachtungen bei der Untersuchung der Galaxienenstehung N2 - Observational and computational extragalactic astrophysics are two fields of research that study a similar subject from different perspectives. Observational extragalactic astrophysics aims, by recovering the spectral energy distribution of galaxies at different wavelengths, to reliably measure their properties at different cosmic times and in a large variety of environments. Analyzing the light collected by the instruments, observers try to disentangle the different processes occurring in galaxies at the scales of galactic physics, as well as the effect of larger scale processes such as mergers and accretion, in order to obtain a consistent picture of galaxy formation and evolution. On the other hand, hydrodynamical simulations of galaxy formation in cosmological context are able to follow the evolution of a galaxy along cosmic time, taking into account both external processes such as mergers, interactions and accretion, and internal mechanisms such as feedback from Supernovae and Active Galactic Nuclei. Due to the great advances in both fields of research, we have nowadays available spectral and photometric information for a large number of galaxies in the Universe at different cosmic times, which has in turn provided important knowledge about the evolution of the Universe; at the same time, we are able to realistically simulate galaxy formation and evolution in large volumes of the Universe, taking into account the most relevant physical processes occurring in galaxies. As these two approaches are intrinsically different in their methodology and in the information they provide, the connection between simulations and observations is still not fully established, although simulations are often used in galaxies' studies to interpret observations and assess the effect of the different processes acting on galaxies on the observable properties, and simulators usually test the physical recipes implemented in their hydrodynamical codes through the comparison with observations. In this dissertation we aim to better connect the observational and computational approaches in the study of galaxy formation and evolution, using the methods and results of one field to test and validate the methods and results of the other. In a first work we study the biases and systematics in the derivation of the galaxy properties in observations. We post-process hydrodynamical cosmological simulations of galaxy formation to calculate the galaxies' Spectral Energy Distributions (SEDs) using different approaches, including radiative transfer techniques. Comparing the direct results of the simulations with the quantities obtained applying observational techniques to these synthetic SEDs, we are able to make an analysis of the biases intrinsic in the observational algorithms, and quantify their accuracy in recovering the galaxies' properties, as well as estimating the uncertainties affecting a comparison between simulations and observations when different approaches to obtain the observables are followed. Our results show that for some quantities such as the stellar ages, metallicities and gas oxygen abundances large differences can appear, depending on the technique applied in the derivation. In a second work we compare a set of fifteen galaxies similar in mass to the Milky Way and with a quiet merger history in the recent past (hence expected to have properties close to spiral galaxies), simulated in a cosmological context, with data from the Sloan Digital Sky Survey (SDSS). We use techniques to obtain the observables as similar as possible to the ones applied in SDSS, with the aim of making an unbiased comparison between our set of hydrodynamical simulations and SDSS observations. We quantify the differences in the physical properties when these are obtained directly from the simulations without post-processing, or mimicking the SDSS observational techniques. We fit linear relations between the values derived directly from the simulations and following SDSS observational procedures, which in most of the cases have relatively high correlation, that can be easily used to more reliably compare simulations with SDSS data. When mimicking SDSS techniques, these simulated galaxies are photometrically similar to galaxies in the SDSS blue sequence/green valley, but have in general older ages, lower SFRs and metallicities compared to the majority of the spirals in the observational dataset. In a third work, we post-process hydrodynamical simulations of galaxies with radiative transfer techniques, to generate synthetic data that mimic the properties of the CALIFA Integral Field Spectroscopy (IFS) survey. We reproduce the main characteristics of the CALIFA observations in terms of field of view and spaxel physical size, data format, point spread functions and detector noise. This 3-dimensional dataset is suited to be analyzed by the same algorithms applied to the CALIFA dataset, and can be used as a tool to test the ability of the observational algorithms in recovering the properties of the CALIFA galaxies. To this purpose, we also generate the resolved maps of the simulations' properties, calculated directly from the hydrodynamical snapshots, or from the simulated spectra prior to the addition of the noise. Our work shows that a reliable connection between the models and the data is of crucial importance both to judge the output of galaxy formation codes and to accurately test the observational algorithms used in the analysis of galaxy surveys' data. A correct interpretation of observations will be particularly important in the future, in light of the several ongoing and planned large galaxy surveys that will provide the community with large datasets of properties of galaxies (often spatially-resolved) at different cosmic times, allowing to study galaxy formation physics at a higher level of detail than ever before. We have shown that neglecting the observational biases in the comparison between simulations and an observational dataset may move the simulations to different regions in the planes of the observables, strongly affecting the assessment of the correctness of the sub-resolution physical models implemented in galaxy formation codes, as well as the interpretation of given observational results using simulations. N2 - Beobachtende und computergestütze extragalaktische Astrophysik sind zwei Forschugnsbereiche welche ein ähnliches Gebiet in unterschiedlichen Perspektiven untersuchen. Beobachtende extragalaktische Astrophysik hat das Ziel verlässlich die Eigenschaften bei verschiedenen kosmischen Zeiten und bei einer großen Vielzahl von Umgebungen, durch das Betrachten der spektralen Energieverteilung der Galaxien, zu vermessen. Auf der anderen Seite sind hydrodynamische Simulationen im kosmologischen Kontext in der Lage die Entstehung und zeitliche Entwicklung einer Galaxie zu verfolgen, in dem unterschiedliche physikalische Prozesse einbezogen werden. Aufgrund der großen Fortschritte beider Forschungsbereiche sind heutzutage große Datenbanken mit Spektren und photometrische Informationen für eine große Menge von Galaxien bei verschiedenen kosmischen Zeiten verfügbar. Zur gleichen Zeit sind wir in der Lage die Entstehung und Entwicklung von Galaxien realistisch zu simulieren, unter Berücksichtigung der wichtigsten physikalischen Prozesse. Da diese Ansätze grundlegend verschieden sind, ist die Verbindung von Simulationen und Beobachtungen nicht komplett hergestellt, obwohl Simulationen oft zur Interpretation von Beobachtungen genutzt werden und Simulationen durch den Vergleich mit Beobachtungen getestet werden. Das Ziel dieser Dissertation ist die bessere Verknüpfung von Simulationen und Beobachtungen durch die Verwendung der Methoden und Ergebnisse der einen Methode, zur Validierung der anderen und umgekehrt. In einer ersten Arbeit untersuchen wir die systematischen Effekte bei der Vermessung der Eigenschaften von Galaxien in Beobachtungen. Indem wir direkt Simulationen mit syntetischen Daten vergleichen, ist es uns möglich die systematischen Effekte der Beobachtungsalgorithmen zu untersuchen und ihre Genauigkeit bei der Untersuchung der Eigenschaften der Galaxien zu bestimmen. Unsere Ergebnisse ziegen, dass für einige Messgrößen große Unterschiede auftreten können. In einer zweiten Arbeit vergleichen wir 15 simulierte Spiralgalaxien mit ähnlicher Masse wie der Milchstraße mit Daten vom Sloan Digital Sky Survey (SDSS). Dabei verwenden wir die gleichen Methoden, welche bei SDSS verwendet werden, um möglischest unvoreingenommen zwischen hydrodynamischen Simulationen und SDSS Daten zu vergleichen. Wenn wir die Beobachtungsmethoden von SDSS nachahmen, sind die simulierten Galaxien den SDSS Galaxien der blauen Sequenz in der Photometrie ähnlich, aber haben generell höheres Alter, geringere Sternentstehungsrate und Metalizität. In einer dritten Arbeit bearbeiten wir hydrodynamische Simulationen von Galaxien mit Strahlungstransportalgorithmen um synthetische Daten des CALIFA Integralfeldspektroskopie Surveys (IFS) zu erzeugen. Wir reproduzieren die Hauptcharakteristika der CALIFA-Beobachtungen in Bezug auf Sichtfeld, Spaxelgröße, Datenformat, Punktspreizfunktion und Detektorrauschen. Dieser dreidimensionale Datensatz is geeignet, um mit den selben Techniken analysiert zu werden, wie die CALIFA-Daten und können als Mittel genutzt werden, um die Genauigkeit der Beobachtungsalgorithmen zu testen. Zu diesem Zweck erzeugen wir räumlich aufgelöste Eigenschaften der Simulationen, welche direkt von den Aufnahmen der hydrodynamischen Simulationen oder synthetischen Spektren ohne Rauschen berechnet werden. Unsere Arbeit zeigt, dass die verlässliche Verknüpfung von Modellen und Daten von entscheidender Wichtigkeit ist ist, um die Ergebnisse der Galaxieformationssimulationen zu beurteilen und akurat die Beobachtungsalgorithmen zu testen, welche bei der Analyse der Galaxiesurveydaten benutzt werden. Eine korrekte Interpretation der Beobachtungen wird im Hinblick auf die vielen fortlaufenden und geplanten Galaxiesurveys, welche den Wissenschaftern große Datenmengen der Eigenschaften der Galaxien bei unterschiedlichen Zeiten zur Verfügung stellen werden, besonders wichtig in der Zukunft, da dies eine genauere Untersuchung der Physik der Galaxieformationen auf einem Niveau, höher als je zuvor, ermöglichen wird. Außerdem haben wir gezeigt, dass bei dem Vergleichen zwischen Beobachtungen und Simulationen der Bias der Beobachtungen nicht vernachlässigbar ist und die Beurteilung der Korrekturen der physikalischen Modelle, welche in en Galaxieformationscodes implementiert ist, stark beeinflusst, als auch die Interpretation der gegebenen Ergebnisse der Beobachtungen bei Verwendung von Simulationen. KW - galaxy formation KW - galaxy evolution KW - cosmological simulations KW - numerical techniques KW - mock observations KW - Entstehung von Galaxien KW - Entwicklung von Galaxien KW - kosmologische Simulationen KW - numerische Methoden KW - synthetische Beobachtungen Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-396876 ER - TY - JOUR A1 - Gulyakova, Anna A. A1 - Gorokhovatsky, Yuri A. A1 - frübing, Peter A1 - Gerhard, Reimund T1 - Relaxation Processes Determining the Electret Stability of High-Impact Polystyrene/Titanium-Dioxide Composite Films JF - IEEE transactions on dielectrics and electrical insulation N2 - The influence of relaxation processes on the thermal electret stability of high-impact polystyrene (HIPS) free-standing films filled with titanium dioxide (TiO2) of the rutile modification are investigated by means of a combination of dielectric methods (dielectric relaxation spectroscopy (DRS), thermally stimulated depolarization current (TSDC) and thermally stimulated surface-potential decay (TSSPD)), supplemented by differential scanning calorimetry (DSC) and dynamic mechanical analysis (DMA). Films with 2, 4, 6 and 8 vol.% TiO2 are compared to each other and to non-filled samples. Filling HIPS with up to 8 vol.% of TiO2 enhances the elastic modulus below the glass transition and increases the thermal electret stability above the glass transition without significantly increasing the DC conductivity. The improvement of the electret stability is caused by the build-up of an interface polarization which decays only gradually if the glass transition is exceeded. Two kinds of Arrhenius processes are considered in order to explain the decay of the composite-polymer electrets: (1) charge release from chemical traps located at the phenyl rings of the polymer chain with an activation energy of E-a = 1.1 eV after passing the glass transition at about 100 degrees C and (2) charge release from traps formed by the TiO2 particles with E-a = 2.4 eV at temperatures above 130 degrees C. Finally, the activation energies are discussed with respect to their significance. KW - High-impact polystyrene KW - titanium dioxide KW - electret stability KW - dielectric relaxation Y1 - 2017 U6 - https://doi.org/10.1109/TDEI.2017.006587 SN - 1070-9878 SN - 1558-4135 VL - 24 SP - 2541 EP - 2548 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Gömöry, Peter A1 - Balthasar, Horst A1 - Kuckein, Christoph A1 - Koza, Julis A1 - Veronig, Astrid M. A1 - González Manrique, Sergio Javier A1 - Kucera, Ales A1 - Schwartz, Pavol A1 - Hanslmeier, Arnold T1 - Flare-induced changes of the photospheric magnetic field in a delta-spot deduced from ground-based observations JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. Changes of the magnetic field and the line-of-sight velocities in the photosphere are being reported for an M-class flare that originated at a delta-spot belonging to active region NOAA 11865. Methods. High-resolution ground-based near-infrared spectropolarimetric observations were acquired simultaneously in two photospheric spectral lines, Fe I 10783 angstrom and Si I 10786 angstrom, with the Tenerife Infrared Polarimeter at the Vacuum Tower Telescope (VTT) in Tenerife on 2013 October 15. The observations covered several stages of the M-class flare. Inversions of the full-Stokes vector of both lines were carried out and the results were put into context using (extreme)-ultraviolet filtergrams from the Solar Dynamics Observatory (SDO). Results. The active region showed high flaring activity during the whole observing period. After the M-class flare, the longitudinal magnetic field did not show significant changes along the polarity inversion line (PIL). However, an enhancement of the transverse magnetic field of approximately 550G was found that bridges the PIL and connects umbrae of opposite polarities in the delta-spot. At the same time, a newly formed system of loops appeared co-spatially in the corona as seen in 171 angstrom filtergrams of the Atmospheric Imaging Assembly (AIA) on board SDO. However, we cannot exclude that the magnetic connection between the umbrae already existed in the upper atmosphere before the M-class flare and became visible only later when it was filled with hot plasma. The photospheric Doppler velocities show a persistent upflow pattern along the PIL without significant changes due to the flare. Conclusions. The increase of the transverse component of the magnetic field after the flare together with the newly formed loop system in the corona support recent predictions of flare models and flare observations. KW - Sun: magnetic fields KW - sunspots KW - Sun: photosphere KW - Sun: flares KW - techniques: polarimetric Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201730644 SN - 1432-0746 VL - 602 SP - 14 EP - 27 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hani, Maan H. A1 - Sparre, Martin A1 - Ellison, Sara L. A1 - Torrey, Paul A1 - Vogelsberger, Mark T1 - Galaxy mergers moulding the circum-galactic medium BT - I. The impact of a major merger JF - Monthly notices of the Royal Astronomical Society N2 - Galaxies are surrounded by sizeable gas reservoirs which host a significant amount of metals: the circum-galactic medium (CGM). The CGM acts as a mediator between the galaxy and the extragalactic medium. However, our understanding of how galaxy mergers, a major evolutionary transformation, impact the CGM remains deficient. We present a theoretical study of the effect of galaxy mergers on the CGM. We use hydrodynamical cosmological zoom-in simulations of a major merger selected from the Illustris project such that the z = 0 descendant has a halo mass and stellar mass comparable to the Milky Way. To study the CGM we then re-simulated this system at a 40 times better mass resolution, and included detailed post-processing ionization modelling. Our work demonstrates the effect the merger has on the characteristic size of the CGM, its metallicity, and the predicted covering fraction of various commonly observed gas-phase species, such as H I, C IV, and O VI. We show that merger-induced outflows can increase the CGM metallicity by 0.2-0.3 dex within 0.5 Gyr post-merger. These effects last up to 6 Gyr post-merger. While the merger increases the total metal covering fractions by factors of 2-3, the covering fractions of commonly observed UV ions decrease due to the hard ionizing radiation from the active galactic nucleus, which we model explicitly. Our study of the single simulated major merger presented in this work demonstrates the significant impact that a galaxy interaction can have on the size, metallicity, and observed column densities of the CGM. KW - methods: numerical KW - galaxies: evolution KW - galaxies: haloes KW - galaxies: interactions Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx3252 SN - 0035-8711 SN - 1365-2966 VL - 475 IS - 1 SP - 1160 EP - 1176 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Hempel, Sabrina A1 - Koseska, Aneta A1 - Nikoloski, Zoran A1 - Kurths, Jürgen T1 - Unraveling gene regulatory networks from time-resolved gene expression data BT - a measures comparison study N2 - Background: Inferring regulatory interactions between genes from transcriptomics time-resolved data, yielding reverse engineered gene regulatory networks, is of paramount importance to systems biology and bioinformatics studies. Accurate methods to address this problem can ultimately provide a deeper insight into the complexity, behavior, and functions of the underlying biological systems. However, the large number of interacting genes coupled with short and often noisy time-resolved read-outs of the system renders the reverse engineering a challenging task. Therefore, the development and assessment of methods which are computationally efficient, robust against noise, applicable to short time series data, and preferably capable of reconstructing the directionality of the regulatory interactions remains a pressing research problem with valuable applications. Results: Here we perform the largest systematic analysis of a set of similarity measures and scoring schemes within the scope of the relevance network approach which are commonly used for gene regulatory network reconstruction from time series data. In addition, we define and analyze several novel measures and schemes which are particularly suitable for short transcriptomics time series. We also compare the considered 21 measures and 6 scoring schemes according to their ability to correctly reconstruct such networks from short time series data by calculating summary statistics based on the corresponding specificity and sensitivity. Our results demonstrate that rank and symbol based measures have the highest performance in inferring regulatory interactions. In addition, the proposed scoring scheme by asymmetric weighting has shown to be valuable in reducing the number of false positive interactions. On the other hand, Granger causality as well as information-theoretic measures, frequently used in inference of regulatory networks, show low performance on the short time series analyzed in this study. Conclusions: Our study is intended to serve as a guide for choosing a particular combination of similarity measures and scoring schemes suitable for reconstruction of gene regulatory networks from short time series data. We show that further improvement of algorithms for reverse engineering can be obtained if one considers measures that are rooted in the study of symbolic dynamics or ranks, in contrast to the application of common similarity measures which do not consider the temporal character of the employed data. Moreover, we establish that the asymmetric weighting scoring scheme together with symbol based measures (for low noise level) and rank based measures (for high noise level) are the most suitable choices. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 371 KW - unferring cellular networks KW - mutual information KW - Escherichia-coli KW - cluster-analysis KW - series KW - algorithms KW - inference KW - models KW - recognition KW - variables Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400924 ER - TY - JOUR A1 - Henkel, Carsten T1 - Nanoscale Thermal Transfer BT - an Invitation to Fluctuation Electrodynamics JF - Zeitschrift für Naturforschung A N2 - An electromagnetic theory of thermal radiation is outlined, based on the fluctuation electrodynamics of Rytov and co-workers. We discuss the basic concepts and the status of different approximations. The physical content is illustrated with a few examples on near-field heat transfer. KW - Heat Transfer KW - Near-Field Optics KW - Thermal Radiation Y1 - 2017 U6 - https://doi.org/10.1515/zna-2016-0372 SN - 0932-0784 SN - 1865-7109 VL - 72 IS - 2 SP - 99 EP - 108 PB - De Gruyter CY - Berlin ER - TY - JOUR A1 - Henkel, Carsten A1 - Sauer, Tim-O A1 - Proukakis, N. P. T1 - Cross-over to quasi-condensation: mean-field theories and beyond JF - Journal of physics : B, Atomic, molecular and optical physics N2 - We analyze the cross-over of a homogeneous, weakly interacting Bose gas in one dimension from the ideal gas into the dense quasi-condensate phase. We review a number of mean-field theories, perturbative or self-consistent, and provide accurate evaluations of equation of state, density fluctuations, and correlation functions. A smooth crossover is reproduced by classical-field simulations based on the stochastic Gross-Pitaevskii equation and the Yang-Yang solution to the one-dimensional Bose gas. KW - quantum gases KW - Bose-Einstein condensation KW - phase transition KW - critical fluctuations Y1 - 2017 U6 - https://doi.org/10.1088/1361-6455/aa6888 SN - 0953-4075 SN - 1361-6455 VL - 50 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Herrmann, Carl J. J. A1 - Metzler, Ralf T1 - A self-avoiding walk with neural delays as a model of fixational eye movements JF - Scientific reports N2 - Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-13489-8 SN - 2045-2322 VL - 7 SP - 1 EP - 17 PB - Springer Nature CY - London ER - TY - GEN A1 - Herrmann, Carl J. J. A1 - Metzler, Ralf T1 - A self-avoiding walk with neural delays as a model of fixational eye movements N2 - Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 392 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403742 ER - TY - JOUR A1 - Herrmann, Carl J. J. A1 - Metzler, Ralf A1 - Engbert, Ralf T1 - A self-avoiding walk with neural delays as a model of fixational eye movements JF - Scientific reports N2 - Fixational eye movements show scaling behaviour of the positional mean-squared displacement with a characteristic transition from persistence to antipersistence for increasing time-lag. These statistical patterns were found to be mainly shaped by microsaccades (fast, small-amplitude movements). However, our re-analysis of fixational eye-movement data provides evidence that the slow component (physiological drift) of the eyes exhibits scaling behaviour of the mean-squared displacement that varies across human participants. These results suggest that drift is a correlated movement that interacts with microsaccades. Moreover, on the long time scale, the mean-squared displacement of the drift shows oscillations, which is also present in the displacement auto-correlation function. This finding lends support to the presence of time-delayed feedback in the control of drift movements. Based on an earlier non-linear delayed feedback model of fixational eye movements, we propose and discuss different versions of a new model that combines a self-avoiding walk with time delay. As a result, we identify a model that reproduces oscillatory correlation functions, the transition from persistence to antipersistence, and microsaccades. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-13489-8 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Heydari, Esmaeil A1 - Pastoriza-Santos, Isabel A1 - Liz-Marzan, Luis M. A1 - Stumpe, Joachim T1 - Nanoplasmonically-engineered random lasing in organic semiconductor thin films JF - Nanoscale horizons N2 - We demonstrate plasmonically nano-engineered coherent random lasing and stimulated emission enhancement in a hybrid gainmedium of organic semiconductors doped with core-shell plasmonic nanoparticles. The gain medium is composed of a 300 +/- 2 nm thin waveguide of an organic semiconductor, doped with 53 nm gold nanoparticle cores, isolated within silica shells. Upon loading the nanoparticles, the threshold of amplified spontaneous emission is reduced from 1.75 mu J cm(-2) x 10(2) for an undoped gain medium, to 0.35 mu J cm(-2) x 10(2) for a highly concentrated gain medium, and lasing spikes narrower than 0.1 nm are obtained. Most importantly, selection of silica shells with thicknesses of 10, 17 and 21 nm enables engineering of the plasmon-exciton energy coupling and consequently tuning of the laser slope efficiency. With this approach, the slope efficiency is increased by two times by decreasing the silica shell from 21 nm down to 10 nm, due to the enhancement of the localized electric field. Y1 - 2017 U6 - https://doi.org/10.1039/c7nh00054e SN - 2055-6756 SN - 2055-6764 VL - 2 SP - 261 EP - 266 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Hintsche, Marius A1 - Waljor, Veronika A1 - Grossmann, Robert A1 - Kühn, Marco J. A1 - Thormann, Kai M. A1 - Peruani, Fernando A1 - Beta, Carsten T1 - A polar bundle of flagella can drive bacterial swimming by pushing, pulling, or coiling around the cell body JF - Scientific reports N2 - Bacteria swim in sequences of straight runs that are interrupted by turning events. They drive their swimming locomotion with the help of rotating helical flagella. Depending on the number of flagella and their arrangement across the cell body, different run-and-turn patterns can be observed. Here, we present fluorescence microscopy recordings showing that cells of the soil bacterium Pseudomonas putida that are decorated with a polar tuft of helical flagella, can alternate between two distinct swimming patterns. On the one hand, they can undergo a classical push-pull-push cycle that is well known from monopolarly flagellated bacteria but has not been reported for species with a polar bundle of multiple flagella. Alternatively, upon leaving the pulling mode, they can enter a third slow swimming phase, where they propel themselves with their helical bundle wrapped around the cell body. A theoretical estimate based on a random-walk model shows that the spreading of a population of swimmers is strongly enhanced when cycling through a sequence of pushing, pulling, and wrapped flagellar configurations as compared to the simple push-pull-push pattern. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-16428-9 SN - 2045-2322 VL - 7 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Hofacker, Andreas A1 - Neher, Dieter T1 - Dispersive and steady-state recombination in organic disordered semiconductors JF - Physical review : B, Condensed matter and materials physics N2 - Charge carrier recombination in organic disordered semiconductors is strongly influenced by the thermalization of charge carriers in the density of states (DOS). Measurements of recombination dynamics, conducted under transient or steady-state conditions, can easily be misinterpreted when a detailed understanding of the interplay of thermalization and recombination is missing. To enable adequate measurement analysis, we solve the multiple-trapping problem for recombining charge carriers and analyze it in the transient and steady excitation paradigm for different DOS distributions. We show that recombination rates measured after pulsed excitation are inherently time dependent since recombination gradually slows down as carriers relax in the DOS. When measuring the recombination order after pulsed excitation, this leads to an apparent high-order recombination at short times. As times goes on, the recombination order approaches an asymptotic value. For the Gaussian and the exponential DOS distributions, this asymptotic value equals the recombination order of the equilibrated system under steady excitation. For a more general DOS distribution, the recombination order can also depend on the carrier density, under both transient and steady-state conditions. We conclude that transient experiments can provide rich information about recombination in and out of equilibrium and the underlying DOS occupation provided that consistent modeling of the system is performed. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.245204 SN - 2469-9950 SN - 2469-9969 VL - 96 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Hofacker, Andreas A1 - Neher, Dieter T1 - Dispersive and steady-state recombination in organic disordered semiconductors JF - Physical review : B, Condensed matter and materials physics N2 - Charge carrier recombination in organic disordered semiconductors is strongly influenced by the thermalization of charge carriers in the density of states (DOS). Measurements of recombination dynamics, conducted under transient or steady-state conditions, can easily be misinterpreted when a detailed understanding of the interplay of thermalization and recombination is missing. To enable adequate measurement analysis, we solve the multiple-trapping problem for recombining charge carriers and analyze it in the transient and steady excitation paradigm for different DOS distributions. We show that recombination rates measured after pulsed excitation are inherently time dependent since recombination gradually slows down as carriers relax in the DOS. When measuring the recombination order after pulsed excitation, this leads to an apparent high-order recombination at short times. As times goes on, the recombination order approaches an asymptotic value. For the Gaussian and the exponential DOS distributions, this asymptotic value equals the recombination order of the equilibrated system under steady excitation. For a more general DOS distribution, the recombination order can also depend on the carrier density, under both transient and steady-state conditions. We conclude that transient experiments can provide rich information about recombination in and out of equilibrium and the underlying DOS occupation provided that consistent modeling of the system is performed. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.245204 SN - 2469-9950 SN - 2469-9969 VL - 96 SP - 5640 EP - 5649 PB - American Physical Society CY - College Park ER - TY - THES A1 - Håkansson, Nils T1 - A Dark Matter line search using 3D-modeling of Cherenkov showers below 10 TeV with VERITAS T1 - Die Suche nach Dunkler Materie mit VERITAS durch Liniensuche und 3D Modellierung von Cherenkov-Schauern unter 10 TeV N2 - Dark matter, DM, has not yet been directly observed, but it has a very solid theoretical basis. There are observations that provide indirect evidence, like galactic rotation curves that show that the galaxies are rotating too fast to keep their constituent parts, and galaxy clusters that bends the light coming from behind-lying galaxies more than expected with respect to the mass that can be calculated from what can be visibly seen. These observations, among many others, can be explained with theories that include DM. The missing piece is to detect something that can exclusively be explained by DM. Direct observation in a particle accelerator is one way and indirect detection using telescopes is another. This thesis is focused on the latter method. The Very Energetic Radiation Imaging Telescope Array System, V ERITAS, is a telescope array that detects Cherenkov radiation. Theory predicts that DM particles annihilate into, e.g., a γγ pair and create a distinctive energy spectrum when detected by such telescopes, e.i., a monoenergetic line at the same energy as the particle mass. This so called ”smoking-gun” signature is sought with a sliding window line search within the sub-range ∼ 0.3 − 10 TeV of the VERITAS energy range, ∼ 0.01 − 30 TeV. Standard analysis within the VERITAS collaboration uses Hillas analysis and look-up tables, acquired by analysing particle simulations, to calculate the energy of the particle causing the Cherenkov shower. In this thesis, an improved analysis method has been used. Modelling each shower as a 3Dgaussian should increase the energy recreation quality. Five dwarf spheroidal galaxies were chosen as targets with a total of ∼ 224 hours of data. The targets were analysed individually and stacked. Particle simulations were based on two simulation packages, CARE and GrISU. Improvements have been made to the energy resolution and bias correction, up to a few percent each, in comparison to standard analysis. Nevertheless, no line with a relevant significance has been detected. The most promising line is at an energy of ∼ 422 GeV with an upper limit cross section of 8.10 · 10^−24 cm^3 s^−1 and a significance of ∼ 2.73 σ, before trials correction and ∼ 1.56 σ after. Upper limit cross sections have also been calculated for the γγ annihilation process and four other outcomes. The limits are in line with current limits using other methods, from ∼ 8.56 · 10^−26 − 6.61 · 10^−23 cm^3s^−1. Future larger telescope arrays, like the upcoming Cherenkov Telescope Array, CTA, will provide better results with the help of this analysis method. N2 - Dunkle Materie, DM, wurde noch nicht direkt beobachtet, aber die Theorie ist sehr solide. Es gibt Beobachtungen, die als indirekte Beweise gelten, z.B. galaktische Rotationskurven, die besagen, dass Galaxien zu schnell rotieren um ohne eine zusätzliche Massenkomponente zusammenhalten zu können, oder elliptische Zwerggalaxien, die massereicher sind als die sichtbare Materie vermuten lässt. Diese Beobachtungen könnten z.B. mit dem Vorhandensein von DM erkärt werden, aber bis jetzt fehlt die Beobachtung eines Phänomens, das ausschließlich durch DM erklärt werden kann. Eine Möglichkeit wäre die Beobachtung einer speziellen Energiesignatur durch Teleskope, welche das Thema der vorliegenden Arbeit ist. Das Very Energetic Radiation Imaging Telescope Array System, VERITAS, ist ein Teleskoparray für Cherenkov-Strahlung. Entsprechend der Theorie sollten Teilchen dunkler Materie annihilieren und z.B. ein γγ Paar bilden. Dieses sollte im Teleskop eine spezielle Energiesignatur hinterlassen, nämlich eine monoenergetische Linie bei einer Energie, die der Teilchenmasse entspricht. Diese ”smoking-gun” Signatur wird mit einer sliding window Liniensuche bei Energien < 10TeV gesucht. In der VERITAS Kollaboration werden standardm¨aßig eine Hillas-Analyse und Nachschlagetabellen aus Teilchensimulationen verwendet, um die Energie des Teilchens zu berechnen, das den Cherenkov-Schauer verursacht hat. Hier wird eine verbesserte Analysemethode verwendet. Dabei wird jeder Schauer als 3D-Gaußkurve modelliert, was die Qualität der Energierekonstruktion erheblich verbessern sollte. Dafur wurden funf elliptische Zwerggalaxien beobachtet und einzeln sowie insgesamt analysiert, insgesamt ~ 224 h Beobachtungszeit. Dabei werden zwei verschiedene Teilchensimulationsprogramme verwendet, CARE und GrISU. In dieser Arbeit wurde die Energieauflösung und die Bias-Korrektur um einige Prozent gegen¨uber der Standardanalyse verbessert. Es wurde jedoch keine signifikante Linie detektiert. Die vielversprechendste Linie befindet sich bei einer Energie von ~ 422GeV und hat einen Querschnitt von 8.10·10^−24 cm^3 s^−1 und ein Signifikanzlevel von ~ 2.73 σ bzw. 1.56σ vor bzw. nach statistischer Korrektur. Außerdem wurden obere Grenzwerte fur verschiedene Annihilierungsprozesse berechnet. Sie stimmen mit anderen aktuellen Grenzwerten überein (~ 8.56 · 10^−26 − 6.61 · 10^−23 cm^3s^−1). Zukünftig werden mehr Beobachtungsdaten und neue Teleskoparrays, wie das Cherenkov Telescope Array, CTA, mit Hilfe dieser Analysemethode bessere Ergebnisse ermöglichen. KW - Dark Matter KW - line search KW - VERITAS KW - 3D-modeling KW - Cherenkov showers KW - Dunkler Materie KW - Line Suche KW - VERITAS KW - 3D Modellierung KW - Cherenkov-Schauern Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-397670 ER - TY - JOUR A1 - Ignace, R. A1 - Hole, K. T. A1 - Oskinova, Lida A1 - Rotter, J. P. T1 - An X-Ray Study of Two B plus B Binaries: AH Cep and CW Cep JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - AH Cep and CW Cep are both early B-type binaries with short orbital periods of 1.8. days and 2.7. days, respectively. All four components are B0.5V types. The binaries are also double-lined spectroscopic and eclipsing. Consequently, solutions for orbital and stellar parameters make the pair of binaries ideal targets for a study of the colliding winds between two B. stars. Chandra ACIS-I observations were obtained to determine X-ray luminosities. AH. Cep was detected with an unabsorbed X-ray luminosity at a 90% confidence interval of (9-33) x 10(30) erg s(-1), or (0.5-1.7) x 10(-7) L-Bol , relative to the combined Bolometric luminosities of the two components. While formally consistent with expectations for embedded wind shocks, or binary wind collision, the near-twin system of CW Cep was a surprising nondetection. For CW Cep, an upper limit was determined with L-X/L-Bol < 10(-8), again for the combined components. One difference between these two systems is that AH Cep is part of a multiple system. The X-rays from AH. Cep may not arise from standard wind shocks nor wind collision, but perhaps instead from magnetism in any one of the four components of the system. The possibility could be tested by searching for cyclic X-ray variability in AH. Cep on the short orbital period of the inner B. stars. KW - stars: early-type KW - stars: individual (AH Cep, CW Cep) KW - stars: massive KW - stars: winds KW - outflows X-rays: binaries Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa93ea SN - 0004-637X SN - 1538-4357 VL - 850 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Izotov, Y. I. A1 - Schaerer, Daniel A1 - Worseck, Gabor A1 - Guseva, N. G. A1 - Thuan, T. X. A1 - Verhamme, A. A1 - Orlitova, I. A1 - Fricke, K. J. T1 - J1154+2443: a low-redshift compact star-forming galaxy with a 46 per cent leakage of Lyman continuum photons JF - Monthly notices of the Royal Astronomical Society N2 - We report the detection of the Lyman continuum (LyC) radiation of the compact star-forming galaxy (SFG) J1154+2443 observed with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope. This galaxy, at a redshift of z = 0.3690, is characterized by a high emission-line flux ratio O-32 = [O III] lambda 5007/[O II] lambda 3727 = 11.5. The escape fraction of the LyC radiation f(esc)(LyC) in this galaxy is 46 per cent, the highest value found so far in low-redshift SFGs and one of the highest values found in galaxies at any redshift. The narrow double-peaked Ly alpha emission line is detected in the spectrum of J1154+2443 with a separation between the peaks V-sep of 199 km s(-1), one of the lowest known for Ly alpha-emitting galaxies, implying a high f(esc)(Ly alpha). Comparing the extinction-corrected Ly alpha/H beta flux ratio with the case B value, we find f(esc)(Ly alpha) = 98 per cent. Our observations, combined with previous detections in the literature, reveal an increase of O-32 with increasing f(esc)(LyC). We also find a tight anticorrelation between f(esc)(LyC) and V-sep. The surface brightness profile derived from the COS acquisition image reveals a bright star-forming region in the centre and an exponential disc in the outskirts with a disc scale length alpha = 1.09 kpc. J1154+2443, compared to other known low-redshift LyC leakers, is characterized by the lowest metallicity, 12+log O/H = 7.65 +/- 0.01, the lowest stellar mass M-star = 108.20 M-circle dot, a similar star formation rate SFR = 18.9 M-circle dot yr(-1), and a high specific SFR of 1.2 x 10(-7) yr(-1). KW - galaxies: abundances KW - galaxies: dwarf KW - galaxies: fundamental parameters KW - galaxies: ISM KW - galaxies: starburst KW - dark ages, reionization, first stars Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx3115 SN - 0035-8711 SN - 1365-2966 VL - 474 IS - 4 SP - 4514 EP - 4527 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Jaervinen, S. P. A1 - Hubrig, Swetlana A1 - Ilyin, Ilya A1 - Shenar, Tomer A1 - Schoeller, M. T1 - A search for spectral variability in the highly magnetized O9.7 V star HD 54879 JF - Astronomische Nachrichten = Astronomical notes N2 - The O9.7 V star HD 54879 possesses the second strongest magnetic field among the single, magnetic, O-type stars. In contrast to other magnetic O-type stars, the chemical abundance analysis of HD 54879 indicated a rather normal optical spectrum without obvious element enhancements or depletions. Furthermore, spectral variability was detected only in lines partly formed in the magnetosphere. As this star shows such a deviate, almost nonvariable, spectral behavior, we performed a deeper analysis of its spectral variability on different timescales using all currently available HARPSpol and FORS 2 spectropolarimetric observations. The longitudinal magnetic field strengths measured at different epochs indicate the presence of variability possibly related to stellar rotation, but the current data do not allow us yet to identify the periodicity of the field variation. As spectropolarimetric observations obtained at different epochs consist of subexposures with different integration times, we investigated spectral variability on timescales of minutes. The detected level of variability in line profiles of different elements is rather low, between 0.2 and 1.7%, depending on the integration time of the exposures and the considered element. KW - stars: magnetic fields KW - stars: oscillations KW - techniques: polarimetric KW - stars: individual (HD 54879) Y1 - 2017 U6 - https://doi.org/10.1002/asna.201713402 SN - 0004-6337 SN - 1521-3994 VL - 338 SP - 952 EP - 958 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Javanainen, Matti A1 - Martinez-Seara, Hector A1 - Metzler, Ralf A1 - Vattulainen, Ilpo T1 - Diffusion of Integral Membrane Proteins in Protein-Rich Membranes JF - The journal of physical chemistry letters N2 - The lateral diffusion of embedded proteins along lipid membranes in protein-poor conditions has been successfully described in terms of the Saffman-Delbruck (SD) model, which predicts that the protein diffusion coefficient D is weakly dependent on its radius R as D proportional to ln(1/R). However, instead of being protein-poor, native cell membranes are extremely crowded with proteins. On the basis of extensive molecular simulations, we here demonstrate that protein crowding of the membrane at physiological levels leads to deviations from the SD relation and to the emergence of a stronger Stokes-like dependence D proportional to 1/R. We propose that this 1/R law mainly arises due to geometrical factors: smaller proteins are able to avoid confinement effects much better than their larger counterparts. The results highlight that the lateral dynamics in the crowded setting found in native membranes is radically different from protein-poor conditions and plays a significant role in formation of functional multiprotein complexes. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpclett.7b01758 SN - 1948-7185 VL - 8 SP - 4308 EP - 4313 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Javanainen, Matti A1 - Martinez-Seara, Hector A1 - Metzler, Ralf A1 - Vattulainen, Ilpo Tapio T1 - Diffusion of Proteins and Lipids in Protein-Rich Membranesa T2 - Biophysical journal Y1 - 2018 U6 - https://doi.org/10.1016/j.bpj.2017.11.3009 SN - 0006-3495 SN - 1542-0086 VL - 114 IS - 3 SP - 551A EP - 551A PB - Cell Press CY - Cambridge ER - TY - JOUR A1 - Jošt, Marko A1 - Albrecht, Steve A1 - Kegelmann, Lukas A1 - Wolff, Christian Michael A1 - Lang, Felix A1 - Lipovšek, Benjamin A1 - Krč, Janez A1 - Korte, Lars A1 - Neher, Dieter A1 - Rech, Bernd A1 - Topič, Marko T1 - Efficient light management by textured nanoimprinted layers for perovskite solar cells JF - ACS photonics N2 - Inorganic-organic perovskites like methylammonium-lead-iodide have proven to be an effective class of 17 materials for fabricating efficient solar cells. To improve their performance, light management techniques using textured surfaces, similar to those used in established solar cell technologies, should be considered. Here, we apply a light management foil created by UV nanoimprint lithography on the glass side of an inverted (p-i-n) perovskite solar cell with 16.3% efficiency. The obtained 1 mA cm(-2) increase in the short-circuit current density translates to a relative improvement in cell performance of 5%, which results in a power conversion efficiency of 17.1%. Optical 3D simulations based on experimentally obtained parameters were used to support the experimental findings. A good match between the simulated and experimental data was obtained, validating the model. Optical simulations reveal that the main improvement in device performance is due to a reduction in total reflection and that relative improvement in the short-circuit current density of up to 10% is possible for large-area devices. Therefore, our results present the potential of light management foils for improving the device performance of perovskite solar cells and pave the way for further use of optical simulations in the field of perovskite solar cells. KW - perovskite solar cells KW - antireflection KW - light management KW - UV nanoimprint lithography KW - optical simulations Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.7b00138 SN - 2330-4022 VL - 4 SP - 1232 EP - 1239 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Juaristi, J. I. A1 - Alducin, Maite A1 - Saalfrank, Peter T1 - Femtosecond laser induced desorption of H-2, D-2, and HD from Ru(0001) BT - dynamical promotion and suppression studied with ab initio molecular dynamics with electronic friction JF - Physical review : B, Condensed matter and materials physics N2 - We perform ab initio molecular dynamics simulations to study the femtosecond laser induced desorption of H-2, D-2, and HD from a H: D-saturated Ru(0001) surface. To this aim we have extended the ab initio molecular dynamics with electronic friction (AIMDEF) scheme to include a random force that is a function of a timedependent electronic temperature. The latter characterizes the action of the ultrashort laser pulse according to a two temperature model. This allows us to perform multidimensional, hot-electron driven reaction dynamics and investigate the dependence of the desorption yields on the relative H: D isotope concentration on the surface. Our AIMDEF simulations show that the desorption process takes place in the presence of a heated adsorbate system that clearly influences the desorption dynamics. The heating of the adsorbate system is more (less) pronounced the larger is the concentration of the lighter (heavier) isotope. As a result, we conclude that the presence of H on the surface favors the desorption of molecules, whereas the presence of D hampers it, in agreement with previous experimental observations in which the phenomenon of "dynamical promotion" of a surface reaction had been postulated. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.95.125439 SN - 2469-9950 SN - 2469-9969 VL - 95 IS - 12 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Kamann, Sebastian A1 - Husser, T. -O. A1 - Dreizler, S. A1 - Emsellem, E. A1 - Weilbacher, Peter Michael A1 - Martens, S. A1 - Bacon, R. A1 - den Brok, M. A1 - Giesers, B. A1 - Krajnovic, Davor A1 - Roth, Martin M. A1 - Wendt, Martin A1 - Wisotzki, Lutz T1 - A stellar census in globular clusters with MUSE BT - the contribution of rotation to cluster dynamics studied with 200 000 stars JF - Monthly notices of the Royal Astronomical Society N2 - This is the first of a series of papers presenting the results from our survey of 25 Galactic globular clusters with the MUSE integral-field spectrograph. In combination with our dedicated algorithm for source deblending, MUSE provides unique multiplex capabilities in crowded stellar fields and allows us to acquire samples of up to 20 000 stars within the half-light radius of each cluster. The present paper focuses on the analysis of the internal dynamics of 22 out of the 25 clusters, using about 500 000 spectra of 200 000 individual stars. Thanks to the large stellar samples per cluster, we are able to perform a detailed analysis of the central rotation and dispersion fields using both radial profiles and two-dimensional maps. The velocity dispersion profiles we derive show a good general agreement with existing radial velocity studies but typically reach closer to the cluster centres. By comparison with proper motion data, we derive or update the dynamical distance estimates to 14 clusters. Compared to previous dynamical distance estimates for 47 Tuc, our value is in much better agreement with other methods. We further find significant (>3 sigma) rotation in the majority (13/22) of our clusters. Our analysis seems to confirm earlier findings of a link between rotation and the ellipticities of globular clusters. In addition, we find a correlation between the strengths of internal rotation and the relaxation times of the clusters, suggesting that the central rotation fields are relics of the cluster formation that are gradually dissipated via two-body relaxation. KW - techniques: imaging spectroscopy KW - stars: kinematics and dynamics KW - globular clusters: general Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx2719 SN - 0035-8711 SN - 1365-2966 VL - 473 IS - 4 SP - 5591 EP - 5616 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Kar, Prathitha A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Acceleration of bursty multiprotein target search kinetics on DNA by colocalisation JF - Physical chemistry, chemical physics : a journal of European Chemical Societies N2 - Proteins are capable of locating specific targets on DNA by employing a facilitated diffusion process with intermittent 1D and 3D search steps. Gene colocalisation and coregulation-i.e. the spatial proximity of two communicating genes-is one factor capable of accelerating the target search process along the DNA. We perform Monte Carlo computer simulations and demonstrate the benefits of gene colocalisation for minimising the search time in a model DNA-protein system. We use a simple diffusion model to mimic the search for targets by proteins, produced initially in bursts of multiple proteins and performing the first-passage search on the DNA chain. The behaviour of the mean first-passage times to the target is studied as a function of distance between the initial position of proteins and the DNA target position, as well as versus the concentration of proteins. We also examine the properties of bursty target search kinetics for varying physical-chemical protein-DNA binding affinity. Our findings underline the relevance of colocalisation of production and binding sites for protein search inside biological cells. Y1 - 2017 U6 - https://doi.org/10.1039/c7cp06922g SN - 1463-9076 SN - 1463-9084 VL - 20 IS - 12 SP - 7931 EP - 7946 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Kayser, Markus A1 - Maturilli, Marion A1 - Graham, Robert M. A1 - Hudson, Stephen R. A1 - Rinke, Annette A1 - Cohen, Lana A1 - Kim, Joo-Hong A1 - Park, Sang-Jong A1 - Moon, Woosok A1 - Granskog, Mats A. T1 - Vertical thermodynamic structure of the troposphere during the Norwegian young sea ICE expedition (N-ICE2015) JF - Journal of geophysical research-atmosheres N2 - The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and boundary layer characteristics. We provide statistics of temperature inversion characteristics, static stability, and boundary layer extent. During winter, when radiative cooling is most effective, we find the strongest impact of synoptic cyclones. Changes to thermodynamic characteristics of the boundary layer are associated with transitions between the radiatively "clear" and "opaque" atmospheric states. In spring, radiative fluxes warm the surface leading to lifted temperature inversions and a statically unstable boundary layer. Further, we compare the N-ICE2015 static stability distributions to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. For Ny-Alesund, we observe similar characteristics above 1000 m, while the topography and ice-free fjord surrounding Ny-Alesund generate great differences below. The long-term radiosonde record (1993-2014) from Ny-Alesund indicates that during the N-ICE2015 spring period, temperatures were close to the climatological mean, while the lowest 3000 m were 1-3 degrees C warmer than the climatology during winter. Plain Language Summary The Norwegian young sea ICE (N-ICE2015) expedition was designed to investigate the atmosphere-snow-ice-ocean interactions in the young and thin sea ice regime north of Svalbard. Radiosondes were launched twice daily during the expedition from January to June 2015. Here we use these upper air measurements to study the multiple cyclonic events observed during N-ICE2015 with respect to changes in the vertical thermodynamic structure, moisture content, and the atmospheric boundary layer characteristics. During winter, we find the strongest impact of synoptic cyclones, which transport warm and moist air into the cold and dry Arctic atmosphere. In spring, incoming solar radiation warms the surface. This leads to very different thermodynamic conditions and higher moisture content, which reduces the contrast between stormy and calm periods. Further, we compare the N-ICE2015 measurements to corresponding profiles from ERA-Interim reanalysis, from the closest land station in the Arctic North Atlantic sector, Ny-Alesund, and to soundings from the SHEBA expedition (1997/1998). We find similar stability characteristics for N-ICE2015 and SHEBA throughout the troposphere, despite differences in location, sea ice thickness, and snow cover. The comparisons highlight the value of the N-ICE2015 observation and show the importance of winter time observations in the Arctic North Atlantic sector. Y1 - 2017 U6 - https://doi.org/10.1002/2016JD026089 SN - 2169-897X SN - 2169-8996 VL - 122 IS - 20 SP - 10855 EP - 10872 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kegeles, Alexander A1 - Oriti, Daniele T1 - Continuous point symmetries in group field theories JF - Journal of physics : A, Mathematical and theoretical N2 - We discuss the notion of symmetries in non-local field theories characterized by integro-differential equations of motion, from a geometric perspective. We then focus on group field theory (GFT) models of quantum gravity and provide a general analysis of their continuous point symmetry transformations, including the generalized conservation laws following from them. KW - group field theory KW - quantum field theory KW - conservation laws KW - continuous symmetries Y1 - 2017 U6 - https://doi.org/10.1088/1751-8121/aa5c14 SN - 1751-8113 SN - 1751-8121 VL - 50 IS - 12 PB - IOP Publishing Ltd CY - Bristol ER - TY - JOUR A1 - Kegelmann, Lukas A1 - Wolff, Christian Michael A1 - Awino, Celline A1 - Lang, Felix A1 - Unger, Eva L. A1 - Korte, Lars A1 - Dittrich, Thomas A1 - Neher, Dieter A1 - Rech, Bernd A1 - Albrecht, Steve T1 - It Takes Two to Tango-Double-Layer Selective Contacts in Perovskite Solar Cells for Improved Device Performance and Reduced Hysteresis JF - ACS applied materials & interfaces N2 - Solar cells made from inorganic organic perovskites have gradually approached market requirements as their efficiency and stability have improved tremendously in recent years. Planar low-temperature processed perovskite solar cells are advantageous for possible large-scale production but are more prone to exhibiting photocurrent hysteresis, especially in the regular n-i-p structure. Here, a systematic characterization of different electron selective contacts with a variety of chemical and electrical properties in planar n-i-p devices processed below 180 degrees C is presented. The inorganic metal oxides TiO2 and SnO2, the organic fullerene derivatives C-60, PCBM, and ICMA, as well as double-layers with a metal oxide/PCBM structure are used as electron transport materials (ETMs). Perovskite layers deposited atop, the different ETMs with the herein applied fabrication method show a similar morphology according to scanning electron microscopy. Further, surface photovoltage spectroscopy measurements indicate comparable perovskite absorber qualities on all ETMs, except TiO2, which shows a more prominent influence of defect states. Transient photoluminescence studies together with current voltage scans over a broad range of scan speeds reveal faster charge extraction, less pronounced hysteresis effects, and higher efficiencies for devices with fullerene compared to those with metal oxide ETMs. Beyond this, only double-layer ETM structures substantially diminish hysteresis effects for all performed scan speeds and strongly enhance the power conversion efficiency up to a champion stabilized value of 18.0%. The results indicate reduced recombination losses for a double-layer TiO2/PCBM contact design: First, a reduction of shunt paths through the fullerene to the ITO layer. Second, an improved hole blocking by the wide band gap metal oxide. Third, decreased transport losses due to an energetically more favorable contact, as implied by photoelectron spectroscopy measurements. The herein demonstrated improvements of multilayer selective contacts may serve as a general design guideline for perovskite solar cells. KW - perovskite solar cell KW - electron contact KW - double-layer KW - regular planar architecture KW - hysteresis KW - fullerene KW - metal oxide Y1 - 2017 U6 - https://doi.org/10.1021/acsami.7b00900 SN - 1944-8244 VL - 9 SP - 17246 EP - 17256 PB - American Chemical Society CY - Washington ER - TY - THES A1 - Kiani Alibagheri, Bahareh T1 - On structural properties of magnetosome chains T1 - Auf strukturellen Eigenschaften von Magnetosomenketten N2 - Magnetotaktische Bakterien besitzen eine intrazelluläre Struktur, die Magnetosomenkette genannt wird. Magnetosomenketten enthalten Nanopartikel von Eisenkristallen, die von einer Membran umschlossen und entlang eines Zytoskelettfilaments ausgerichtet sind. Dank der Magnetosomenkette ist es magnetotaktischen Bakterien möglich sich in Magnetfeldern auszurichten und entlang magnetischer Feldlinien zu schwimmen. Die ausführliche Untersuchung der strukturellen Eigenschaften der Magnetosomenkette in magnetotaktischen Bakterien sind von grundlegendem wissenschaftlichen Interesse, weil sie Einblicke in die Anordnung des Zytoskeletts von Bakterien erlauben. In dieser Studie haben wir ein neues theoretisches Modell entwickelt, dass sich dazu eignet, die strukturellen Eigenschaften der Magnetosomenketten in magnetotaktischen Bakterien zu erforschen. Zuerst wenden wir uns der Biegesteifigkeit von Magnetosomenketten zu, die von zwei Faktoren beeinflusst wird: Die magnetische Wechselwirkung der Magnetosomenpartikel und der Biegesteifigkeit des Zytoskelettfilaments auf welchem die Magnetosome verankert sind. Unsere Analyse zeigt, dass sich die lineare Konfiguration von Magnetosomenpartikeln ohne die Stabilisierung durch das Zytoskelett zu einer ringörmigen Struktur biegen würde, die kein magnetisches Moment aufweist und daher nicht die Funktion eines Kompass in der zellulären Navigation einnehmen könnte. Wir schlussfolgern, dass das Zytoskelettfilament eine stabilisierende Wirkung auf die lineare Konfiguration hat und eine ringförmige Anordnung verhindert. Wir untersuchen weiter die Gleichgewichtskonfiguration der Magnetosomenpartikel in einer linearen Kette und in einer geschlossenen ringförmigen Struktur. Dabei beobachteten wir ebenfalls, dass für eine stabile lineare Anordnung eine Bindung an ein Zytoskelettfilament notwendig ist. In einem externen magnetischen Feld wird die Stabilität der Magnetosomenketten durch die Dipol-Dipol-Wechselwirkung, über die Steifheit und die Bindungsenergie der Proteinstruktur, die die Partikel des Magnetosomen mit dem Filament verbinden, erreicht. Durch Beobachtungen während und nach der Behandlung einer Magnetosomenkette mit einem externen magnetischen Feld, lässt sich begründen, dass die Stabilisierung von Magnetosomenketten durch Zytoskelettfilamente über proteinhaltige Bindeglieder und die dynamischen Eigenschaften dieser Strukturen realisiert wird. Abschließend wenden wir unser Modell bei der Untersuchung von ferromagnetischen Resonanz-Spektren von Magnetosomenketten in einzelnen Zellen von magnetotaktischen Bakterien an. Wir erforschen den Effekt der magnetokristallinen Anistropie in ihrer dreifach-Symmetrie, die in ferromagnetischen Ressonanz Spektren beobachtet wurden und die Besonderheit von verschiedenen Spektren, die bei Mutanten dieser Bakterien auftreten. N2 - Magnetotactic bacteria possess an intracellular structure called the magnetosome chain. Magnetosome chains contain nano−particles of iron crystals enclosed by a membrane and aligned on a cytoskeletal filament. Due to the presence of the magnetosome chains, magnetotactic bacteria are able to orient and swim along the magnetic field lines. A detailed study of structural properties of magnetosome chains in magnetotactic bacteria has primary scientific interests. It can provide more insight into the formation of the cytoskeleton in bacteria. In this thesis, we develop a new framework to study the structural properties of magnetosome chains in magnetotactic bacteria. First, we address the bending stiffness of magnetosome chains resulting from two main contributions: the magnetic interactions of magnetosome particles and the bending stiffness of the cytoskeletal filament to which the magnetosomes are anchored. Our analysis indicates that the linear configuration of magnetosome particles without the stabilisation to the cytoskeleton may close to ring like structures, with no net magnetic moment, which thus can not perform as a compass in cellular navigation. As a result we think that one of the roles of the filament is to stabilize the linear configuration against ring closure. We then investigate the equilibrium configurations of magnetosome particles including linear chain and closed−ring structures. We notably observe that for the formation of a stable linear structure on the cytoskeletal filament, presence of a binding energy is needed. In the presence of external stimuli the stability of the magnetosome chain is due to the internal dipole−dipole interactions, the stiffness and the binding energy of the protein structure connecting the magnetosome particles to the filament. Our observations, during and after the treatment of the magnetosome chain with the external magnetic field substantiates the stabilisation of magnetosome chains to the cytoskeletal filament by proteinous linkers and the dynamic feature of these structures. Finally, we employ our model to study the FMR spectra of magnetosome chains in a single cell of magnetotactic bacteria. We explore the effect of magnetocrystalline anisotropy in three-fold symmetry observed in FMR spectra and the peculiarity of different spectra arisen from different mutants of these bacteria. KW - magnetotactic bacteria KW - magnetosome chains KW - structural properties KW - magnetotaktische Bakterien KW - Magnetosomen-Ketten KW - strukturelle Eigenschaften Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-398849 ER - TY - JOUR A1 - Kiethe, Jan A1 - Heuer, Axel A1 - Jechow, Andreas T1 - Second-order coherence properties of amplified spontaneous emission from a high-power tapered superluminescent diode JF - Laser physics letters N2 - We study the degree of second-order coherence of the emission of a high-power multi-quantum well superluminescent diode with a lateral tapered amplifier section with and without optical feedback. When operated in an external cavity, the degree of second-order coherence changed from the almost thermal case of g((2))(0)approximate to 1.9 towards the mostly coherent case of g((2)) (0) approximate to 1.2 when the injection current at the tapered section was increased. We found good agreement with semi-classical laser theory near and below threshold while above laser threshold a slightly higher g((2))(0) was observed. As a free running device, the superluminescent diode yielded more than 400 mW of optical output power with good spatial beam quality of M-slow(2) < 1.6. In this case, the degree of second-order coherence dropped only slightly from 1.9 at low powers to 1.6 at the maximum output power. To our knowledge, this is the first investigation of a high-power tapered superluminescent diode concerning the degree of second-order coherence. Such a device might be useful for real-world applications probing the second order coherence function, such as ghost imaging. KW - photon statistics KW - incoherent light KW - superluminescent diodes Y1 - 2017 U6 - https://doi.org/10.1088/1612-202X/aa772c SN - 1612-2011 SN - 1612-202X VL - 14 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Kim, Kyung-Chan A1 - Shprits, Yuri Y. T1 - Dependence of the amplitude of magnetosonic waves on the solar wind and AE index using Van Allen Probes JF - Journal of geophysical research : Space physics N2 - We present the dependence of the magnetosonic wave amplitudes both outside and inside the plasmapause on the solar wind and AE index using Van Allen Probe-A spacecraft during the time period of 1 October 2012 to 31 December 2015, based on a correlation and regression analysis. Solar wind parameters considered are the southward interplanetary magnetic field (IMF B-S), solar wind number density (N-SW), and bulk speed (V-SW). We find that the wave amplitudes outside (inside) the plasmapause are well correlated with the preceding AE, IMF B-S, and N-SW with time delays, each corresponding to 2-3 h (3-4 h), 4-5 h (3-4 h), and 2-3 h (8-9 h), while the correlation with V-SW is ambiguous both inside and outside the plasmapause. As measured by the correlation coefficient, the IMF B-S is the most influential solar wind parameter that affects the dayside wave amplitudes both outside and inside the plasmapause, while N-SW contributes to enhancing the duskside waves outside the plasmapause. The AE effect on wave amplitudes is comparable to that of IMF B-S. More interestingly, regression with time histories of the solar wind parameters and the AE index preceding the wave measurements outside the plasmapause shows significant dependence on the IMF B-S, N-SW, and AE: the region of peak coefficients is changed with time delay for IMF B-S and AE, while isolated peaks around duskside remain gradually decrease with time for N-SW. In addition, the regression with magnetosonic waves inside the plasmapause shows high coefficients around prenoon sector with preceding IMF B-S and V-SW. KW - magnetosonic equatorial noise KW - solar wind dependence KW - Van Allen Probes Y1 - 2017 U6 - https://doi.org/10.1002/2017JA024094 SN - 2169-9380 SN - 2169-9402 VL - 122 SP - 6022 EP - 6034 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Kobzar, Oleh A1 - Niemiec, Jacek A1 - Pohl, Martin A1 - Bohdan, Artem T1 - Spatio-temporal evolution of the non-resonant instability in shock precursors of young supernova remnants JF - Monthly notices of the Royal Astronomical Society N2 - A non-resonant cosmic ray (CR) current-driven instability may operate in the shock precursors of young supernova remnants and be responsible for magnetic-field amplification, plasma heating and turbulence. Earlier simulations demonstrated magnetic-field amplification, and in kinetic studies a reduction of the relative drift between CRs and thermal plasma was observed as backreaction. However, all published simulations used periodic boundary conditions, which do not account for mass conservation in decelerating flows and only allow the temporal development to be studied. Here we report results of fully kinetic particle-in-cell simulations with open boundaries that permit inflow of plasma on one side of the simulation box and outflow at the other end, hence allowing an investigation of both the temporal and the spatial development of the instability. Magnetic-field amplification proceeds as in studies with periodic boundaries and, observed here for the first time, the reduction of relative drifts causes the formation of a shock-like compression structure at which a fraction of the plasma ions are reflected. Turbulent electric field generated by the non-resonant instability inelastically scatters CRs, modifying and anisotropizing their energy distribution. Spatial CR scattering is compatible with Bohm diffusion. Electromagnetic turbulence leads to significant non-adiabatic heating of the background plasma maintaining bulk equipartition between ions and electrons. The highest temperatures are reached at sites of large-amplitude electrostatic fields. Ion spectra show supra-thermal tails resulting from stochastic scattering in the turbulent electric field. Together, these modifications in the plasma flow will affect the properties of the shock and particle acceleration there. KW - acceleration of particles KW - shock waves KW - turbulence KW - methods: numerical KW - cosmic rays KW - ISM: supernova remnants Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx1201 SN - 0035-8711 SN - 1365-2966 VL - 469 SP - 4985 EP - 4998 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Koc, A. A1 - Reinhardt, M. A1 - Reppert, Alexander von A1 - Rössle, Matthias A1 - Leitenberger, Wolfram A1 - Gleich, M. A1 - Weinelt, M. A1 - Zamponi, Flavio A1 - Bargheer, Matias T1 - Grueneisen-approach for the experimental determination of transient spin and phonon energies from ultrafast x-ray diffraction data: gadolinium JF - Journal of physics : Condensed matter N2 - We study gadolinium thin films as a model system for ferromagnets with negative thermal expansion. Ultrashort laser pulses heat up the electronic subsystem and we follow the transient strain via ultrafast x-ray diffraction. In terms of a simple Grueneisen approach, the strain is decomposed into two contributions proportional to the thermal energy of spin and phonon subsystems. Our analysis reveals that upon femtosecond laser excitation, phonons and spins can be driven out of thermal equilibrium for several nanoseconds. KW - ultrafast KW - x-ray diffraction KW - magnetostriction KW - nonequilibrium KW - spin KW - phonon KW - rare earth Y1 - 2017 U6 - https://doi.org/10.1088/1361-648X/aa7187 SN - 0953-8984 SN - 1361-648X VL - 29 SP - 5884 EP - 5891 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Koc, Azize A1 - Reinhardt, M. A1 - Reppert, Alexander von A1 - Roessle, Matthias A1 - Leitenberger, Wolfram A1 - Dumesnil, K. A1 - Gaal, Peter A1 - Zamponi, Flavio A1 - Bargheer, Matias T1 - Ultrafast x-ray diffraction thermometry measures the influence of spin excitations on the heat transport through nanolayers JF - Physical review : B, Condensed matter and materials physics N2 - We investigate the heat transport through a rare earth multilayer system composed of yttrium (Y), dysprosium (Dy), and niobium (Nb) by ultrafast x-ray diffraction. This is an example of a complex heat flow problem on the nanoscale, where several different quasiparticles carry the heat and conserve a nonequilibrium for more than 10 ns. The Bragg peak positions of each layer represent layer-specific thermometers that measure the energy flow through the sample after excitation of the Y top layer with fs-laser pulses. In an experiment-based analytic solution to the nonequilibrium heat transport problem, we derive the individual contributions of the spins and the coupled electron-lattice system to the heat conduction. The full characterization of the spatiotemporal energy flow at different starting temperatures reveals that the spin excitations of antiferromagnetic Dy speed up the heat transport into the Dy layer at low temperatures, whereas the heat transport through this layer and further into the Y and Nb layers underneath is slowed down. The experimental findings are compared to the solution of the heat equation using macroscopic temperature-dependent material parameters without separation of spin and phonon contributions to the heat. We explain why the simulated energy density matches our experiment-based derivation of the heat transport, although the simulated thermoelastic strain in this simulation is not even in qualitative agreement. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.014306 SN - 2469-9950 SN - 2469-9969 VL - 96 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Koch, Markus A1 - Saphiannikova, Marina A1 - Santer, Svetlana A1 - Guskova, Olga T1 - Photoisomers of Azobenzene Star with a Flat Core: Theoretical Insights into Multiple States from DFT and MD Perspective JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - This study focuses on comparing physical properties of photoisomers of an azobenzene star with benzene-1,3,5-tricarboxamide core. Three azobenzene arms of the molecule undergo a reversible trans-cis isomerization upon UV-vis light illumination giving rise to multiple states from the planar all-trans one, via two mixed states to the kinked all-cis isomer. Employing density functional theory, we characterize the structural and photophysical properties of each state indicating a role the planar core plays in the coupling between azobenzene chromophores. To characterize the light-triggered switching of solvophilicity/solvophobicity of the star, the difference in solvation free energy is calculated for the transfer of an azobenzene star from its gas phase to implicit or explicit solvents. For the latter case, classical all-atom molecular dynamics simulations of aqueous solutions of azobenzene star are performed employing the polymer consistent force field to shed light on the thermodynamics of explicit hydration as a function of the isomerization state and on the structuring of water around the star. From the analysis of two contributions to the free energy of hydration, the nonpolar van der Waals and the electrostatic terms, it is concluded that isomerization specificity largely determines the polarity of the molecule and the solute-solvent electrostatic interactions. This convertible hydrophilicity/hydrophobicity together with readjustable occupied volume and the surface area accessible to water, affects the self-assembly/disassembly of the azobenzene star with a flat core triggered by light. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.7b07350 SN - 1520-6106 VL - 121 SP - 8854 EP - 8867 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Koopman, Wouter-Willem Adriaan A1 - Natali, Marco A1 - Donati, Giovanni P. A1 - Muccini, Michele A1 - Toffanin, Stefano T1 - Charge-exciton interaction rate in organic field-effect transistors by means of transient photoluminescence electromodulated spectroscopy JF - ACS photonics N2 - Organic light-emitting transistors (OLETs) offer a huge potential for the design of highly integrated multifunctional optoelectronic systems and of intense nano scale light sources, such as the long-searched-for electrically pumped organic laser. In order to fulfill these promises, the efficiency and brightness of the current state-of-the-art devices have to be increased significantly. The dominating quenching process limiting the external quantum efficiency in OLETs is charge-exciton interaction. A comprehensive understanding of this quenching process is therefore of paramount importance. The present article reports a systematic investigation of charge-exciton interaction in organic transistors employing time resolved photoluminescence electro-modulation (PLEM) spectroscopy on the picosecond time scale. The results show that the injected charges reduce the exciton radiative recombination in two ways: (i) charges may prevent the generation of excitons and (ii) charges activate a further nonradiative channel for the exciton decay. Moreover, the transient PLEM measurements clearly reveal that not only trapped charges, as already reported in literature, but rather the entire injected charge density contributes to the quenching of the exciton population. KW - photoluminescence quenching KW - charge density KW - exciton dynamics KW - organic KW - field-effect transistor KW - light emission KW - optical spectroscopy Y1 - 2017 U6 - https://doi.org/10.1021/acsphotonics.6b00573 SN - 2330-4022 VL - 4 IS - 2 SP - 282 EP - 291 PB - American Chemical Society CY - Washington, DC ER - TY - THES A1 - Kornhuber, Kai T1 - Rossby wave dynamics and changes in summertime weather extremes T1 - Rossby Wellendynamik und Veränderungen von Extremwetter im Sommer N2 - Extreme weather events like heatwaves and floods severely affect societies with impacts ranging from economic damages to losses in human lifes. Global warming caused by anthropogenic greenhouse gas emissions is expected to increase their frequency and intensity, particularly in the warm season. Next to these thermodynamic changes, climate change might also impact the large scale atmospheric circulation.Such dynamic changes might additionally act on the occurence of extreme weather events, but involved mechanisms are often highly non-linear. Therefore, large uncertainty exists on the exact nature of these changes and the related risks to society. Particularly in the densely populated mid-latitudes weather patterns are governed by the large scale circulation like the jet-streams and storm tracks. Extreme weather in this region is often related to persistent weather systems associated with a strongly meandering jet-stream. Such meanders are called Rossby waves. Under specific conditions they can become slow moving, stretched around the entire hemisphere and generate simultaneaous heat- and rainfall extremes in far-away regions. This thesis aims at enhancing the understanding of synoptic-scale, circumglobal Rossby waves and the associated risks of dynamical changes to society. More specific, the analyses investigate their relation to extreme weather, regions at risk, under which conditions they are generated, and the influence of anthropogenic climate change on those conditions now, in the past and in the future. I find that circumglobal Rossby waves promoted simultaneous occuring weather extremes across the northern hemisphere in several recent summers. Further, I present evidence that they are often linked to quasiresonant-amplification of planetary waves. These events include the 2003 European heatwave and the Moscow heatwave of 2010. This non-linear mechanism acts on the upper level flow through trapping and amplification of stationary synoptic scale waves. I show that this resonance mechanism acts in both hemispheres and is related to extreme weather. A main finding is that circumglobal Rossby waves primarily occur as two specific teleconnection patterns associated with a wave 5 and wave 7 pattern in the northern hemisphere, likely due to the favourable longitudinal distance of prominent mountain ridges here. Furthermore, I identify those regions which are particularly at risk: The central United States, western Europe and the Ukraine/Russian region. Moreover, I present evidence that the wave 7 pattern has and extreme weather in these regions. My results suggest that the increase in frequency can be linked to favourable changes in large scale temperature gradients, which I show to be largely underestimated by model simulations. Using surface temperature fingerprint as proxy for investigating historic and future model ensembles, evidence is presented that anthropogenic warming has likely increased the probability for the occurence of circumglobal Rossby waves. Further it is shown that this might lead to a doubling of such events until the end of the century under a high-emission scenario. Overall, this thesis establishes several atmosphere-dynamical pathways by which changes in large scale temperature gradients might link to persistent boreal summer weather. It highlights the societal risks associated with the increasing occurence of a newly discovered Rossby wave teleconnection pattern, which has the potential to cause simultaneaous heat-extremes in the mid-latitudinal bread-basket regions. In addition, it provides further evidence that the traditional picture by which quasi-stationary Rossby waves occur only in the low wavenumber regime, should be reconsidered. N2 - Extreme Wetterereignisse haben oft katastrophale Folgen für Menschen und Umwelt. Die zuletzt beobachtete Zunahme von Hitzewellen und Überschwemmungen im Sommer lässt sich zum Teil mit dem Klimawandel, verursacht durch den Ausstoß von Treibhausgasen aus fossilen Brennstoffen, erkären. Allerdings übetrafen einige Extremereignisse der jüngeren Vergangenheit in ihrer Intensität, das was allein durch die Erwärmung im globalen Mittel zu erwarten wäre. Der Klimawandel wirkt sich ebenfalls auf die atmosphärische Zirkulation, wie beispielsweise den Jetstream aus. Es wird hier vermutet, dass Änderungen in der Dynamik Extrem-Ereignisse verstärken, indem sie beispielsweise langanhaltender werden. Allerdings sind die entsprechenden Mechanismen komplex und stark nicht-linear, was die Unsicherheiten in Bezug auf zuünftige Risiken vergrößert. Ein Mechanismus der mit extremen Wetter in den mittleren Breiten in Verbindung gebracht wurde, ist ein stark mäandernder Jet-Stream. Dieser führt zu ungewöhnlichen Temperaturen in den mittleren Breiten weile dies Mänder, genannt Rossby-Wellen, den Transport von ungewöhnlich warmer beziehungsweise kalter Luft entlang der Breiten erlauben. Unter bestimmten Bedingungen erstrecken sich diese Rossby Wellen über die gesamte Hemisphäre und führen zum synchronen auftreten von Wetterextremen entlang den mittleren Breiten. Extreme treten insbesondere dann auf wenn sie lang über bestimmten Regionen verharren. Diese Dissertation erforscht den Zusammenhang dieser quasi-stationären Rossby-Wellen und Wetter-Extremen: In welchem Maße können diese durch Rossby-Wellen erklärt werden, welche Regionen sind besonders betroffen und welchen Bedingungen sind für ihr Entstehen förderlich und wie wirkt sich der Klimawandel auf diese Bedingungen aus? Ich zeige, dass einige der verheerendsten Wetterextreme der jüngeren Vergangenheit durch hemisphärische Rossby-Wellenmuster erzeugt wurden und dass diese zumeist synchron mit anderen ungewöhnlichen Wettersituationen in den mittleren Breiten auftraten. Desweiteren zeige ich, dass einige dieser Ereignisse mit dem resonanten Aufschaukeln einiger Wellenkomponenten erklärt werden könnnen (engl. Quasi-resonant Amplification of Planetary Waves, kurz: QRA). Diesem nicht-linearen Mechanismus zufolge verhindert ein starker Jet, dass bestimmte Wellen ihre Energie in Richung Äquator oder Pol verlieren und so förmlich in den mittleren Breiten gefangen werden. Diese Wellen können dann resonant mit dem stationären thermischen und orographischen Störungen interagieren und gewinnen so an Intensität. Ich zeige, dass dieser Mechanismus sowohl in der Nord- als auch in der Südhemisphäre wirkt. Desweiteren zeige ich, dass die Rossby-Wellen in der Nordhemisphäre als zwei wiederkehrende örtlich festgelegte Wellenmuster, charakterisiert durch Welle 5 und Welle 7, auftreten. Dies erkläre ich mit dem relativen Abstand markanter Gebirgskämme entlang der Längengrade in den mittleren Breiten. Dieses Ergebnis ermöglicht es jene Regionen zu identifizieren, welche während solcher Ereignisse besonders gefährdet sind: das Zentrum der USA, Westeuropa und die Region Ukraine / Russland. Ich zeige, dass das Welle-7-Muster in den letzten Jahrzehnten in seiner Häufigkeit zugenommen hat, was die beobachtete Zunahme von extremen Wetter in diesen Regionen erklären könnte. Diese Zunahme führe ich auf die Veränderungen der groß-skaligen Temperaturgradienten entlang der Längen und Breitengrade zurück. Ich zeige zudem, dass diese Veränderungen durch Modelle weitestgehend unterschätzt werden. Über ein charakteristisches Temperaturprofil als Proxy untersuchen wir Modeldaten von historische und Projektionen. Diese Analyse zeigt, dass die anthropogene Erwärmung mit einiger Wahrscheinlichkeit die Bedingungen für die erzeugung solcher Rossby-Wellen verändert hat. Desweiteren kommt es unter der Annahme ungestoppter Emissionen vermutlich zu einer Verdopplung dieser Ereignisse führen zum Ende des Jahrhunderts. In dieser Dissertation zeige ich auf wie die Veränderung großskaliger Oberflächen-Temperatur-Gradienten mit dem vermehrten Aufkommen langanhaltender und oft extremen Wetterereignisse zusammenhängt. Ich indentifiziere die Regionen, die durch das Welle 7 Muster besonders gefärdet sind. Desweiteren, geben meine Ergebnisse weitere Hinweise darauf, dass die traditionell Sicht, aus der quasi-stationäre-Rossby-Wellen nur in Form von niedrigen Wellenzahlen vorkommen, überdacht werden muss. KW - Telekonnektionen KW - Atmosphärendynamik KW - Jetstream KW - Klimawandel KW - Hitzewellen KW - teleconnections KW - atmosphere dynamics KW - jet stream KW - climate change KW - heatwaves Y1 - 2017 ER - TY - THES A1 - Kretschmer, Marlene T1 - Disentangling causal pathways of the stratospheric polar vortex BT - a machine learning approach Y1 - 2017 ER - TY - JOUR A1 - Kretschmer, Marlene A1 - Runge, Jakob A1 - Coumou, Dim T1 - Early prediction of extreme stratospheric polar vortex states based on causal precursors JF - Geophysical research letters N2 - Variability in the stratospheric polar vortex (SPV) can influence the tropospheric circulation and thereby winter weather. Early predictions of extreme SPV states are thus important to improve forecasts of winter weather including cold spells. However, dynamical models are usually restricted in lead time because they poorly capture low-frequency processes. Empirical models often suffer from overfitting problems as the relevant physical processes and time lags are often not well understood. Here we introduce a novel empirical prediction method by uniting a response-guided community detection scheme with a causal discovery algorithm. This way, we objectively identify causal precursors of the SPV at subseasonal lead times and find them to be in good agreement with known physical drivers. A linear regression prediction model based on the causal precursors can explain most SPV variability (r(2)=0.58), and our scheme correctly predicts 58% (46%) of extremely weak SPV states for lead times of 1-15 (16-30)days with false-alarm rates of only approximately 5%. Our method can be applied to any variable relevant for (sub)seasonal weather forecasts and could thus help improving long-lead predictions. KW - stratosphere KW - stratospheric polar vortex KW - subseasonal predictions KW - causal discovery algorithm KW - winter circulation Y1 - 2017 U6 - https://doi.org/10.1002/2017GL074696 SN - 0094-8276 SN - 1944-8007 VL - 44 SP - 8592 EP - 8600 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Krivenkov, Maxim A1 - Golias, Evangelos A1 - Marchenko, Dmitry A1 - Sanchez-Barriga, Jaime A1 - Bihlmayer, Gustav A1 - Rader, Oliver A1 - Varykhalov, Andrei T1 - Nanostructural origin of giant Rashba effect in intercalated graphene JF - 2D Materials N2 - To enhance the spin-orbit interaction in graphene by a proximity effect without compromising the quasi-free-standing dispersion of the Dirac cones means balancing the opposing demands for strong and weak graphene-substrate interaction. So far, only the intercalation of Au under graphene/Ni(111) has proven successful, which was unexpected since graphene prefers a large separation (similar to 3.3 angstrom) from a Au monolayer in equilibrium. Here, we investigate this system and find the solution in a nanoscale effect. We reveal that the Au largely intercalates as nanoclusters. Our density functional theory calculations show that the graphene is periodically stapled to the Ni substrate, and this attraction presses graphene and Au nanoclusters together. This, in turn, causes a Rashba effect of the giant magnitude observed in experiment. Our findings show that nanopatterning of the substrate can be efficiently used for engineering of spin-orbit effects in graphene. KW - quasi-free-standing graphene KW - Ni(111) KW - gold intercalation KW - spin-orbit interaction KW - nanoclusters KW - STM KW - DFT Y1 - 2017 U6 - https://doi.org/10.1088/2053-1583/aa7ad8 SN - 2053-1583 VL - 4 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Kubatova, B. A1 - Kubát, Jiří A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida T1 - Clumping in Massive Star Winds and its Possible Connection to the B[e] Phenomenon T2 - The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016 N2 - It has been observationally established that winds of hot massive stars have highly variable characteristics. The variability evident in the winds is believed to be caused by structures on a broad range of spatial scales. Small-scale structures (clumping) in stellar winds of hot stars are possible consequence of an instability appearing in their radiation hydrodynamics. To understand how clumping may influence calculation of theoretical spectra, different clumping properties and their 3D nature have to be taken into account. Properties of clumping have been examined using our 3D radiative transfer calculations. Effects of clumping for the case of the B[e] phenomenon are discussed. Y1 - 2017 SN - 978-1-58381-900-5 SN - 978-1-58381-901-2 VL - 508 SP - 45 EP - 50 PB - Astronomical Soceity of the Pacific CY - San Fransisco ER - TY - JOUR A1 - Kubin, Markus A1 - Kern, Jan A1 - Gul, Sheraz A1 - Kroll, Thomas A1 - Chatterjee, Ruchira A1 - Loechel, Heike A1 - Fuller, Franklin D. A1 - Sierra, Raymond G. A1 - Quevedo, Wilson A1 - Weniger, Christian A1 - Rehanek, Jens A1 - Firsov, Anatoly A1 - Laksmono, Hartawan A1 - Weninger, Clemens A1 - Alonso-Mori, Roberto A1 - Nordlund, Dennis L. A1 - Lassalle-Kaiser, Benedikt A1 - Glownia, James M. A1 - Krzywinski, Jacek A1 - Moeller, Stefan A1 - Turner, Joshua J. A1 - Minitti, Michael P. A1 - Dakovski, Georgi L. A1 - Koroidov, Sergey A1 - Kawde, Anurag A1 - Kanady, Jacob S. A1 - Tsui, Emily Y. A1 - Suseno, Sandy A1 - Han, Zhiji A1 - Hill, Ethan A1 - Taguchi, Taketo A1 - Borovik, Andrew S. A1 - Agapie, Theodor A1 - Messinger, Johannes A1 - Erko, Alexei A1 - Föhlisch, Alexander A1 - Bergmann, Uwe A1 - Mitzner, Rolf A1 - Yachandra, Vittal K. A1 - Yano, Junko A1 - Wernet, Philippe T1 - Soft x-ray absorption spectroscopy of metalloproteins and high-valent metal-complexes at room temperature using free-electron lasers JF - Structural dynamics N2 - X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn similar to 6-15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions. (C) 2017 Author(s). Y1 - 2017 U6 - https://doi.org/10.1063/1.4986627 SN - 2329-7778 VL - 4 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Kuckein, Christoph A1 - Diercke, Andrea A1 - González Manrique, Sergio Javier A1 - Verma, Meetu A1 - Loehner-Boettcher, Johannes A1 - Socas-Navarro, H. A1 - Balthasar, Horst A1 - Sobotka, M. A1 - Denker, Carsten T1 - Ca II 8542 angstrom brightenings induced by a solar microflare JF - Astronomy and astrophysics : an international weekly journal N2 - Aims. We study small-scale brightenings in Ca II 8542 angstrom line-core images to determine their nature and effect on localized heating and mass transfer in active regions. Methods. High-resolution two-dimensional spectroscopic observations of a solar active region in the near-infrared Ca II 8542 angstrom line were acquired with the GREGOR Fabry-Perot Interferometer attached to the 1.5-m GREGOR telescope. Inversions of the spectra were carried out using the NICOLE code to infer temperatures and line-of-sight (LOS) velocities. Response functions of the Ca II line were computed for temperature and LOS velocity variations. Filtergrams of the Atmospheric Imaging Assembly (AIA) and magnetograms of the Helioseismic and Magnetic Imager (HMI) were coaligned to match the ground-based observations and to follow the Ca II brightenings along all available layers of the atmosphere. Results. We identified three brightenings of sizes up to 2 ' x 2 ' that appeared in the Ca II 8542 angstrom line-core images. Their lifetimes were at least 1.5 min. We found evidence that the brightenings belonged to the footpoints of a microflare (MF). The properties of the observed brightenings disqualified the scenarios of Ellerman bombs or Interface Region Imaging Spectrograph (IRIS) bombs. However, this MF shared some common properties with flaring active-region fibrils or flaring arch filaments (FAFs): (1) FAFs and MFs are both apparent in chromospheric and coronal layers according to the AIA channels; and (2) both show flaring arches with lifetimes of about 3.0-3.5 min and lengths of similar to 20 ' next to the brightenings. The inversions revealed heating by 600 K at the footpoint location in the ambient chromosphere during the impulsive phase. Connecting the footpoints, a dark filamentary structure appeared in the Ca II line-core images. Before the start of the MF, the spectra of this structure already indicated average blueshifts, meaning upward motions of the plasma along the LOS. During the impulsive phase, these velocities increased up to -2.2 km s(-1). The structure did not disappear during the observations. Downflows dominated at the footpoints. However, in the upper photosphere, slight upflows occurred during the impulsive phase. Hence, bidirectional flows are present in the footpoints of the MF. KW - Sun: photosphere KW - Sun: chromosphere KW - Sun: corona KW - Sun: activity KW - techniques: imaging spectroscopy Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731319 SN - 1432-0746 VL - 608 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Kunnus, Kristjan A1 - Josefsson, I. A1 - Schreck, Simon Frederik A1 - Quevedo, W. A1 - Miedema, P. S. A1 - Techert, S. A1 - de Groot, F. M. F. A1 - Föhlisch, Alexander A1 - Odelius, M. A1 - Wernet, Ph. T1 - Quantifying covalent interactions with resonant inelastic soft X-ray scattering BT - case study of Ni2+ aqua complex JF - Chemical physics letters N2 - We analyze the effects of covalent interactions in Ni 2p3d resonant inelastic X-ray scattering (RIXS) spectra from aqueous Ni2+ ions and find that the relative RIXS intensities of ligand-to-metal charge-transfer final states with respect to the ligand-field final states reflect the covalent mixing between Ni 3d and water orbitals. Specifically, the experimental intensity ratio at the Ni L-3-edge allows to determine that the Ni 3d orbitals have on average 5.5% of water character. We propose that 2p3d RIXS at the Ni L-3-edge can be utilized to quantify covalency in Ni complexes without the use of external references or simulations. KW - Transition-metal ion KW - Aqueous solution KW - Covalent interaction KW - Resonant inelastic X-ray scattering KW - Ligand-field state KW - Charge-transfer state Y1 - 2016 U6 - https://doi.org/10.1016/j.cplett.2016.12.046 SN - 0009-2614 SN - 1873-4448 VL - 669 SP - 196 EP - 201 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Kupsch, Andreas A1 - Mueller, Bernd R. A1 - Lange, Axel A1 - Bruno, Giovanni T1 - Microstructure characterisation of ceramics via 2D and 3D X-ray refraction techniques JF - Journal of the European Ceramic Society N2 - 3D imaging techniques are very fashionable nowadays, and allow enormous progress in understanding ceramic microstructure, its evolution, and its link to mechanical, thermal, and transport properties. In this feature article, we report the use of a powerful, yet not so wide-spread, set of X-ray techniques based on refraction effects. X-ray refraction allows determining internal specific surface (surface per unit volume) in a non-destructive fashion, position and orientation sensitive, and with a nanometric detectability. While the techniques are limited by the X-ray absorption of the material under investigation, we demonstrate showcases of ceramics and composite materials, where understanding of process parameter influence or simply of microstructural parameters could be achieved in a way unrivalled even by high-resolution techniques such as electron microscopy or computed tomography. (C) 2016 Elsevier Ltd. All rights reserved. KW - X-ray refraction KW - Porosity KW - Specific surface KW - Crack detection KW - Composites Y1 - 2017 U6 - https://doi.org/10.1016/j.jeurceramsoc.2016.12.031 SN - 0955-2219 SN - 1873-619X VL - 37 SP - 1879 EP - 1889 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Kurfürst, P. A1 - Feldmeier, Achim A1 - Krtička, Jiri T1 - Modeling sgB[e] Circumstellar Disks T2 - The B(e) Phenomenon: Forty Years of Studies : proceedings of a conference held at Charles University, Prague, Czech Republic, 27 June-1 July 2016 N2 - During their evolution, massive stars are characterized by a significant loss of mass either via spherically symmetric stellar winds or by aspherical mass-loss mechanisms, namely outflowing equatorial disks. However, the scenario that leads to the formation of a disk or rings of gas and dust around these objects is still under debate. Is it a viscous disk or an ouftlowing disk-forming wind or some other mechanism? It is also unclear how various physical mechanisms that act on the circumstellar environment of the stars affect its shape, density, kinematic, and thermal structure. We assume that the disk-forming mechanism is a viscous transport within an equatorial outflowing disk of a rapidly or even critically rotating star. We study the hydrodynamic and thermal structure of optically thick dense parts of outflowing circumstellar disks that may form around,e.g., Be stars, sgB[e] stars, or Pop m stars. We calculate self-consistent time dependent models of the inner dense region of the disk that is strongly affected either by irradiation from the central star and by contributions of viscous heating effects. We also simulate the dynamic effects of collision between expanding ejecta of supernovae and circumstellar disks that may be form in sgB[e] stars and, e.g., LBVs or Pop in stars. Y1 - 2017 UR - https://www.physics.muni.cz/~petrk/presentation.pdf SN - 978-1-58381-900-5 SN - 978-1-58381-901-2 VL - 508 SP - 17 EP - 22 PB - Astronomical Scoeity of the Pacific CY - San Fransisco ER - TY - JOUR A1 - Kurzke, Henning A1 - Kiethe, Jan A1 - Heuer, Axel A1 - Jechow, Andreas T1 - Frequency doubling of incoherent light from a superluminescent diode in a periodically poled lithium niobate waveguide crystal JF - Laser physics letters N2 - The amplified spontaneous emission from a superluminescent diode was frequency doubled in a periodically poled lithium niobate waveguide crystal. The temporally incoherent radiation of such a superluminescent diode is characterized by a relatively broad spectral bandwidth and thermal-like photon statistics, as the measured degree of second order coherence, g((2))(0)= 1.9 +/- 0.1, indicates. Despite the non-optimized scenario in the spectral domain, we achieve six orders of magnitude higher conversion efficiency than previously reported with truly incoherent light. This is possible by using single spatial mode radiation and quasi phase matched material with a waveguide architecture. This work is a principle step towards efficient frequency conversion of temporally incoherent radiation in one spatial mode to access wavelengths where no radiation from superluminescent diodes is available, especially with tailored quasi phase matched crystals. The frequency doubled light might find application in imaging, metrology and quantum optics experiments. KW - nonlinear frequency conversion KW - periodically poled material KW - waveguides KW - incoherent radiation Y1 - 2017 U6 - https://doi.org/10.1088/1612-202X/aa6889 SN - 1612-2011 SN - 1612-202X VL - 14 PB - IOP Publ. CY - Bristol ER - TY - JOUR A1 - Kwamen, C. A1 - Rössle, Matthias A1 - Reinhardt, M. A1 - Leitenberger, Wolfram A1 - Zamponi, Flavio A1 - Alexe, Marin A1 - Bargheer, Matias T1 - Simultaneous dynamic characterization of charge and structural motion during ferroelectric switching JF - Physical review : B, Condensed matter and materials physics N2 - Monitoring structural changes in ferroelectric thin films during electric field induced polarization switching is important for a full microscopic understanding of the coupled motion of charges, atoms, and domainwalls in ferroelectric nanostructures. We combine standard ferroelectric test sequences of switching and nonswitching electrical pulses with time-resolved x-ray diffraction to investigate the structural response of a nanoscale Pb(Zr0.2Ti0.8)O-3 ferroelectric oxide capacitor upon charging, discharging, and polarization reversal. We observe that a nonlinear piezoelectric response of the ferroelectric layer develops on a much longer time scale than the RC time constant of the device. The complex atomic motion during the ferroelectric polarization reversal starts with a contraction of the lattice, whereas the expansive piezoelectric response sets in after considerable charge flow due to the applied voltage pulses on the electrodes of the capacitor. Our simultaneous measurements on a working device elucidate and visualize the complex interplay of charge flow and structural motion and challenges theoretical modeling. Y1 - 2017 U6 - https://doi.org/10.1103/PhysRevB.96.134105 SN - 2469-9950 SN - 2469-9969 VL - 96 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Laquai, Frederic A1 - Andrienko, Denis A1 - Deibel, Carsten A1 - Neher, Dieter T1 - Charge carrier generation, recombination, and extraction in polymer-fullerene bulk heterojunction organic solar cells JF - Elementary processes in organic photovoltaics N2 - In this chapter we review the basic principles of photocurrent generation in bulk heterojunction organic solar cells, discuss the loss channels limiting their efficiency, and present case studies of several polymer-fullerene blends. Using steady-state and transient, optical, and electrooptical techniques, we create a precise picture of the fundamental processes that ultimately govern solar cell efficiency. KW - Charge extraction KW - Charge generation KW - Charge recombination KW - Organic solar cells KW - PBT7 KW - PBTTT KW - PCPDTBT Y1 - 2026 SN - 978-3-319-28338-8 SN - 978-3-319-28336-4 U6 - https://doi.org/10.1007/978-3-319-28338-8_11 SN - 0065-3195 VL - 272 SP - 267 EP - 291 PB - Springer CY - Berlin ER - TY - JOUR A1 - Lechleitner, Franziska A. A1 - Breitenbach, Sebastian Franz Martin A1 - Rehfeld, Kira A1 - Ridley, Harriet E. A1 - Asmerom, Yemane A1 - Prufer, Keith M. A1 - Marwan, Norbert A1 - Goswami, Bedartha A1 - Kennett, Douglas J. A1 - Aquino, Valorie V. A1 - Polyak, Victor A1 - Haug, Gerald H. A1 - Eglinton, Timothy I. A1 - Baldini, James U. L. T1 - Tropical rainfall over the last two millennia: evidence for a low-latitude hydrologic seesaw JF - Scientific reports N2 - The presence of a low-to mid-latitude interhemispheric hydrologic seesaw is apparent over orbital and glacial-interglacial timescales, but its existence over the most recent past remains unclear. Here we investigate, based on climate proxy reconstructions from both hemispheres, the inter-hemispherical phasing of the Intertropical Convergence Zone (ITCZ) and the low-to mid-latitude teleconnections in the Northern Hemisphere over the past 2000 years. A clear feature is a persistent southward shift of the ITCZ during the Little Ice Age until the beginning of the 19th Century. Strong covariation between our new composite ITCZ-stack and North Atlantic Oscillation (NAO) records reveals a tight coupling between these two synoptic weather and climate phenomena over decadal-to-centennial timescales. This relationship becomes most apparent when comparing two precisely dated, high-resolution paleorainfall records from Belize and Scotland, indicating that the low-to mid-latitude teleconnection was also active over annual-decadal timescales. It is likely a combination of external forcing, i.e., solar and volcanic, and internal feedbacks, that drives the synchronous ITCZ and NAO shifts via energy flux perturbations in the tropics. Y1 - 2017 U6 - https://doi.org/10.1038/srep45809 SN - 2045-2322 VL - 7 PB - Nature Publ. Group CY - London ER - TY - THES A1 - Leigh Wojno, Jennifer T1 - Correlations between kinematics, chemistry, and ages of stars in the solar neighbourhood as seen by the RAVE survey Y1 - 2017 ER - TY - THES A1 - Leonhardt, Helmar T1 - Chemotaxis, shape and adhesion dynamics of amoeboid cells studied by impedance fluctuations in open and confined spaces T1 - Chemotaxis, Formänderung und Adhäsionsdynamik amöboider Zellen gemessen durch Impedanzfluktuation N2 - Die vorliegende Arbeit befasst sich mit elektrischen Impedanzmessungen von ameoboiden Zellen auf Mikroelektroden. Der Modellorganismus Dictyostelium discoideum zeigt unter der Bedingung des Nahrungsentzugs einen Übergang zum kollektiven Verhalten, bei dem sich chemotaktische Zellen zu einem multizellulären Aggregat zusammenschliessen. Wir zeigen wie Impedanzaufnahmen über die Dynamik der Zell-substrat Adhäsion ein präzises Bild der Phasen der Aggregation liefern. Darüberhinaus zeigen wir zum ersten mal systematische Einzelzellmessungen von Wildtyp-Zellen und vier Mutanten, die sich in der Stärke der Substratadh äsion unterscheiden. Wir zeichneten die projizierte Zellfläche durch Zeitverlaufsmikroskopie auf und fanden eine Korrelation zwischen den quasi-periodischen Oszillationen in der Kinetik der projizierten Fläche - der Zellform-Oszillation - und dem Langzeittrend des Impedanzsignals. Amoeboidale Motilität offenbart sich typischerweise durch einen Zyklus von Membranausstülpung, Substratadhäsion, Vorwärtsziehen des Zellkörpers und Einziehen des hinteren Teils der Zelle. Dieser Motilitätszyklus resultiert in quasi-periodischen Oszillationen der projizierten Zellfläche und der Impedanz. In allen gemessenen Zelllinien wurden für diesen Zyklus ähnliche Periodendauern beobachtet trotz der Unterschiede in der Anhaftungsstärke. Wir beobachteten, dass die Stärke der Zell-substrat Anhaftung die Impedanz stark beeinflusst, indem die Abweichungen vom Mittelwert (die Grösse der Fluktuationen) vergrössert sind bei Zellen, die die vom Zytoskelett generierten Kräfte effektiv auf das Substrat übertragen. Zum Beispiel sind bei talA- Zellen, in welchen das Actin verankernde Protein Talin fehlt, die Fluktuationen stark reduziert. Einzelzellkraft-Spektroskopie und Ergebnisse eines Ablösungsassays, bei dem Adhäsionskraft gemessen wird indem Zellen einer Scherspannung ausgesetzt werden, bestätigen, dass die Grösse der Impedanz-fluktuationen ein korrektes Mass für die Stärke der Substratadhäsion ist. Schliesslich haben wir uns auch mit dem Einbau von Zell-substrat-Impedanz-Sensoren in mikro-fluidische Apparaturen befasst. Ein chip-basierter elektrischer Chemotaxis Assay wurde entwickelt, der die Geschwindigkeit chemotaktischer Zellen misst, welche entlang eines chemischen Konzentrationsgradienten über Mikroelektroden wandern. N2 - We present electrical impedance measurements of amoeboid cells on microelectrodes. The model organism Dictyostelium discoideum shows under starvation conditions a transition to collective behavior when chemotactic cells collect in multicellular aggregates. We show how impedance recordings give a precise picture of the stages of aggregation by tracing the dynamics of cell-substrate adhesion. Furthermore, we present for the first time systematic single cell measurements of wild type cells and four mutant strains that differ in their substrate adhesion strength. We recorded the projected cell area by time lapse microscopy and found a correlation between quasi-periodic oscillations in the kinetics of the projected area - the cell shape oscillation - and the long-term trend in the impedance signal. Typically, amoeboid motility advances via a cycle of membrane protrusion, substrate adhesion, traction of the cell body and tail retraction. This motility cycle results in the quasi-periodic oscillations of the projected cell area and the impedance. In all cell lines measured, similar periods were observed for this cycle, despite the differences in attachment strength. We observed that cell-substrate attachment strength strongly affects the impedance in that the deviations from mean (the magnitude of fluctuations) are enhanced in cells that effectively transmit forces, generated by the cytoskeleton, to the substrate. For example, in talA- cells, which lack the actin anchoring protein talin, the fluctuations are strongly reduced. Single cell force spectroscopy and results from a detachment assay, where adhesion is measured by exposing cells to shear stress, confirm that the magnitude of impedance fluctuations is a correct measure for the strength of substrate adhesion. Finally, we also worked on the integration of cell-substrate impedance sensors into microfluidic devices. A chip-based electrical chemotaxis assay is designed which measures the speed of chemotactic cells migrating over microelectrodes along a chemical concentration gradient. KW - ECIS KW - cell-substrate adhesion KW - cell movement KW - electrical chemotaxis assay KW - ECIS KW - Zell-substrat Adhäsion KW - Zell Bewegung KW - elektrischer Chemotaxis Assy Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-405016 ER - TY - JOUR A1 - Leto, Paolo A1 - Trigilio, C. A1 - Oskinova, Lida A1 - Ignace, R. A1 - Buemi, C. S. A1 - Umana, G. A1 - Ingallinera, A. A1 - Todt, Helge Tobias A1 - Leone, F. T1 - The detection of variable radio emission from the fast rotating magnetic hot B-star HR 7355 and evidence for its X-ray aurorae JF - Monthly notices of the Royal Astronomical Society N2 - In this paper, we investigate the multiwavelength properties of the magnetic early B-type star HR 7355. We present its radio light curves at several frequencies, taken with the Jansky Very Large Array, and X-ray spectra, taken with the XMM-Newton X-ray telescope. Modelling of the radio light curves for the Stokes I and V provides a quantitative analysis of the HR 7355 magnetosphere. A comparison between HR 7355 and a similar analysis for the Ap star CU Vir allows us to study how the different physical parameters of the two stars affect the structure of the respective magnetospheres where the non-thermal electrons originate. Our model includes a cold thermal plasma component that accumulates at high magnetic latitudes that influences the radio regime, but does not give rise to X-ray emission. Instead, the thermal X-ray emission arises from shocks generated by wind stream collisions close to the magnetic equatorial plane. The analysis of the X-ray spectrum of HR 7355 also suggests the presence of a non-thermal radiation. Comparison between the spectral index of the power-law X-ray energy distribution with the non-thermal electron energy distribution indicates that the non-thermal X-ray component could be the auroral signature of the non-thermal electrons that impact the stellar surface, the same non-thermal electrons that are responsible for the observed radio emission. On the basis of our analysis, we suggest a novel model that simultaneously explains the X-ray and the radio features of HR 7355 and is likely relevant for magnetospheres of other magnetic early-type stars. KW - stars: chemically peculiar KW - stars: early-type KW - stars: individual: HR 7355 KW - stars: magnetic field KW - radio continuum: stars KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx267 SN - 0035-8711 SN - 1365-2966 VL - 467 SP - 2820 EP - 2833 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Leussu, R. A1 - Usoskin, IIlya G. A1 - Valliappan, Senthamizh Pavai A1 - Diercke, Andrea A1 - Arlt, Rainer A1 - Denker, Carsten A1 - Mursula, K. T1 - Wings of the butterfly BT - sunspot groups for 1826-2015 JF - Astronomy and astrophysics : an international weekly journal N2 - The spatio-temporal evolution of sunspot activity, the so-called Maunder butterfly diagram, has been continously available since 1874 using data from the Royal Greenwich Observatory, extended by SOON network data after 1976. Here we present a new extended butterfly diagram of sunspot group occurrence since 1826, using the recently digitized data from Schwabe (1826-1867) and Sporer (1866-1880). The wings of the diagram are separated using a recently developed method based on an analysis of long gaps in sunspot group occurrence in different latitude bands. We define characteristic latitudes, corresponding to the start, end, and the largest extent of the wings (the F, L, and H latitudes). The H latitudes (30 degrees-45 degrees) are highly significantly correlated with the strength of the wings (quantified by the total sum of the monthly numbers of sunspot groups). The F latitudes (20 degrees-30 degrees) depict a weak tendency, especially in the southern hemisphere, to follow the wing strength. The L latitudes (2 degrees-10 degrees) show no clear relation to the wing strength. Overall, stronger cycle wings tend to start at higher latitudes and have a greater wing extent. A strong (5-6)-cycle periodic oscillation is found in the start and end times of the wings and in the overlap and gaps between successive wings of one hemisphere. While the average wing overlap is zero in the southern hemisphere, it is two to three months in the north. A marginally significant oscillation of about ten solar cycles is found in the asymmetry of the L latitudes. The new long database of butterfly wings provides new observational constraints to solar dynamo models that discuss the spatio-temporal distribution of sunspot occurrence over the solar cycle and longer. KW - Sun: activity KW - sunspots KW - history and philosophy of astronomy Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201629533 SN - 1432-0746 VL - 599 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Liu, Lin A1 - Cherstvy, Andrey G. A1 - Metzler, Ralf T1 - Facilitated Diffusion of Transcription Factor Proteins with Anomalous Bulk Diffusion JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - What are the physical laws of the diffusive search of proteins for their specific binding sites on DNA in the presence of the macromolecular crowding in cells? We performed extensive computer simulations to elucidate the protein target search on DNA. The novel feature is the viscoelastic non-Brownian protein bulk diffusion recently observed experimentally. We examine the influence of the protein-DNA binding affinity and the anomalous diffusion exponent on the target search time. In all cases an optimal search time is found. The relative contribution of intermittent three-dimensional bulk diffusion and one-dimensional sliding of proteins along the DNA is quantified. Our results are discussed in the light of recent single molecule tracking experiments, aiming at a better understanding of the influence of anomalous kinetics of proteins on the facilitated diffusion mechanism. Y1 - 2017 U6 - https://doi.org/10.1021/acs.jpcb.6b12413 SN - 1520-6106 VL - 121 SP - 1284 EP - 1289 PB - American Chemical Society CY - Washington ER - TY - GEN A1 - Loebner, Sarah A1 - Jelken, Joachim A1 - Yadavalli, Nataraja Sekhar A1 - Sava, Elena A1 - Hurduc, Nicolae A1 - Santer, Svetlana T1 - Motion of adsorbed nano-particles on azobenzene containing polymer films N2 - We demonstrate in situ recorded motion of nano-objects adsorbed on a photosensitive polymer film. The motion is induced by a mass transport of the underlying photoresponsive polymer material occurring during irradiation with interference pattern. The polymer film contains azobenzene molecules that undergo reversible photoisomerization reaction from trans- to cis-conformation. Through a multi-scale chain of physico-chemical processes, this finally results in the macro-deformations of the film due to the changing elastic properties of polymer. The topographical deformation of the polymer surface is sensitive to a local distribution of the electrical field vector that allows for the generation of dynamic changes in the surface topography during irradiation with different light interference patterns. Polymer film deformation together with the motion of the adsorbed nano-particles are recorded using a homemade set-up combining an optical part for the generation of interference patterns and an atomic force microscope for acquiring the surface deformation. The particles undergo either translational or rotational motion. The direction of particle motion is towards the topography minima and opposite to the mass transport within the polymer film. The ability to relocate particles by photo-induced dynamic topography fluctuation offers a way for a non-contact simultaneous manipulation of a large number of adsorbed particles just in air at ambient conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 352 KW - motion of adsorbed nano-particles KW - azobenzene containing polymer films KW - fluctuating surfaces Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400423 ER - TY - JOUR A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Bargheer, Matias A1 - Wollgarten, Markus A1 - Santer, Svetlana T1 - Mass production of polymer nano-wires filled with metal nano-particles JF - Scientific reports N2 - Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro-or macroscale elements is hampered by the lack of structural components that have both, nano-and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-08153-0 SN - 2045-2322 VL - 7 SP - 3759 EP - 3764 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Bargheer, Matias A1 - Wollgarten, Markus A1 - Santer, Svetlana T1 - Mass production of polymer nanowires filled with metal nanoparticles JF - Scientific reports N2 - Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket. Y1 - 2017 U6 - https://doi.org/10.1038/s41598-017-08153-0 SN - 2045-2322 VL - 7 PB - Springer Nature CY - London ER - TY - GEN A1 - Lomadze, Nino A1 - Kopyshev, Alexey A1 - Bargheer, Matias A1 - Wollgarten, Markus A1 - Santer, Svetlana T1 - Mass production of polymer nanowires filled with metal nanoparticles N2 - Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 387 Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-402712 ER - TY - JOUR A1 - Lopez-Barquero, Vanessa A1 - Xu, S. A1 - Desiati, Paolo A1 - Lazarian, Alex A1 - Pogorelov, Nikolai V. A1 - Yan, Huirong T1 - TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary JF - The astrophysical journal : an international review of spectroscopy and astronomical physics KW - cosmic rays KW - magnetic fields KW - magnetohydrodynamics (MHD) KW - solar wind KW - Sun: heliosphere Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa74d1 SN - 0004-637X SN - 1538-4357 VL - 842 PB - IOP Publ. Ltd. CY - Bristol ER - TY - GEN A1 - Loupos, Konstantinos A1 - Damigos, Yannis A1 - Amditis, Angelos A1 - Gerhard, Reimund A1 - Rychkov, Dmitry A1 - Wirges, Werner A1 - Schulze, Manuel A1 - Lenas, Sotiris-Angelos A1 - Chatziandreoglou, Christos A1 - Malliou, Christina A1 - Tsaoussidis, Vassilis A1 - Brady, Ken A1 - Frankenstein, Bernd T1 - Structural health monitoring system for bridges based on skin-like sensor T2 - IOP conference series : Materials science and engineering N2 - Structural health monitoring activities are of primal importance for managing transport infrastructure, however most SHM methodologies are based on point-based sensors that have limitations in terms of their spatial positioning requirements, cost of development and measurement range. This paper describes the progress on the SENSKIN EC project whose objective is to develop a dielectric-elastomer and micro-electronics-based sensor, formed from a large highly extensible capacitance sensing membrane supported by advanced microelectronic circuitry, for monitoring transport infrastructure bridges. Such a sensor could provide spatial measurements of strain in excess of 10%. The actual sensor along with the data acquisition module, the communication module and power electronics are all integrated into a compact unit, the SENSKIN device, which is energy-efficient, requires simple signal processing and it is easy to install over various surface types. In terms of communication, SENSKIN devices interact with each other to form the SENSKIN system; a fully distributed and autonomous wireless sensor network that is able to self-monitor. SENSKIN system utilizes Delay-/Disruption-Tolerant Networking technologies to ensure that the strain measurements will be received by the base station even under extreme conditions where normal communications are disrupted. This paper describes the architecture of the SENSKIN system and the development and testing of the first SENSKIN prototype sensor, the data acquisition system, and the communication system. Y1 - 2017 U6 - https://doi.org/10.1088/1757-899X/236/1/012100 SN - 1757-8981 VL - 236 PB - IOP Publ. Ltd. CY - Bristol ER -