TY - JOUR A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Öztürk, Ugur A1 - Kurths, Jürgen A1 - Merz, Bruno T1 - Optimal design of hydrometric station networks based on complex network analysis JF - Hydrology and Earth System Sciences N2 - Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure – the weighted degree–betweenness (WDB) measure – to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail. KW - identifying influential nodes KW - climate networks KW - rainfall KW - streamflow KW - synchronization KW - precipitation KW - classification KW - events Y1 - 2020 U6 - https://doi.org/10.5194/hess-24-2235-2020 SN - 1027-5606 SN - 1607-7938 VL - 24 IS - 5 SP - 2235 EP - 2251 PB - Copernicus Publ. CY - Göttingen ER - TY - GEN A1 - Agarwal, Ankit A1 - Marwan, Norbert A1 - Maheswaran, Rathinasamy A1 - Öztürk, Ugur A1 - Kurths, Jürgen A1 - Merz, Bruno T1 - Optimal design of hydrometric station networks based on complex network analysis T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Hydrometric networks play a vital role in providing information for decision-making in water resource management. They should be set up optimally to provide as much information as possible that is as accurate as possible and, at the same time, be cost-effective. Although the design of hydrometric networks is a well-identified problem in hydrometeorology and has received considerable attention, there is still scope for further advancement. In this study, we use complex network analysis, defined as a collection of nodes interconnected by links, to propose a new measure that identifies critical nodes of station networks. The approach can support the design and redesign of hydrometric station networks. The science of complex networks is a relatively young field and has gained significant momentum over the last few years in different areas such as brain networks, social networks, technological networks, or climate networks. The identification of influential nodes in complex networks is an important field of research. We propose a new node-ranking measure – the weighted degree–betweenness (WDB) measure – to evaluate the importance of nodes in a network. It is compared to previously proposed measures used on synthetic sample networks and then applied to a real-world rain gauge network comprising 1229 stations across Germany to demonstrate its applicability. The proposed measure is evaluated using the decline rate of the network efficiency and the kriging error. The results suggest that WDB effectively quantifies the importance of rain gauges, although the benefits of the method need to be investigated in more detail. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 951 KW - identifying influential nodes KW - climate networks KW - rainfall KW - streamflow KW - synchronization KW - precipitation KW - classification KW - events Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-471006 SN - 1866-8372 IS - 951 ER - TY - JOUR A1 - Albrecht, Torsten A1 - Winkelmann, Ricarda A1 - Levermann, Anders T1 - Glacial-cycle simulations of the Antarctic Ice Sheet with the Parallel Ice Sheet Model (PISM) BT - Part 1: boundary conditions and climatic forcing JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Simulations of the glacial-interglacial history of the Antarctic Ice Sheet provide insights into dynamic threshold behavior and estimates of the ice sheet's contributions to global sea-level changes for the past, present and future. However, boundary conditions are weakly constrained, in particular at the interface of the ice sheet and the bedrock. Also climatic forcing covering the last glacial cycles is uncertain, as it is based on sparse proxy data.
We use the Parallel Ice Sheet Model (PISM) to investigate the dynamic effects of different choices of input data, e.g., for modern basal heat flux or reconstructions of past changes of sea level and surface temperature. As computational resources are limited, glacial-cycle simulations are performed using a comparably coarse model grid of 16 km and various parameterizations, e.g., for basal sliding, iceberg calving, or for past variations in precipitation and ocean temperatures. In this study we evaluate the model's transient sensitivity to corresponding parameter choices and to different boundary conditions over the last two glacial cycles and provide estimates of involved uncertainties. We also discuss isolated and combined effects of climate and sea-level forcing. Hence, this study serves as a "cookbook" for the growing community of PISM users and paleo-ice sheet modelers in general.
For each of the different model uncertainties with regard to climatic forcing, ice and Earth dynamics, and basal processes, we select one representative model parameter that captures relevant uncertainties and motivates corresponding parameter ranges that bound the observed ice volume at present. The four selected parameters are systematically varied in a parameter ensemble analysis, which is described in a companion paper. Y1 - 2020 U6 - https://doi.org/10.5194/tc-14-599-2020 SN - 1994-0416 SN - 1994-0424 VL - 14 IS - 2 SP - 599 EP - 632 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Allroggen, Niklas A1 - Beiter, Daniel A1 - Tronicke, Jens T1 - Ground-penetrating radar monitoring of fast subsurface processes JF - Geophysics N2 - Earth and environmental sciences rely on detailed information about subsurface processes. Whereas geophysical techniques typically provide highly resolved spatial images, monitoring subsurface processes is often associated with enormous effort and, therefore, is usually limited to point information in time or space. Thus, the development of spatial and temporal continuous field monitoring methods is a major challenge for the understanding of subsurface processes. We have developed a novel method for ground-penetrating-radar (GPR) reflection monitoring of subsurface flow processes under unsaturated conditions and applied it to a hydrological infiltration experiment performed across a periglacial slope deposit in northwest Luxembourg. Our approach relies on a spatial and temporal quasicontinuous data recording and processing, followed by an attribute analysis based on analyzing differences between individual time steps. The results demonstrate the ability of time-lapse GPR monitoring to visualize the spatial and temporal dynamics of preferential flow processes with a spatial resolution in the order of a few decimeters and temporal resolution in the order of a few minutes. We observe excellent agreement with water table information originating from different boreholes. This demonstrates the potential of surface-based GPR reflection monitoring to observe the spatiotemporal dynamics of water movements in the subsurface. It provides valuable, and so far not accessible, information for example in the field of hydrology and pedology that allows studying the actual subsurface processes rather than deducing them from point information. Y1 - 2020 U6 - https://doi.org/10.1190/GEO2019-0737.1 SN - 0016-8033 SN - 1942-2156 VL - 85 IS - 3 SP - A19 EP - A23 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - THES A1 - Angelopoulos, Michael T1 - Mechanisms of sub-aquatic permafrost evolution in Arctic coastal environments BT - field observations and modelling of submerged ice-rich permafrost deposits and thermokarst lagoons in northeastern Siberia N2 - Subsea permafrost is perennially cryotic earth material that lies offshore. Most submarine permafrost is relict terrestrial permafrost beneath the Arctic shelf seas, was inundated after the last glaciation, and has been warming and thawing ever since. It is a reservoir and confining layer for gas hydrates and has the potential to release greenhouse gases and affect global climate change. Furthermore, subsea permafrost thaw destabilizes coastal infrastructure. While numerous studies focus on its distribution and rate of thaw over glacial timescales, these studies have not been brought together and examined in their entirety to assess rates of thaw beneath the Arctic Ocean. In addition, there is still a large gap in our understanding of sub-aquatic permafrost processes on finer spatial and temporal scales. The degradation rate of subsea permafrost is influenced by the initial conditions upon submergence. Terrestrial permafrost that has already undergone warming, partial thawing or loss of ground ice may react differently to inundation by seawater compared to previously undisturbed ice-rich permafrost. Heat conduction models are sufficient to model the thaw of thick subsea permafrost from the bottom, but few studies have included salt diffusion for top-down chemical degradation in shallow waters characterized by mean annual cryotic conditions on the seabed. Simulating salt transport is critical for assessing degradation rates for recently inundated permafrost, which may accelerate in response to warming shelf waters, a lengthening open water season, and faster coastal erosion rates. In the nearshore zone, degradation rates are also controlled by seasonal processes like bedfast ice, brine injection, seasonal freezing under floating ice conditions and warm freshwater discharge from large rivers. The interplay of all these variables is complex and needs further research. To fill this knowledge gap, this thesis investigates sub-aquatic permafrost along the southern coast of the Bykovsky Peninsula in eastern Siberia. Sediment cores and ground temperature profiles were collected at a freshwater thermokarst lake and two thermokarst lagoons in 2017. At this site, the coastline is retreating, and seawater is inundating various types of permafrost: sections of ice-rich Pleistocene permafrost (Yedoma) cliffs at the coastline alternate with lagoons and lower elevation previously thawed and refrozen permafrost basins (Alases). Electrical resistivity surveys with floating electrodes were carried out to map ice-bearing permafrost and taliks (unfrozen zones in the permafrost, usually formed beneath lakes) along the diverse coastline and in the lagoons. Combined with the borehole data, the electrical resistivity results permit estimation of contemporary ice-bearing permafrost characteristics, distribution, and occasionally, thickness. To conceptualize possible geomorphological and marine evolutionary pathways to the formation of the observed layering, numerical models were applied. The developed model incorporates salt diffusion and seasonal dynamics at the seabed, including bedfast ice. Even along coastlines with mean annual non-cryotic boundary conditions like the Bykovsky Peninsula, the modelling results show that salt diffusion minimizes seasonal freezing of the seabed, leading to faster degradation rates compared to models without salt diffusion. Seasonal processes are also important for thermokarst lake to lagoon transitions because lagoons can generate cold hypersaline conditions underneath the ice cover. My research suggests that ice-bearing permafrost can form in a coastal lagoon environment, even under floating ice. Alas basins, however, may degrade more than twice as fast as Yedoma permafrost in the first several decades of inundation. In addition to a lower ice content compared to Yedoma permafrost, Alas basins may be pre-conditioned with salt from adjacent lagoons. Considering the widespread distribution of thermokarst in the Arctic, its integration into geophysical models and offshore surveys is important to quantify and understand subsea permafrost degradation and aggradation. Through numerical modelling, fieldwork, and a circum-Arctic review of subsea permafrost literature, this thesis provides new insights into sub-aquatic permafrost evolution in saline coastal environments. KW - permafrost KW - subsea KW - submarine KW - thermokarst KW - lagoons KW - salt diffusion KW - electrical resistivity Y1 - 2020 ER - TY - JOUR A1 - Angelopoulos, Michael A1 - Overduin, Pier Paul A1 - Westermann, Sebastian A1 - Tronicke, Jens A1 - Strauss, Jens A1 - Schirrmeister, Lutz A1 - Biskaborn, Boris A1 - Liebner, Susanne A1 - Maksimov, Georgii A1 - Grigoriev, Mikhail N. A1 - Grosse, Guido T1 - Thermokarst lake to lagoon transitions in Eastern Siberia BT - do submerged taliks refreeze? JF - Journal of geophysical research : Earth surface N2 - As the Arctic coast erodes, it drains thermokarst lakes, transforming them into lagoons, and, eventually, integrates them into subsea permafrost. Lagoons represent the first stage of a thermokarst lake transition to a marine setting and possibly more saline and colder upper boundary conditions. In this research, borehole data, electrical resistivity surveying, and modeling of heat and salt diffusion were carried out at Polar Fox Lagoon on the Bykovsky Peninsula, Siberia. Polar Fox Lagoon is a seasonally isolated water body connected to Tiksi Bay through a channel, leading to hypersaline waters under the ice cover. The boreholes in the center of the lagoon revealed floating ice and a saline cryotic bed underlain by a saline cryotic talik, a thin ice-bearing permafrost layer, and unfrozen ground. The bathymetry showed that most of the lagoon had bedfast ice in spring. In bedfast ice areas, the electrical resistivity profiles suggested that an unfrozen saline layer was underlain by a thick layer of refrozen talik. The modeling showed that thermokarst lake taliks can refreeze when submerged in saltwater with mean annual bottom water temperatures below or slightly above 0 degrees C. This occurs, because the top-down chemical degradation of newly formed ice-bearing permafrost is slower than the refreezing of the talik. Hence, lagoons may precondition taliks with a layer of ice-bearing permafrost before encroachment by the sea, and this frozen layer may act as a cap on gas migration out of the underlying talik. KW - thermokarst lake KW - talik KW - lagoon KW - subsea permafrost KW - salt diffusion KW - Siberia Y1 - 2020 U6 - https://doi.org/10.1029/2019JF005424 SN - 2169-9003 SN - 2169-9011 VL - 125 IS - 10 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Arnous, Ahmad A1 - Zeckra, Martin A1 - Venerdini, Agostina A1 - Alvarado, Patricia A1 - Arrowsmith, Ramón A1 - Guillemoteau, Julien A1 - Landgraf, Angela A1 - Gutiérrez, Adolfo Antonio A1 - Strecker, Manfred T1 - Neotectonic Activity in the Low-Strain Broken Foreland (Santa Bárbara System) of the North-Western Argentinean Andes (26°S) JF - Lithosphere N2 - Uplift in the broken Andean foreland of the Argentine Santa Bárbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface. Y1 - 2019 U6 - https://doi.org/10.2113/2020/8888588 SN - 1947-4253 SN - 1941-8264 VL - 2020 IS - 1 SP - 1 EP - 25 PB - GSA CY - Boulder, Colo. ER - TY - GEN A1 - Arnous, Ahmad A1 - Zeckra, Martin A1 - Venerdini, Agostina A1 - Alvarado, Patricia A1 - Arrowsmith, Ramón A1 - Guillemoteau, Julien A1 - Landgraf, Angela A1 - Gutiérrez, Adolfo Antonio A1 - Strecker, Manfred T1 - Neotectonic Activity in the Low-Strain Broken Foreland (Santa Bárbara System) of the North-Western Argentinean Andes (26°S) T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Uplift in the broken Andean foreland of the Argentine Santa Bárbara System (SBS) is associated with the contractional reactivation of basement anisotropies, similar to those reported from the thick-skinned Cretaceous-Eocene Laramide province of North America. Fault scarps, deformed Quaternary deposits and landforms, disrupted drainage patterns, and medium-sized earthquakes within the SBS suggest that movement along these structures may be a recurring phenomenon, with yet to be defined repeat intervals and rupture lengths. In contrast to the Subandes thrust belt farther north, where eastward-migrating deformation has generated a well-defined thrust front, the SBS records spatiotemporally disparate deformation along structures that are only known to the first order. We present herein the results of geomorphic desktop analyses, structural field observations, and 2D electrical resistivity tomography and seismic-refraction tomography surveys and an interpretation of seismic reflection profiles across suspected fault scarps in the sedimentary basins adjacent to the Candelaria Range (CR) basement uplift, in the south-central part of the SBS. Our analysis in the CR piedmont areas reveals consistency between the results of near-surface electrical resistivity and seismic-refraction tomography surveys, the locations of prominent fault scarps, and structural geometries at greater depth imaged by seismic reflection data. We suggest that this deformation is driven by deep-seated blind thrusting beneath the CR and associated regional warping, while shortening involving Mesozoic and Cenozoic sedimentary strata in the adjacent basins was accommodated by layer-parallel folding and flexural-slip faults that cut through Quaternary landforms and deposits at the surface. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1008 Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-480183 SN - 1866-8372 IS - 1008 SP - 1 EP - 25 ER - TY - GEN A1 - Ayzel, Georgy A1 - Scheffer, Tobias A1 - Heistermann, Maik T1 - RainNet v1.0 BT - a convolutional neural network for radar-based precipitation nowcasting T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. Its design was inspired by the U-Net and SegNet families of deep learning models, which were originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of 5min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900km × 900km and has a resolution of 1km in space and 5min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve a lead time of 1h, a recursive approach was implemented by using RainNet predictions at 5min lead times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the rainymotion library and had previously been shown to outperform DWD's operational nowcasting model for the same set of verification events. RainNet significantly outperforms the benchmark models at all lead times up to 60min for the routine verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds of 0.125, 1, and 5mm h⁻¹. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15mm h⁻¹). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5min, however, the increasing level of smoothing is a mere artifact – an analogue to numerical diffusion – that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model code, pretrained weights, and training data are provided in open repositories as an input for such future studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 964 KW - weather KW - models KW - skill Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472942 SN - 1866-8372 IS - 964 ER - TY - JOUR A1 - Ayzel, Georgy A1 - Scheffer, Tobias A1 - Heistermann, Maik T1 - RainNet v1.0 BT - a convolutional neural network for radar-based precipitation nowcasting JF - Geoscientific Model Development N2 - In this study, we present RainNet, a deep convolutional neural network for radar-based precipitation nowcasting. Its design was inspired by the U-Net and SegNet families of deep learning models, which were originally designed for binary segmentation tasks. RainNet was trained to predict continuous precipitation intensities at a lead time of 5min, using several years of quality-controlled weather radar composites provided by the German Weather Service (DWD). That data set covers Germany with a spatial domain of 900km × 900km and has a resolution of 1km in space and 5min in time. Independent verification experiments were carried out on 11 summer precipitation events from 2016 to 2017. In order to achieve a lead time of 1h, a recursive approach was implemented by using RainNet predictions at 5min lead times as model inputs for longer lead times. In the verification experiments, trivial Eulerian persistence and a conventional model based on optical flow served as benchmarks. The latter is available in the rainymotion library and had previously been shown to outperform DWD's operational nowcasting model for the same set of verification events. RainNet significantly outperforms the benchmark models at all lead times up to 60min for the routine verification metrics mean absolute error (MAE) and the critical success index (CSI) at intensity thresholds of 0.125, 1, and 5mm h⁻¹. However, rainymotion turned out to be superior in predicting the exceedance of higher intensity thresholds (here 10 and 15mm h⁻¹). The limited ability of RainNet to predict heavy rainfall intensities is an undesirable property which we attribute to a high level of spatial smoothing introduced by the model. At a lead time of 5min, an analysis of power spectral density confirmed a significant loss of spectral power at length scales of 16km and below. Obviously, RainNet had learned an optimal level of smoothing to produce a nowcast at 5min lead time. In that sense, the loss of spectral power at small scales is informative, too, as it reflects the limits of predictability as a function of spatial scale. Beyond the lead time of 5min, however, the increasing level of smoothing is a mere artifact – an analogue to numerical diffusion – that is not a property of RainNet itself but of its recursive application. In the context of early warning, the smoothing is particularly unfavorable since pronounced features of intense precipitation tend to get lost over longer lead times. Hence, we propose several options to address this issue in prospective research, including an adjustment of the loss function for model training, model training for longer lead times, and the prediction of threshold exceedance in terms of a binary segmentation task. Furthermore, we suggest additional input data that could help to better identify situations with imminent precipitation dynamics. The model code, pretrained weights, and training data are provided in open repositories as an input for such future studies. KW - weather KW - models KW - skill Y1 - 2020 U6 - https://doi.org/10.5194/gmd-13-2631-2020 SN - 1991-959X SN - 1991-9603 VL - 13 IS - 6 SP - 2631 EP - 2644 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Baes, Marzieh A1 - Sobolev, Stephan A1 - Gerya, Taras V. A1 - Brune, Sascha T1 - Plume-induced subduction initiation BT - single-slab or multi-slab subduction? JF - Geochemistry, geophysics, geosystems N2 - Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume-lithosphere interaction. Using 3-D thermomechanical models we show that the deformation regime, which defines formation of single-slab or multi-slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large-scale lithospheric extension rate. Our model results indicate that on present-day Earth multi-slab plume-induced subduction is initiated only if the oceanic lithosphere is relatively young (<30-40 Myr, but >10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single-slab subduction is facilitated by older lithosphere and pre-imposed extensional stresses. In early Earth, plume-lithosphere interaction could have led to formation of either episodic short-lived circular subduction when the oceanic lithosphere was young or to multi-slab subduction when the lithosphere was old. KW - subduction zone KW - plume KW - numerical model KW - singleslab KW - multi-slab Y1 - 2020 U6 - https://doi.org/10.1029/2019GC008663 SN - 1525-2027 VL - 21 IS - 2 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Baes, Marzieh A1 - Sobolev, Stephan V. A1 - Gerya, Taras V. A1 - Brune, Sascha T1 - Subduction initiation by Plume-Plateau interaction BT - insights from numerical models JF - Geochemistry, geophysics, geosystems N2 - It has recently been demonstrated that the interaction of a mantle plume with sufficiently old oceanic lithosphere can initiate subduction. However, the existence of large lithospheric heterogeneities, such as a buoyant plateau, in proximity to a rising plume head may potentially hinder the formation of a new subduction zone. Here, we investigate this scenario by means of 3-D numerical thermomechanical modeling. We explore how plume-lithosphere interaction is affected by lithospheric age, relative location of plume head and plateau border, and the strength of the oceanic crust. Our numerical experiments suggest four different geodynamic regimes: (a) oceanic trench formation, (b) circular oceanic-plateau trench formation, (c) plateau trench formation, and (d) no trench formation. We show that regardless of the age and crustal strength of the oceanic lithosphere, subduction can initiate when the plume head is either below the plateau border or at a distance less than the plume radius from the plateau edge. Crustal heterogeneity facilitates subduction initiation of old oceanic lithosphere. High crustal strength hampers the formation of a new subduction zone when the plume head is located below a young lithosphere containing a thick and strong plateau. We suggest that plume-plateau interaction in the western margin of the Caribbean could have resulted in subduction initiation when the plume head impinged onto the oceanic lithosphere close to the border between plateau and oceanic crust. KW - subduction zone KW - plume KW - plateau KW - numerical modeling KW - plume-induced KW - subduction initiation (PISI) Y1 - 2020 U6 - https://doi.org/10.1029/2020GC009119 SN - 1525-2027 VL - 21 IS - 8 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Baes, Marzieh A1 - Sobolev, Stephan Vladimir A1 - Gerya, Taras V. A1 - Brune, Sascha T1 - Plume-induced subduction initiation BT - Single-slab or multi-slab subduction? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Initiation of subduction following the impingement of a hot buoyant mantle plume is one of the few scenarios that allow breaking the lithosphere and recycling a stagnant lid without requiring any preexisting weak zones. Here, we investigate factors controlling the number and shape of retreating subducting slabs formed by plume-lithosphere interaction. Using 3-D thermomechanical models we show that the deformation regime, which defines formation of single-slab or multi-slab subduction, depends on several parameters such as age of oceanic lithosphere, thickness of the crust and large-scale lithospheric extension rate. Our model results indicate that on present-day Earth multi-slab plume-induced subduction is initiated only if the oceanic lithosphere is relatively young (<30-40 Myr, but >10 Myr), and the crust has a typical thickness of 8 km. In turn, development of single-slab subduction is facilitated by older lithosphere and pre-imposed extensional stresses. In early Earth, plume-lithosphere interaction could have led to formation of either episodic short-lived circular subduction when the oceanic lithosphere was young or to multi-slab subduction when the lithosphere was old. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1167 KW - subduction zone KW - plume KW - numerical model KW - singleslab KW - multi-slab Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-522742 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Bahr, André A1 - Kolber, Gilles A1 - Kaboth-Bahr, Stefanie A1 - Reinhardt, Lutz A1 - Friedrich, Oliver A1 - Pross, Jörg T1 - Mega-monsoon variability during the late Triassic BT - re-assessing the role of orbital forcing in the deposition of playa sediments in the Germanic Basin JF - Sedimentology : the journal of the International Association of Sedimentologists N2 - The formation of the supercontinent Pangaea during the Permo-Triassic gave rise to an extreme monsoonal climate (often termed 'mega-monsoon') that has been documented by numerous palaeo-records. However, considerable debate exists about the role of orbital forcing in causing humid intervals in an otherwise arid climate. To shed new light on the forcing of monsoonal variability in subtropical Pangaea, this study focuses on sediment facies and colour variability of playa and alluvial fan deposits in an outcrop from the late Carnian (ca 225 Ma) in the southern Germanic Basin, south-western Germany. The sediments were deposited against a background of increasingly arid conditions following the humid Carnian Pluvial Event (ca 234 to 232 Ma). The ca 2 center dot 4 Myr long sedimentary succession studied shows a tripartite long-term evolution, starting with a distal mud-flat facies deposited under arid conditions. This phase was followed by a highly variable playa-lake environment that documents more humid conditions and finally a regression of the playa-lake due to a return of arid conditions. The red-green (a*) and lightness (L*) records show that this long-term variability was overprinted by alternating wet/dry cycles driven by orbital precession and ca 405 kyr eccentricity, without significant influence of obliquity. The absence of obliquity in this record indicates that high-latitude forcing played only a minor role in the southern Germanic Basin during the late Carnian. This is different from the subsequent Norian when high-latitude signals became more pronounced, potentially related to the northward drift of the Germanic Basin. The recurring pattern of pluvial events during the late Triassic demonstrates that orbital forcing, in particular eccentricity, stimulated the occurrence and intensity of wet phases. It also highlights the possibility that the Carnian Pluvial Event, although most likely triggered by enhanced volcanic activity, may also have been modified by an orbital stimulus. KW - Carnian Pluvial Event KW - Germanic Basin KW - Late Triassic KW - mega-monsoon KW - orbital forcing KW - playa-lake Y1 - 2019 U6 - https://doi.org/10.1111/sed.12668 SN - 0037-0746 SN - 1365-3091 VL - 67 IS - 2 SP - 951 EP - 970 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Balischewski, Christian A1 - Behrens, Karsten A1 - Zehbe, Kerstin A1 - Günter, Christina A1 - Mies, Stefan A1 - Sperlich, Eric A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Ionic liquids with more than one metal BT - optical and rlectrochemical properties versus d-block metal vombinations JF - Chemistry - a European journal N2 - Thirteen N-butylpyridinium salts, including three monometallic [C4Py](2)[MCl4], nine bimetallic [C4Py](2)[(M1-xMxCl4)-M-a-Cl-b] and one trimetallic compound [C4Py](2)[(M1-y-zMyMz (c) Cl4)-M-a-M-b] (M=Co, Cu, Mn; x=0.25, 0.50 or 0.75 and y=z=0.33), were synthesized and their structure and thermal and electrochemical properties were studied. All compounds are ionic liquids (ILs) with melting points between 69 and 93 degrees C. X-ray diffraction proves that all ILs are isostructural. The conductivity at room temperature is between 10(-4) and 10(-8) S cm(-1). Some Cu-based ILs reach conductivities of 10(-2) S cm(-1), which is, however, probably due to IL dec. This correlates with the optical bandgap measurements indicating the formation of large bandgap semiconductors. At elevated temperatures approaching the melting points, the conductivities reach up to 1.47x10(-1) S cm(-1) at 70 degrees C. The electrochemical stability windows of the ILs are between 2.5 and 3.0 V. KW - bandgap KW - electrochemistry KW - ionic liquids KW - metal-containing ionic KW - liquids KW - tetrahalido metallates Y1 - 2020 U6 - https://doi.org/10.1002/chem.202003097 SN - 0947-6539 SN - 1521-3765 VL - 26 IS - 72 SP - 17504 EP - 17513 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Barbolini, Natasha A1 - Woutersen, Amber A1 - Dupont-Nivet, Guillaume A1 - Silvestro, Daniele A1 - Tardif-Becquet, Delphine A1 - Coster, Pauline M. C. A1 - Meijer, Niels A1 - Chang, Cun A1 - Zhang, Hou-Xi A1 - Licht, Alexis A1 - Rydin, Catarina A1 - Koutsodendris, Andreas A1 - Han, Fang A1 - Rohrmann, Alexander A1 - Liu, Xiang-Jun A1 - Zhang, Y. A1 - Donnadieu, Yannick A1 - Fluteau, Frederic A1 - Ladant, Jean-Baptiste A1 - Le Hir, Guillaume A1 - Hoorn, M. Carina T1 - Cenozoic evolution of the steppe-desert biome in Central Asia JF - Science Advances N2 - The origins and development of the arid and highly seasonal steppe-desert biome in Central Asia, the largest of its kind in the world, remain largely unconstrained by existing records. It is unclear how Cenozoic climatic, geological, and biological forces, acting at diverse spatial and temporal scales, shaped Central Asian ecosystems through time. Our synthesis shows that the Central Asian steppe-desert has existed since at least Eocene times but experienced no less than two regime shifts, one at the Eocene-Oligocene Transition and one in the mid-Miocene. These shifts separated three successive "stable states," each characterized by unique floral and faunal structures. Past responses to disturbance in the Asian steppe-desert imply that modern ecosystems are unlikely to recover their present structures and diversity if forced into a new regime. This is of concern for Asian steppes today, which are being modified for human use and lost to desertification at unprecedented rates. Y1 - 2020 U6 - https://doi.org/10.1126/sciadv.abb8227 SN - 2375-2548 VL - 6 IS - 41 PB - American Association for the Advancement of Science CY - Washington ER - TY - JOUR A1 - Baroni, Gabriele A1 - Francke, Till T1 - An effective strategy for combining variance- and distribution-based global sensitivity analysis JF - Environmental modelling & software with environment data news N2 - We present a new strategy for performing global sensitivity analysis capable to estimate main and interaction effects from a generic sampling design. The new strategy is based on a meaningful combination of varianceand distribution-based approaches. The strategy is tested on four analytic functions and on a hydrological model. Results show that the analysis is consistent with the state-of-the-art Saltelli/Jansen formula but to better quantify the interaction effect between the input factors when the output distribution is skewed. Moreover, the estimation of the sensitivity indices is much more robust requiring a smaller number of simulations runs. Specific settings and alternative methods that can be integrated in the new strategy are also discussed. Overall, the strategy is considered as a new simple and effective tool for performing global sensitivity analysis that can be easily integrated in any environmental modelling framework. KW - global sensitivity analysis KW - variance KW - distribution KW - generic sampling KW - design Y1 - 2020 U6 - https://doi.org/10.1016/j.envsoft.2020.104851 SN - 1364-8152 SN - 1873-6726 VL - 134 PB - Elsevier CY - Oxford ER - TY - THES A1 - Barrionuevo, Matías T1 - The role of the upper plate in the Andean tectonic evolution (33-36°S): insights from structural geology and numerical modeling T1 - El rol de la placa superior en la evolución tectónica andina (33-36°S): aportes desde la geología estructural y el modelado numérico T1 - Die Rolle der oberen Platte in der tektonischen Entwicklung der Anden (33-36°S): Erkenntnisse aus der Strukturgeologie und der numerischen Modellierung N2 - Los Andes Centrales del Sur (33-36°S) son un gran laboratorio para el estudio de los procesos de deformación orogénica, donde las condiciones de borde, como la geometría de la placa subductada, imponen un importante control sobre la deformación andina. Por otro lado, la Placa Sudamericana presenta una serie de heterogeneidades que también imparten un control sobre el modo de deformación. El objetivo de esta tesis es probar el control de este último factor sobre la construcción del sistema orogénico andino. A partir de la integración de la información superficial y de subsuelo en el área sur (34°-36°S), se estudió la evolución de la deformación andina sobre el segmento de subducción normal. Se desarrolló un modelo estructural que evalúa el estado de esfuerzos desde el Mioceno hasta la actualidad, el rol de estructuras previas y su influencia en la migración de fluidos. Con estos datos y publicaciones previas de la zona norte del área de estudio (33°-34ºS), se realizó un modelado numérico geodinámico para probar la hipótesis del papel de las heterogeneidades de la placa superior en la evolución andina. Se utilizaron dos códigos (LAPEX-2D y ASPECT) basados en elementos finitos/diferencias finitas, que simulan el comportamiento de materiales con reologías elastoviscoplásticas bajo deformación. Los resultados del modelado sugieren que la deformación contraccional de la placa superior está significativamente controlada por la resistencia de la litósfera, que está definida por la composición de la corteza superior e inferior y por la proporción del manto litosférico, que a su vez está definida por eventos tectónicos previos. Estos eventos previos también definieron la composición de la corteza y su geometría, que es otro factor que controla la localización de la deformación. Con una composición de corteza inferior más félsica, la deformación sigue un modo de cizalla pura mientras que las composiciones más máficas provocan un modo de deformación tipo cizalla simple. Por otro lado, observamos que el espesor inicial de la litósfera controla la localización de la deformación, donde zonas con litósfera más fina es propensa a concentrar la deformación. Un límite litósfera-astenósfera asimétrico, como resultado del flujo de la cuña mantélica tiende a generar despegues vergentes al E. N2 - The Southern Central Andes (33°-36°S) are an excellent natural laboratory to study orogenic deformation processes, where boundary conditions, such as the geometry of the subducted plate, impose an important control on the evolution of the orogen. On the other hand, the South American plate presents a series of heterogeneities that additionally impart control on the mode of deformation. This thesis aims to test the control of this last factor over the construction of the Cenozoic Andean orogenic system. From the integration of surface and subsurface information in the southern area (34-36°S), the evolution of Andean deformation over the steeply dipping subduction segment was studied. A structural model was developed evaluating the stress state from the Miocene to the present-day and its influence in the migration of magmatic fluids and hydrocarbons. Based on these data, together with the data generated by other researchers in the northern zone of the study area (33-34°S), geodynamic numerical modeling was performed to test the hypothesis of the decisive role of upper-plate heterogeneities in the Andean evolution. Geodynamic codes (LAPEX-2D and ASPECT) which simulate the behavior of materials with elasto-visco-plastic rheologies under deformation, were used. The model results suggest that upper-plate contractional deformation is significantly controlled by the strength of the lithosphere, which is defined by the composition of the upper and lower crust, and by the proportion of lithospheric mantle, which in turn is determined by previous tectonic events. In addition, the previous regional tectono-magmatic events also defined the composition of the crust and its geometry, which is another factor that controls the localization of deformation. Accordingly, with more felsic lower crustal composition, the deformation follows a pure-shear mode, while more mafic compositions induce a simple-shear deformation mode. On the other hand, it was observed that initial lithospheric thickness may fundamentally control the location of deformation, with zones characterized by thin lithosphere are prone to concentrate it. Finally, it was found that an asymmetric lithosphere-astenosphere boundary resulting from corner flow in the mantle wedge of the eastward-directed subduction zone tends to generate east-vergent detachments. N2 - Die südlichen Zentralanden (33°-36°S) sind eine ausgezeichnete, natürliche Forschungsumgebung zur Untersuchung gebirgsbildender Deformationsprozesse, in der Randbedingungen, wie die Geometrie der subduzierten Platte, einen starken Einfluss auf die Evolution des Gebirges besitzen. Anderseits sind die Deformationsmechanismen geprägt von der Heterogenität der Südamerikanischen Platte. In dieser Arbeit wird die Bedeutung dieses Mechanismus für die Herausbildung der Anden während des Känozoikums untersucht. Im südlichen Teil (34-36°S), in dem die subduzierte Platte in einem steileren Winkel in den Erdmantel absinkt, wird die Entwicklung der Andendeformation mithilfe von oberflächlich aufgezeichneten und in tiefere Erdschichten reichenden Daten untersucht. Das darauf aufbauende Strukturmodell ermöglicht die Abschätzung der tektonischen Spannungen vom Miozän bis in die Neuzeit und den Einfluss der Bewegungen von magmatischen Fluiden, sowie Kohlenwasserstoffen. Auf Grundlage dieser Daten und solcher, die von Wissenschaftlern im nördlichen Bereich des Untersuchungsgebietes (33-34°S) erfasst wurden, wurde eine geodynamische, numerische Modellierung durchgeführt, um die Hypothese des Einflusses der Heterogenität der oberen Platten auf die Gebirgsbildung der Anden zu überprüfen. Die genutzte geodynamische Softwares (LAPEX-2D und ASPECT) simulieren das Verhalten von elasto-viskoplastischen Materialien, wenn diese unter Spannung stehen. Die Modellierungsergebnisse zeigen, dass die Kontraktionsprozesse hauptsächlich durch die Stärke der Lithosphäre beeinflusst werden. Diese Kenngröße wird aus der Zusammensetzung von Ober- und Unterkruste und dem Anteil des lithosphärischen Mantels, der durch vorhergehende tektonische Vorgänge überprägt ist, bestimmt. Diese räumlich begrenzten tektono-magmatischen Events definieren ebenfalls die Zusammensetzung und die Geometrie der Erdkruste, welche einen großen Einfluss auf das räumliche Auftreten von Deformationsprozessen hat. Eine eher felsische Unterkruste führt vorrangig zu pure-shear, während eine eher mafisch zusammengesetzte Unterkruste primär zu einem Deformationsmechanismus führt, der simple-shear genannt wird. Weiterhing wurde beobachtet, dass die Dicke der Lithosphäre vor der Deformation einen fundamentalen Einfluss auf die räumliche Eingrenzung von Deformation hat, wobei Regionen mit einer dünnen Lithosphärenschicht verstärkt Deformation aufweisen. Eine asymmetrische Grenzschicht zwischen Lithosphäre und Asthenosphäre ist das Resultat von Fließprozessen im Erdmantel, im Keil zwischen der obenliegenden Platte und der sich ostwärts absinkenden Subduktionszone, und verstärkt die Herausbildung von nach Osten gerichteten Abscherungen in der Erdkruste. KW - structural geology KW - tectonics KW - subduction KW - geodynamic modeling KW - geodynamische Modellierung KW - Strukturgeologie KW - Subduktion KW - Tektonik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515909 ER - TY - GEN A1 - Ben Dor, Yoav A1 - Neugebauer, Ina A1 - Enzel, Yehouda A1 - Schwab, Markus J. A1 - Tjallingii, Rik A1 - Erel, Yigal A1 - Brauer, Achim T1 - Reply to comment on: Ben Dor, Yoav et al. : Varves of the Dead Sea sedimentary record. - In: Quaternary science reviews : the international multidisciplinary research and review journal. - 215 (2019), S. 173 - 184. - (ISSN: 0277-3791). - https://doi.org/10.1016/j.quascirev.2019.04.011 T2 - Quaternary science reviews : the international multidisciplinary research and review journal N2 - In the comment on "Varves of the Dead Sea sedimentary record." Quaternary Science Reviews 215 (Ben Dor et al., 2019): 173-184. by R. Bookman, two recently published papers are suggested to prove that the interpretation of the laminated sedimentary sequence of the Dead Sea, deposited mostly during MIS2 and Holocene pluvials, as annual deposits (i.e., varves) is wrong. In the following response, we delineate several lines of evidence which coalesce to demonstrate that based on the vast majority of evidence, including some of the evidence provided in the comment itself, the interpretation of these sediments as varves is the more likely scientific conclusion. We further discuss the evidence brought up in the comment and its irrelevance and lack of robustness for addressing the question under discussion. Y1 - 2020 U6 - https://doi.org/10.1016/j.quascirev.2019.106063 SN - 0277-3791 VL - 231 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Bentz, Stephan A1 - Kwiatek, Grzegorz A1 - Martinez-Garzon, Patricia A1 - Bohnhoff, Marco A1 - Dresen, Georg T1 - Seismic moment evolution during hydraulic stimulations JF - Geophysical research letters N2 - Analysis of past and present stimulation projects reveals that the temporal evolution and growth of maximum observed moment magnitudes may be linked directly to the injected fluid volume and hydraulic energy. Overall evolution of seismic moment seems independent of the tectonic stress regime and is most likely governed by reservoir specific parameters, such as the preexisting structural inventory. Data suggest that magnitudes can grow either in a stable way, indicating the constant propagation of self-arrested ruptures, or unbound, for which the maximum magnitude is only limited by the size of tectonic faults and fault connectivity. Transition between the two states may occur at any time during injection or not at all. Monitoring and traffic light systems used during stimulations need to account for the possibility of unstable rupture propagation from the very beginning of injection by observing the entire seismicity evolution in near-real time and at high resolution for an immediate reaction in injection strategy. Plain Language Summary Predicting and controlling the size of earthquakes caused by fluid injection is currently the major concern of many projects associated with geothermal energy production. Here, we analyze the magnitude and seismic moment evolution with injection parameters for prominent geothermal and scientific projects to date. Evolution of seismicity seems to be largely independent of the tectonic stress background and seemingly depends on reservoir specific characteristics. We find that the maximum observed magnitudes relate linearly to the injected volume or hydraulic energy. A linear relation suggests stable growth of induced ruptures, as predicted by current models, or rupture growth may no longer depend on the stimulated volume but on tectonics. A system may change between the two states during the course of fluid injection. Close-by and high-resolution monitoring of seismic and hydraulic parameters in near-real time may help identify these fundamental changes in ample time to change injection strategy and manage maximum magnitudes. Y1 - 2020 U6 - https://doi.org/10.1029/2019GL086185 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 5 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Biedermann, Nicole T1 - Carbonate-silicate reactions at conditions of the Earth’s mantle and the role of carbonates as possible trace-element carriers N2 - Carbonates play a key role in the chemistry and dynamics of our planet. They are directly connected to the CO2 budget of our atmosphere and have a great impact on the deep carbon cycle. Moreover, recent studies have shown that carbonates are stable along the geothermal gradient down to Earth's lower mantle conditions, changing their crystal structure and related properties. Subducted carbonates may also react with silicates to form new phases. These reactions will redistribute elements, such as calcium (Ca), magnesium (Mg), iron (Fe) and carbon in the form of carbon dioxide (CO2), but also trace elements, that are carried by the carbonates. The trace elements of most interest are strontium (Sr) and rare earth elements (REE) which have been found to be important constituents in the composition of the primitive lower mantle and in mineral inclusions found in super-deep diamonds. However, the stability of carbonates in presence of mantle silicates at relevant temperatures is far from being well understood. Related to this, very little is known about distribution processes of trace elements between carbonates and mantle silicates. To shed light on these processes, we studied reactions between Sr- and REE-containing CaCO3 and Mg/Fe-bearing silicates of the system (Mg,Fe)2SiO4 - (Mg,Fe)SiO3 at high pressure and high temperature using synchrotron radiation based μ-X-ray diffraction (μ-XRD) and μ-X-ray fluorescence (μ-XRF) with μm-resolution in a laser-heated diamond anvil cell. X-ray diffraction is used to derive the structural changes of the phase reactions whereas X-ray fluorescence gives information on the chemical changes in the sample. In-situ experiments at high pressure and high temperature were performed at beamline P02.2 at PETRA III (Hamburg, Germany) and at beamline ID27 at ESRF (Grenoble, France). In addition to μ-XRD and μ-XRF, ex-situ measurements were made on the recovered sample material using transmission electron microscopy (TEM) and provided further insights into the reaction kinetics of carbonate-silicate reactions. Our investigations show that CaCO3 is unstable in presence of mantle silicates above 1700 K and a reaction takes place in which magnesite plus CaSiO3-perovskite are formed. In addition, we observed that a high content of iron in the carbonate-silicate system favours dolomite formation during the reaction. The subduction of natural carbonates with significant amounts of Sr leads to a comprehensive investigation of the stability not only of CaCO3 phases in contact with mantle silicates but also of SrCO3 (and of Sr-bearing CaCO3). We found that SrCO3 reacts with (Mg,Fe)SiO3-perovskite to form magnesite and gained evidence for the formation of SrSiO3-perovskite. To complement our study on the stability of SrCO3 at conditions of the Earth's lower mantle, we performed powder X-ray diffraction and single crystal X-ray diffraction experiments at ambient temperature and up to 49 GPa. We observed a transformation from SrCO3-I into a new high-pressure phase SrCO3-II at around 26 GPa with Pmmn crystal structure and a bulk modulus of 103(10) GPa. This information is essential to fully understand the phase behaviour and stability of carbonates in the Earth's lower mantle and to elucidate the possibility of introducing Sr into mantle silicates by carbonate-silicate reactions. Simultaneous recording of μ-XRD and μ-XRF in the μm-range over the heated areas provides spatial information not only about phase reactions but also on the elemental redistribution during the reactions. A comparison of the spatial intensity distribution of the XRF signal before and after heating indicates a change in the elemental distribution of Sr and an increase in Sr-concentration was found around the newly formed SrSiO3-perovskite. With the help of additional TEM analyses on the quenched sample material the elemental redistribution was studied at a sub-micrometer scale. Contrary to expectations from combined μ-XRD and μ-XRF measurements, we found that La and Eu were not incorporated into the silicate phases, instead they tend to form either isolated oxide phases (e.g. Eu2O3, La2O3) or hydroxyl-bastnäsite (La(CO3)(OH)). In addition, we observed the transformation from (Mg,Fe)SiO3-perovskite to low-pressure clinoenstatite during pressure release. The monoclinic structure (P21/c) of this phase allows the incorporation of Ca as shown by additional EDX analyses and, to a minor extent, Sr too. Based on our experiments, we can conclude that a detection of the trace elements in-situ at high pressure and high temperature remains challenging. However, our first findings imply that silicates may incorporate the trace elements provided by the carbonates and indicate that carbonates may have a major effect on the trace element contents of mantle phases. N2 - Karbonate spielen eine wesentliche Rolle in der Chemie und Dynamik unseres Planeten. Sie stehen im direkten Zusammenhang mit dem CO2-Haushalt unserer Atmosphäre und dem tiefen, erdinneren Kohlenstoff-Kreislauf. Darüber hinaus haben jüngste Studien gezeigt, dass subduzierte Karbonate entlang des geothermischen Gradienten bis hinunter zu unteren Erdmantelbedingungen stabil sind, wobei sich ihre Kristallstruktur und die damit verbundenen Eigenschaften ändern. Ebenso können subduzierte Karbonate mit Mantelsilikaten reagieren. Diese Reaktionen führen zu einer Umverteilung von Elementen, welche von den subduzierten Karbonaten hinunter in die Tiefen der Erde transportiert werden. Die Elemente, um die es sich hauptsächlich handelt, sind dabei Calcium (Ca), Magnesium (Mg), Eisen (Fe) und Kohlenstoff (C). Aber auch Spurenelemente, wie beispielsweise Strontium (Sr) und Seltene Erdelemente (REE), können über Karbonate in den unteren Erdmantelbereich gelangen. Die Stabilität der Karbonate in Gegenwart von Mantelsilikaten bei relevanten Erdmantelbedingungen ist jedoch bei Weitem nicht bekannt. Ebenso ist nur sehr wenig über die Verteilungsprozesse von Spurenelementen zwischen Karbonaten und Mantelsilikaten bekannt. Um diese Prozesse zu beleuchten, wurden Reaktionen zwischen Sr- und REE-haltigem CaCO3 und Mg/Fe-haltigen Silikaten aus dem System (Mg,Fe)2SiO4 - (Mg,Fe)SiO3 unter hohem Druck und hoher Temperatur mit μm-aufgelöster Röntgenbeugung (μ-XRD) und Röntgenfluoreszenz (μ-XRF) in einer lasergeheizten Diamantstempelzelle durchgeführt. Dabei wird Röntgenbeugung verwendet, um die strukturellen Änderungen der Phasenreaktionen abzuleiten, während Röntgenfluoreszenz Informationen über die chemischen Änderungen in der Probe liefert. Unsere Untersuchungen zeigen, dass sowohl SrCO3 als auch CaCO3 in Gegenwart von Mantelsilikaten bei über 1700 K instabil sind und eine Reaktion stattfindet, bei der Magnesit und CaSiO3-Perowskit bzw. SrSiO3-Perowskit gebildet werden. Ein Vergleich der räumlichen Intensitätsverteilungen von XRF Signalen vor und nach dem Heizen zeigt eine Änderung in der Elementverteilung von Sr und eine Zunahme der Sr-Konzentration um den neugebildeten SrSiO3-Perowskit. Zusätzliche Aufnahmen am zurückgewonnenen, abgeschreckten Probenmaterial mittels Transmissionselektronenmikroskopie (TEM) lieferten weitere Erkenntnisse zur Reaktionskinetik. Entgegen den Erwartungen eines Einbaus der Seltenen Erdelemente in die neugebildeten Mantelsilikate, haben wir aus kombinierten μ-XRD-, μ-XRF- und TEM-Messungen festgestellt, dass La und Eu entweder isolierte Oxidphasen (Eu2O3, La2O3) oder Hydroxyl-Bastnäsit (La(CO3)(OH)) bilden. Zusätzlich war zu beobachten, dass (Mg,Fe)SiO3-Perowskit sich während der Druckentlastung in Clinoenstatit umgewandelt hat. Die monokline Struktur dieser Phase ermöglicht den Einbau von Ca und, im geringerem Maße, Sr, wie durch zusätzliche EDX-Analysen gezeigt wurde. Ergänzend zu unserer Studie führten wir Pulver-Röntgenbeugung in Kombination mit Einkristall-Röntgenbeugung bei Umgebungstemperatur und bis zu 49 GPa am Endglied Strontianit (SrCO3) durch. Wir beobachteten eine Umwandlung von SrCO3-I in eine neue Hochdruckphase SrCO3-II bei etwa 26 GPa mit Pmmn-Kristallstruktur und einem Kompressionsmodul von 103(10) GPa. Solche Informationen sind sehr wichtig, da sie Aufschlüsse sowohl über das Phasenverhalten als auch über die Stabilität von Karbonaten in Gegenwart von Mantelsilikaten geben und helfen, sie vollständig zu verstehen. Basierend auf den Erkenntnissen aus unseren Experimenten können wir schließen, dass ein Nachweis von Spurenelementen in-situ unter hohem Druck und hoher Temperatur eine Herausforderung bleibt. Unsere Ergebnisse deuten jedoch darauf hin, dass Silikate die Spurenelemente, welche von den Karbonaten transportiert werden, aufnehmen können und demzufolge Karbonate einen wesentlichen Einfluss auf den Spurenelementgehalt von Mantelphasen haben. T2 - Karbonat-Silikat-Reaktionen bei Erdmantelbedingungen und die Rolle der Karbonate als mögliche Spurenelementträger KW - laser-heated Diamond Anvil Cell KW - Carbonate-Silicate reactions KW - Earth's mantle KW - Karbonat-Silikat-Reaktionen KW - Erdmantel KW - laser-geheizte Diamantstempelzelle Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-482772 ER - TY - THES A1 - Borghini, Alessia T1 - Melt inclusions in mafic rocks as witnesses of metasomatism in the Bohemian Massif N2 - Orogenic peridotites represent portions of upper subcontinental mantle now incorporated in mountain belts. They often contain layers, lenses and irregular bodies of pyroxenite and eclogite. The origin of this heterogeneity and the nature of these layers is still debated but it is likely to involve processes such as transient melts coming from the crust or the mantle and segregating in magma conduits, crust-mantle interaction, upwelling of the asthenosphere and metasomatism. All these processes occur in the lithospheric mantle and are often related with the subduction of crustal rocks to mantle depths. In fact, during subduction, fluids and melts are released from the slab and can interact with the overlying mantle, making the study of deep melts in this environment crucial to understand mantle heterogeneity and crust-mantle interaction. The aim of this thesis is precisely to better constrain how such processes take place studying directly the melt trapped as primary inclusions in pyroxenites and eclogites. The Bohemian Massif, crystalline core of the Variscan belt, is targeted for these purposes because it contains orogenic peridotites with layers of pyroxenite and eclogite and other mafic rocks enclosed in felsic high pressure and ultra-high pressure crustal rocks. Within this Massif mafic rocks from two areas have been selected: the garnet clinopyroxenite in orogenic peridotite of the Granulitgebirge and the ultra-high pressure eclogite in the diamond-bearing gneisses of the Erzgebirge. In both areas primary melt inclusions were recognized in the garnet, ranging in size between 2-25 µm and with different degrees of crystallization, from glassy to polycrystalline. They have been investigated with Micro Raman spectroscopy and EDS mapping and the mineral assemblage is kumdykolite, phlogopite, quartz, kokchetavite, phase with a main Raman peak at 430 cm-1, phase with a main Raman peak at 412 cm-1, white mica and calcite with some variability in relative abundance depending on the case study. In the Granulitgebirge osumilite and pyroxene are also present, whereas calcite is one of the main phases in the Erzgebirge. The presence of glass and the mineral assemblage in the nanogranitoids suggest that they were former droplets of melt trapped in the garnet while it was growing. Glassy inclusions and re-homogenized nanogranitoids show a silicate melt that is granitic, hydrous, high in alkalis and weakly peraluminous. The melt is also enriched in both case studies in Cs, Pb, Rb, U, Th, Li and B suggesting the involvement of crustal component, i.e. white mica (main carrier of Cs, Pb, Rb, Li and B), and a fluid (Cs, Th and U) in the melt producing reaction. The whole rock in both cases mainly consists of garnet and clinopyroxene with, in Erzgebirge samples, the additional presence of quartz both in the matrix and as a polycrystalline inclusion in the garnet. The latter is interpreted as a quartz pseudomorph after coesite and occurs in the same microstructural position as the melt inclusions. Both rock types show a crustal and subduction zone signature with garnet and clinopyroxene in equilibrium. Melt was likely present during the metamorphic peak of the rock, as it occurs in garnet. Our data suggest that the processes most likely responsible for the formation of the investigated rocks in both areas is a metasomatic reaction between a melt produced in the crust and mafic layers formerly located in the mantle wedge for the Granulitgebirge and in the subducted continental crust itself in the Erzgebirge. Thus metasomatism in the first case took place in the mantle overlying the slab, whereas in the second case metasomatism took place in the continental crust that already contained, before subduction, mafic layers. Moreover, the presence of former coesite in the same microstructural position of the melt inclusions in the Erzgebirge garnets suggest that metasomatism took place at ultra-high pressure conditions. Summarizing, in this thesis we provide new insights into the geodynamic evolution of the Bohemian Massif based on the study of melt inclusions in garnet in two different mafic rock types, combining the direct microstructural and geochemical investigation of the inclusions with the whole-rock and mineral geochemistry. We report for the first time data, directly extracted from natural rocks, on the metasomatic melt responsible for the metasomatism of several areas of the Bohemian Massif. Besides the two locations here investigated, belonging to the Saxothuringian Zone, a signature similar to the investigated melt is clearly visible in pyroxenite and peridotite of the T-7 borehole (again Saxothuringian Zone) and the durbachite suite located in the Moldanubian Zone. N2 - Die Präsenz orogener Peridotite - metamorphosierte Bestanteile des Mantels -, die in Gebirgen auftreten, belegt, dass der Erdmantel an Kontinent-Kontinent-Kollisionen beteiligt sein kann. Solche orogenen Peridotite sind häufig heterogen, da sie Pyroxenit- und Eklogitlagen und Linsen enthalten, d.h. Hochdruckgesteine, die aus Granat und Klinopyroxen bestehen. Die meisten Prozesse, die für diese Heterogenität verantwortlich sind, involvieren Schmelzen, die durch den Mantel migrieren und dabei zu dessen Metasomatose oder zu der Anreicherung von Granat und Klinopyroxen in Adern und Kanälen führen. Ein weiterer Prozess kann auch das Recyceln subduzierter ozeanischer Kruste im Erdmantel sein. Im Allgemeinen finden all diese Prozesse während der Subduktion der Kruste in Manteltiefe statt. Unter diesen Bedingungen stehen die Krustengesteine im direkten Kontakt mit den Mantelgesteinen und die dabei freigesetzten Fluide oder Schmelzen können mit den Peridotiten wechselwirken. Letztere können anschließend von den Krustengesteinen aufgenommen und zur Erdoberfläche exhumiert werden, wo sie untersucht werden können. Diese Arbeit fokussiert sich vor allem auf die Untersuchung der Pyroxenit- und Eklogitbildung sowie auf die Wechselwirkung zwischen Schmelze und Gestein während der Subduktion der Kontinentalkruste in Manteltiefe. Dafür ist das Böhmische Massiv die ideale geologische Umgebung, da es erhebliche Mengen an Pyroxeniten und Eklogiten enthält, die sich in einigen Fällen in orogenen Peridotiten befinden, und die alle in einer ehemals tief subduziertern kontinentalern Kruste eingegliedert wurden. Um die Zielstellung zu erreichen, wurde die Schmelze mit einem neuartigen Ansatz untersucht, wobei diese hier direkt in primären Schmelzeinschlüssen, die im Granat eingeschlossenen sind, untersucht wird. Es wurden zwei Gebiete mit Pyroxeniten und Eklogiten, die Schmelzeinschlüsse enthalten, ausgewählt, ein Pyroxenit aus dem Granulitgebirge und ein Ultrahochdruck-Eklogit aus dem Erzgebirge (Sachsen, Deutschland). Die Einschlüsse bestehen aus einer granitischen, wasserhaltigen Schmelze krustaler Herkunft. Das Auftreten der im Granat unregelmäßig verteilten Einschlüsse bestätigt das Vorhandensein von Schmelze während der Peakmetamorphose. Da die Schmelzen in beiden Fällen ähnlich sind, schlussfolgern wir daraus, dass beide Gesteinsarten durch metasomatische Prozesse infolge der Wechselwirkung von silikatreicher Schmelze und mafischen Lagen gebildete wurden. Im Granulitgebirge ging die Schmelze eine Wechselwirkung mit mafischen Lagen im Mantel ein und erst später wurde der Wirtsperidotit einschließlich der neugebildeten Pyroxenit- und Eklogitlagen in die subduzierte Kruste eingebaut. Im Fall der Pyroxenite und Eklogite des Erzgebirges fand die Metasomatose stattdessen in der kontinentalen Kruste statt. Hier ging die Schmelze eine Wechselwirkung mit mafischen Lagen ein, die sich bereits vor der Subduktion in der Kruste befunden hatten. Im letzteren Fall belegt der Hinweis auf ehemaligen Coesit , d. h. auf ein Mineral, das Tiefen >95 km anzeigt, welches anwesend war während der Metasomatose, dass die Prozesse in größeren Tiefen stattfanden als im Granulitgebirge. T2 - Schmelzeinschlüsse in mafischen Gesteinen als Zeugen von Metasomatose im Böhmischen Massiv KW - Petrology KW - Petrologie KW - Metamorphism KW - Melt inclusions KW - Metasomatism KW - Metamorphose KW - Schmelzeinschlüsse KW - Metasomatose Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473639 ER - TY - GEN A1 - Braun, Jean T1 - Response to comment by Japsen et al. on "A review of numerical modeling studies of passive margin escarpments leading to a new analytical expression for the rate of escarpment migration velocity" T2 - Gondwana research : international geoscience journal ; official journal of the International Association for Gondwana Research Y1 - 2020 U6 - https://doi.org/10.1016/j.gr.2018.10.003 SN - 1342-937X SN - 1878-0571 VL - 65 SP - 174 EP - 176 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Brill, Fabio Alexander A1 - Passuni Pineda, Silvia A1 - Espichan Cuya, Bruno A1 - Kreibich, Heidi T1 - A data-mining approach towards damage modelling for El Nino events in Peru JF - Geomatics, natural hazards and risk N2 - Compound natural hazards likeEl Ninoevents cause high damage to society, which to manage requires reliable risk assessments. Damage modelling is a prerequisite for quantitative risk estimations, yet many procedures still rely on expert knowledge, and empirical studies investigating damage from compound natural hazards hardly exist. A nationwide building survey in Peru after theEl Ninoevent 2017 - which caused intense rainfall, ponding water, flash floods and landslides - enables us to apply data-mining methods for statistical groundwork, using explanatory features generated from remote sensing products and open data. We separate regions of different dominant characteristics through unsupervised clustering, and investigate feature importance rankings for classifying damage via supervised machine learning. Besides the expected effect of precipitation, the classification algorithms select the topographic wetness index as most important feature, especially in low elevation areas. The slope length and steepness factor ranks high for mountains and canyons. Partial dependence plots further hint at amplified vulnerability in rural areas. An example of an empirical damage probability map, developed with a random forest model, is provided to demonstrate the technical feasibility. KW - Natural hazard KW - damage model KW - residential buildings KW - data-mining KW - remote KW - sensing KW - open data Y1 - 2020 U6 - https://doi.org/10.1080/19475705.2020.1818636 SN - 1947-5705 SN - 1947-5713 VL - 11 IS - 1 SP - 1966 EP - 1990 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Brunello, Camilla Francesca A1 - Andermann, Christoff A1 - Marc, Odin A1 - Schneider, Katharina A. A1 - Comiti, Francesco A1 - Achleitner, Stefan A1 - Hovius, Niels T1 - Annually resolved monsoon onset and withdrawal dates across the Himalayas derived from local precipitation statistics JF - Geophysical research letters N2 - A local and flexible definition of the monsoon season based on hydrological evidence is important for the understanding and management of Himalayan water resources. Here, we present an objective statistical method to retrieve seasonal hydrometeorological transitions. Applied to daily rainfall data (1951-2015), this method shows an average longitudinal delay of similar to 15 days, with later monsoon onset and earlier withdrawal in the western Himalaya, consistent with the continental progression of wet air masses. This delay leads to seasons of different length along the Himalaya and biased precipitation amounts when using uniform calendric monsoon boundaries. In the Central Himalaya annual precipitation has increased, due primarily to an increase of premonsoon precipitation. These findings highlight issues associated with a static definition of monsoon boundaries and call for a deeper understanding of nonmonsoonal precipitation over the Himalayan water tower.
Plain Language Summary Precipitation in the Himalayas determines water availability for the Indian foreland with large socioeconomic implications. Despite its importance, spatial and temporal patterns of precipitation are poorly understood. Here, we estimate the long-term average and trends of seasonal precipitation at the scale of individual catchments draining the Himalayas. We apply a statistical method to detect the timing of hydrometeorological seasons from local precipitation measurements, focusing on monsoon onset and withdrawal. We identify longitudinal and latitudinal delays, resulting in seasons of different length along and across the Himalayas. These spatial patterns and the annual variability of the monsoon boundaries mean that oft-used, fixed calendric dates, for example, 1 June to 30 September, may be inadequate for retrieving monsoon rainfall totals. Moreover, we find that, despite its prominent contribution to annual rainfall totals, the Indian summer monsoon cannot explain the increase of the annual precipitation over the Central Himalayas. Instead, this appears to be mostly driven by changes in premonsoon and winter rainfall. So far, little attention has been paid to premonsoon precipitation, but governed by evaporative processes and surface water availability, it may be enhanced by irrigation and changed land use in the Gangetic foreland. Y1 - 2020 U6 - https://doi.org/10.1029/2020GL088420 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 23 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Calitri, Francesca A1 - Sommer, Michael A1 - van der Meij, Marijn W. A1 - Egli, Markus T1 - Soil erosion along a transect in a forested catchment: recent or ancient processes? JF - Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution N2 - Forested areas are assumed not to be influenced by erosion processes. However, forest soils of Northern Germany in a hummocky ground moraine landscape can sometimes exhibit a very shallow thickness on crest positions and buried soils on slope positions. The question consequently is: Are these on-going or ancient erosional and depositional processes? Plutonium isotopes act as soil erosion/deposition tracers for recent (last few decades) processes. Here, we quantified the 239+240PU inventories in a small, forested catchment (ancient forest "Melzower Forst", deciduous trees), which is characterised by a hummocky terrain including a kettle hole. Soil development depths (depth to C horizon) and 239+240PU inventories along a catena of sixteen different profiles were determined and correlated to relief parameters. Moreover, we compared different modelling approaches to derive erosion rates from Pu data.
We find a strong relationship between soil development depths, distance-to-sink and topography along the catena. Fully developed Retisols (thicknesses > 1 m) in the colluvium overlay old land surfaces as documented by fossil Ah horizons. However, we found no relationship of Pu-based erosion rates to any relief parameter. Instead, 239+240PU inventories showed a very high local, spatial variability (36-70 Bq m(-2)). Low annual rainfall, spatially distributed interception and stem flow might explain the high variability of the 239+240PU inventories, giving rise to a patchy input pattern. Different models resulted in quite similar erosion and deposition rates (max: -5 t ha(-1) yr(-1) to +7.3 t ha(-1) yr(-1)). Although some rates are rather high, the magnitude of soil erosion and deposition - in terms of soil thickness change - is negligible during the last 55 years. The partially high values are an effect of the patchy Pu deposition on the forest floor. This forest has been protected for at least 240 years. Therefore rather natural events and anthropogenic activities during medieval times or even earlier must have caused the observed soil pattern, which documents strong erosion and deposition processes. KW - Soil erosion KW - 239+240 Plutonium KW - Forest KW - Moraine landscape KW - Soil catena Y1 - 2020 U6 - https://doi.org/10.1016/j.catena.2020.104683 SN - 0341-8162 SN - 1872-6887 VL - 194 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Castino, Fabiana A1 - Bookhagen, Bodo A1 - De la Torre, Alejandro T1 - Atmospheric dynamics of extreme discharge events from 1979 to 2016 in the southern Central Andes JF - Climate dynamics : observational, theoretical and computational research on the climate system N2 - During the South-American Monsoon season, deep convective systems occur at the eastern flank of the Central Andes leading to heavy rainfall and flooding. We investigate the large- and meso-scale atmospheric dynamics associated with extreme discharge events (> 99.9th percentile) observed in two major river catchments meridionally stretching from humid to semi-arid conditions in the southern Central Andes. Based on daily gauge time series and ERA-Interim reanalysis, we made the following three key observations: (1) for the period 1940-2016 daily discharge exhibits more pronounced variability in the southern, semi-arid than in the northern, humid catchments. This is due to a smaller ratio of discharge magnitudes between intermediate (0.2 year return period) and rare events (20 year return period) in the semi-arid compared to the humid areas; (2) The climatological composites of the 40 largest discharge events showed characteristic atmospheric features of cold surges based on 5-day time-lagged sequences of geopotential height at different levels in the troposphere; (3) A subjective classification revealed that 80% of the 40 largest discharge events are mainly associated with the north-northeastward migration of frontal systems and 2/3 of these are cold fronts, i.e. cold surges. This work highlights the importance of cold surges and their related atmospheric processes for the generation of heavy rainfall events and floods in the southern Central Andes. KW - South American monsoon system KW - cold surges KW - orographic barrier KW - mesoscale convective systems KW - extreme discharge KW - daily-discharge time KW - series ERA-interim Y1 - 2019 U6 - https://doi.org/10.1007/s00382-020-05458-1 SN - 0930-7575 SN - 1432-0894 VL - 55 IS - 11-12 SP - 3485 EP - 3505 PB - Springer CY - Berlin ; Heidelberg [u.a.] ER - TY - JOUR A1 - Cheng, Chaojie A1 - Milsch, Harald T1 - Permeability variations in illite-bearing sandstone BT - effects of temperature and NaCl fluid salinity JF - Journal of geophysical research : Solid earth N2 - Temperature changes and variations in pore fluid salinity may negatively affect the permeability of clay-bearing sandstones with implications for natural fluid flow and geotechnical applications alike. In this study these factors are investigated for a sandstone dominated by illite as the clay phase. Systematic long-term flow-through experiments were conducted and complemented with comprehensive microstructural investigations and the application of Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to explain mechanistically the observed permeability changes. Initially, sample permeability was not affected by low pore fluid salinity indicating strong attraction of the illite particles to the pore walls as supported by electron microprobe analysis (EMPA). Increasing temperature up to 145 degrees C resulted in an irreversible permeability decrease by 1.5 orders of magnitude regardless of the pore fluid composition (i.e., deionized water and 2 M NaCl solution). Subsequently diluting the high salinity pore fluid to below 0.5 M yielded an additional permeability decline by 1.5 orders of magnitude, both at 145 degrees C and after cooling to room temperature. By applying scanning electron microscopy (SEM) and mercury intrusion porosimetry (MIP) thermo-mechanical pore throat closure and illite particle migration were identified as independently operating mechanisms responsible for observed permeability changes during heating and dilution, respectively. These observations indicate that permeability of illite-bearing sandstones will be impaired by heating and exposure to low salinity pore fluids. In addition, chemically induced permeability variations proved to be path dependent with respect to the applied succession of fluid salinity changes. Y1 - 2020 U6 - https://doi.org/10.1029/2020JB020122 SN - 2169-9313 SN - 2169-9356 VL - 125 IS - 9 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Cheng, Chaojie A1 - Milsch, Harald T1 - Evolution of fracture aperture in quartz sandstone under hydrothermal conditions BT - mechanical and chemical effects JF - Minerals N2 - Fractures efficiently affect fluid flow in geological formations, and thereby determine mass and energy transport in reservoirs, which are not least exploited for economic resources. In this context, their response to mechanical and thermal changes, as well as fluid-rock interactions, is of paramount importance. In this study, a two-stage flow-through experiment was conducted on a pure quartz sandstone core of low matrix permeability, containing one single macroscopic tensile fracture. In the first short-term stage, the effects of mechanical and hydraulic aperture on pressure and temperature cycles were investigated. The purpose of the subsequent intermittent-flow long-term (140 days) stage was to constrain the evolution of the geometrical and hydraulic fracture properties resulting from pressure solution. Deionized water was used as the pore fluid, and permeability, as well as the effluent Si concentrations, were systematically measured. Overall, hydraulic aperture was shown to be significantly less affected by pressure, temperature and time, in comparison to mechanical aperture. During the long-term part of the experiment at 140 degrees C, the effluent Si concentrations likely reached a chemical equilibrium state within less than 8 days of stagnant flow, and exceeded the corresponding hydrostatic quartz solubility at this temperature. This implies that the pressure solution was active at the contacting fracture asperities, both at 140 degrees C and after cooling to 33 degrees C. The higher temperature yielded a higher dissolution rate and, consequently, a faster attainment of chemical equilibrium within the contact fluid. X-ray mu CT observations evidenced a noticeable increase in fracture contact area ratio, which, in combination with theoretical considerations, implies a significant decrease in mechanical aperture. In contrast, the sample permeability, and thus the hydraulic fracture aperture, virtually did not vary. In conclusion, pressure solution-induced fracture aperture changes are affected by the degree of time-dependent variations in pore fluid composition. In contrast to the present case of a quasi-closed system with mostly stagnant flow, in an open system with continuous once-through fluid flow, the activity of the pressure solution may be amplified due to the persistent fluid-chemical nonequilibrium state, thus possibly enhancing aperture and fracture permeability changes. KW - flow-through experiment KW - fracture aperture KW - pressure solution KW - mass KW - transfer KW - silica concentration KW - permeability KW - quartz sandstone Y1 - 2020 U6 - https://doi.org/10.3390/min10080657 SN - 2075-163X VL - 10 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Coesfeld, Jacqueline A1 - Kuester, Theres A1 - Kuechly, Helga U. A1 - Kyba, Christopher C. M. T1 - Reducing variability and removing natural light from nighttime satellite imagery: A case study using the VIIRS DNB JF - Sensors N2 - Temporal variation of natural light sources such as airglow limits the ability of night light sensors to detect changes in small sources of artificial light (such as villages). This study presents a method for correcting for this effect globally, using the satellite radiance detected from regions without artificial light emissions. We developed a routine to define an approximate grid of locations worldwide that do not have regular light emission. We apply this method with a 5 degree equally spaced global grid (total of 2016 individual locations), using data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB). This code could easily be adapted for other future global sensors. The correction reduces the standard deviation of data in the Earth Observation Group monthly DNB composites by almost a factor of two. The code and datasets presented here are available under an open license by GFZ Data Services, and are implemented in the Radiance Light Trends web application. KW - airglow KW - artificial light KW - calibration KW - VIIRS DNB KW - nightlights KW - remote sensing Y1 - 2020 VL - 20 PB - MDPI CY - Basel ER - TY - GEN A1 - Coesfeld, Jacqueline A1 - Kuester, Theres A1 - Kuechly, Helga U. A1 - Kyba, Christopher C. M. T1 - Reducing variability and removing natural light from nighttime satellite imagery: A case study using the VIIRS DNB T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Temporal variation of natural light sources such as airglow limits the ability of night light sensors to detect changes in small sources of artificial light (such as villages). This study presents a method for correcting for this effect globally, using the satellite radiance detected from regions without artificial light emissions. We developed a routine to define an approximate grid of locations worldwide that do not have regular light emission. We apply this method with a 5 degree equally spaced global grid (total of 2016 individual locations), using data from the Visible Infrared Imaging Radiometer Suite (VIIRS) Day-Night Band (DNB). This code could easily be adapted for other future global sensors. The correction reduces the standard deviation of data in the Earth Observation Group monthly DNB composites by almost a factor of two. The code and datasets presented here are available under an open license by GFZ Data Services, and are implemented in the Radiance Light Trends web application. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1181 KW - airglow KW - artificial light KW - calibration KW - VIIRS DNB KW - nightlights KW - remote sensing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524397 SN - 1866-8372 IS - 11 ER - TY - JOUR A1 - Cook, Kristen L. A1 - Turowski, Jens M. A1 - Hovius, Niels T1 - Width control on event-scale deposition and evacuation of sediment in bedrock-confined channels JF - Earth surface processes and landforms : the journal of the British Geomorphological Research Group N2 - In mixed bedrock-alluvial rivers, the response of the system to a flood event can be affected by a number of factors, including coarse sediment availability in the channel, sediment supply from the hillslopes and upstream, flood sequencing and coarse sediment grain size distribution. However, the impact of along-stream changes in channel width on bedload transport dynamics remains largely unexplored. We combine field data, theory and numerical modelling to address this gap. First, we present observations from the Daan River gorge in western Taiwan, where the river flows through a 1 km long 20-50 m wide bedrock gorge bounded upstream and downstream by wide braidplains. We documented two flood events during which coarse sediment evacuation and redeposition appear to cause changes of up to several metres in channel bed elevation. Motivated by this case study, we examined the relationships between discharge, channel width and bedload transport capacity, and show that for a given slope narrow channels transport bedload more efficiently than wide ones at low discharges, whereas wider channels are more efficient at high discharges. We used the model sedFlow to explore this effect, running a random sequence of floods through a channel with a narrow gorge section bounded upstream and downstream by wider reaches. Channel response to imposed floods is complex, as high and low discharges drive different spatial patterns of erosion and deposition, and the channel may experience both of these regimes during the peak and recession periods of each flood. Our modelling suggests that width differences alone can drive substantial variations in sediment flux and bed response, without the need for variations in sediment supply or mobility. The fluctuations in sediment transport rates that result from width variations can lead to intermittent bed exposure, driving incision in different segments of the channel during different portions of the hydrograph. KW - bedload transport KW - discharge variability KW - bedrock-alluvial channels KW - channel width KW - hysteresis Y1 - 2020 U6 - https://doi.org/10.1002/esp.4993 SN - 0197-9337 SN - 1096-9837 VL - 45 IS - 14 SP - 3702 EP - 3713 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Crisologo, Irene A1 - Heistermann, Maik T1 - Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 863 KW - Weather KW - Band KW - Reflectivity KW - Algorithm KW - Uncertainties KW - Methodology KW - Kwajalein Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459630 SN - 1866-8372 IS - 863 ER - TY - JOUR A1 - Crisologo, Irene A1 - Heistermann, Maik T1 - Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms JF - Atmospheric measurement techniques : an interactive open access journal of the European Geosciences Union N2 - Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations. Y1 - 2020 U6 - https://doi.org/10.5194/amt-13-645-2020 SN - 1867-1381 SN - 1867-8548 VL - 13 IS - 2 SP - 645 EP - 659 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Crisologo, Irene A1 - Heistermann, Maik T1 - Using ground radar overlaps to verify the retrieval of calibration bias estimates from spaceborne platforms JF - Atmospheric Measurement Techniques N2 - Many institutions struggle to tap into the potential of their large archives of radar reflectivity: these data are often affected by miscalibration, yet the bias is typically unknown and temporally volatile. Still, relative calibration techniques can be used to correct the measurements a posteriori. For that purpose, the usage of spaceborne reflectivity observations from the Tropical Rainfall Measuring Mission (TRMM) and Global Precipitation Measurement (GPM) platforms has become increasingly popular: the calibration bias of a ground radar (GR) is estimated from its average reflectivity difference to the spaceborne radar (SR). Recently, Crisologo et al. (2018) introduced a formal procedure to enhance the reliability of such estimates: each match between SR and GR observations is assigned a quality index, and the calibration bias is inferred as a quality-weighted average of the differences between SR and GR. The relevance of quality was exemplified for the Subic S-band radar in the Philippines, which is greatly affected by partial beam blockage. The present study extends the concept of quality-weighted averaging by accounting for path-integrated attenuation (PIA) in addition to beam blockage. This extension becomes vital for radars that operate at the C or X band. Correspondingly, the study setup includes a C-band radar that substantially overlaps with the S-band radar. Based on the extended quality-weighting approach, we retrieve, for each of the two ground radars, a time series of calibration bias estimates from suitable SR overpasses. As a result of applying these estimates to correct the ground radar observations, the consistency between the ground radars in the region of overlap increased substantially. Furthermore, we investigated if the bias estimates can be interpolated in time, so that ground radar observations can be corrected even in the absence of prompt SR overpasses. We found that a moving average approach was most suitable for that purpose, although limited by the absence of explicit records of radar maintenance operations. KW - Weather KW - Band KW - Reflectivity KW - Algorithm KW - Uncertainties KW - Methodology KW - Kwajalein Y1 - 2020 U6 - https://doi.org/10.5194/amt-13-645-2020 SN - 1867-1381 SN - 1867-8548 VL - 13 IS - 2 SP - 645 EP - 659 PB - Copernicus Publications CY - Göttingen ER - TY - JOUR A1 - Dahm, Torsten A1 - Stiller, Manfred A1 - Mechie, James A1 - Heimann, Sebastian A1 - Hensch, Martin A1 - Woith, Heiko A1 - Schmidt, Bernd A1 - Gabriel, Gerald A1 - Weber, Michael T1 - Seismological and geophysical signatures of the deep crustal magma systems of the cenozoic volcanic fields Beneath the Eifel, Germany JF - Geochemistry, geophysics, geosystems N2 - The Quaternary volcanic fields of the Eifel (Rhineland-Palatinate, Germany) had their last eruptions less than 13,000 years ago. Recently, deep low-frequency (DLF) earthquakes were detected beneath one of the volcanic fields showing evidence of ongoing magmatic activity in the lower crust and upper mantle. In this work, seismic wide- and steep-angle experiments from 1978/1979 and 1987/1988 are compiled, partially reprocessed and interpreted, together with other data to better determine the location, size, shape, and state of magmatic reservoirs in the Eifel region near the crust-mantle boundary. We discuss seismic evidence for a low-velocity gradient layer from 30-36 km depth, which has developed over a large region under all Quaternary volcanic fields of the Rhenish Massif and can be explained by the presence of partial melts. We show that the DLF earthquakes connect the postulated upper mantle reservoir with the upper crust at a depth of about 8 km, directly below one of the youngest phonolitic volcanic centers in the Eifel, where CO(2)originating from the mantle is massively outgassing. A bright spot in the West Eifel between 6 and 10 km depth represents a Tertiary magma reservoir and is seen as a model for a differentiated reservoir beneath the young phonolitic center today. We find that the distribution of volcanic fields is controlled by the Variscan lithospheric structures and terrane boundaries as a whole, which is reflected by an offset of the Moho depth, a wedge-shaped transparent zone in the lower crust and the system of thrusts over about 120 km length. KW - magma reservoirs KW - distributed volcanic fields KW - reflection seismic KW - crustal magma chamber KW - deep low-frequency earthquakes KW - low velocity zone Y1 - 2020 U6 - https://doi.org/10.1029/2020GC009062 SN - 1525-2027 VL - 21 IS - 9 PB - American Geophysical Union CY - Washington ER - TY - GEN A1 - Dommain, René A1 - Andama, Morgan A1 - McDonough, Molly M. A1 - Prado, Natalia A. A1 - Goldhammer, Tobias A1 - Potts, Richard A1 - Maldonado, Jesús E. A1 - Nkurunungi, John Bosco A1 - Campana, Michael G. T1 - The Challenges of Reconstructing Tropical Biodiversity With Sedimentary Ancient DNA BT - A 2200-Year-Long Metagenomic Record From Bwindi Impenetrable Forest, Uganda T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Sedimentary ancient DNA has been proposed as a key methodology for reconstructing biodiversity over time. Yet, despite the concentration of Earth’s biodiversity in the tropics, this method has rarely been applied in this region. Moreover, the taphonomy of sedimentary DNA, especially in tropical environments, is poorly understood. This study elucidates challenges and opportunities of sedimentary ancient DNA approaches for reconstructing tropical biodiversity. We present shotgun-sequenced metagenomic profiles and DNA degradation patterns from multiple sediment cores from Mubwindi Swamp, located in Bwindi Impenetrable Forest (Uganda), one of the most diverse forests in Africa. We describe the taxonomic composition of the sediments covering the past 2200 years and compare the sedimentary DNA data with a comprehensive set of environmental and sedimentological parameters to unravel the conditions of DNA degradation. Consistent with the preservation of authentic ancient DNA in tropical swamp sediments, DNA concentration and mean fragment length declined exponentially with age and depth, while terminal deamination increased with age. DNA preservation patterns cannot be explained by any environmental parameter alone, but age seems to be the primary driver of DNA degradation in the swamp. Besides degradation, the presence of living microbial communities in the sediment also affects DNA quantity. Critically, 92.3% of our metagenomic data of a total 81.8 million unique, merged reads cannot be taxonomically identified due to the absence of genomic references in public databases. Of the remaining 7.7%, most of the data (93.0%) derive from Bacteria and Archaea, whereas only 0–5.8% are from Metazoa and 0–6.9% from Viridiplantae, in part due to unbalanced taxa representation in the reference data. The plant DNA record at ordinal level agrees well with local pollen data but resolves less diversity. Our animal DNA record reveals the presence of 41 native taxa (16 orders) including Afrotheria, Carnivora, and Ruminantia at Bwindi during the past 2200 years. Overall, we observe no decline in taxonomic richness with increasing age suggesting that several-thousand-year-old information on past biodiversity can be retrieved from tropical sediments. However, comprehensive genomic surveys of tropical biota need prioritization for sedimentary DNA to be a viable methodology for future tropical biodiversity studies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 970 KW - sedimentary ancient DNA KW - tropical biodiversity KW - DNA preservation KW - sediment KW - tropical swamp KW - shotgun sequencing KW - metagenomic analysis Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-474305 SN - 1866-8372 IS - 970 ER - TY - JOUR A1 - Dommain, René A1 - Andama, Morgan A1 - McDonough, Molly M. A1 - Prado, Natalia A. A1 - Goldhammer, Tobias A1 - Potts, Richard A1 - Maldonado, Jesús E. A1 - Nkurunungi, John Bosco A1 - Campana, Michael G. T1 - The Challenges of Reconstructing Tropical Biodiversity With Sedimentary Ancient DNA BT - A 2200-Year-Long Metagenomic Record From Bwindi Impenetrable Forest, Uganda JF - Frontiers in Ecology and Evolution N2 - Sedimentary ancient DNA has been proposed as a key methodology for reconstructing biodiversity over time. Yet, despite the concentration of Earth’s biodiversity in the tropics, this method has rarely been applied in this region. Moreover, the taphonomy of sedimentary DNA, especially in tropical environments, is poorly understood. This study elucidates challenges and opportunities of sedimentary ancient DNA approaches for reconstructing tropical biodiversity. We present shotgun-sequenced metagenomic profiles and DNA degradation patterns from multiple sediment cores from Mubwindi Swamp, located in Bwindi Impenetrable Forest (Uganda), one of the most diverse forests in Africa. We describe the taxonomic composition of the sediments covering the past 2200 years and compare the sedimentary DNA data with a comprehensive set of environmental and sedimentological parameters to unravel the conditions of DNA degradation. Consistent with the preservation of authentic ancient DNA in tropical swamp sediments, DNA concentration and mean fragment length declined exponentially with age and depth, while terminal deamination increased with age. DNA preservation patterns cannot be explained by any environmental parameter alone, but age seems to be the primary driver of DNA degradation in the swamp. Besides degradation, the presence of living microbial communities in the sediment also affects DNA quantity. Critically, 92.3% of our metagenomic data of a total 81.8 million unique, merged reads cannot be taxonomically identified due to the absence of genomic references in public databases. Of the remaining 7.7%, most of the data (93.0%) derive from Bacteria and Archaea, whereas only 0–5.8% are from Metazoa and 0–6.9% from Viridiplantae, in part due to unbalanced taxa representation in the reference data. The plant DNA record at ordinal level agrees well with local pollen data but resolves less diversity. Our animal DNA record reveals the presence of 41 native taxa (16 orders) including Afrotheria, Carnivora, and Ruminantia at Bwindi during the past 2200 years. Overall, we observe no decline in taxonomic richness with increasing age suggesting that several-thousand-year-old information on past biodiversity can be retrieved from tropical sediments. However, comprehensive genomic surveys of tropical biota need prioritization for sedimentary DNA to be a viable methodology for future tropical biodiversity studies. KW - sedimentary ancient DNA KW - tropical biodiversity KW - DNA preservation KW - sediment KW - tropical swamp KW - shotgun sequencing KW - metagenomic analysis Y1 - 2019 U6 - https://doi.org/10.3389/fevo.2020.00218 SN - 2296-701X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Durand, Virginie A1 - Bentz, Stephan A1 - Kwiatek, Grzegorz A1 - Dresen, Georg A1 - Wollin, Christopher A1 - Heidbach, Oliver A1 - Martinez-Garzon, Patricia A1 - Cotton, Fabrice A1 - Nurlu, Murat A1 - Bohnhoff, Marco T1 - A two-scale preparation phase preceded an M-w 5.8 earthquake in the sea of marmara offshore Istanbul, Turkey JF - Seismological research letters N2 - We analyze the spatiotemporal evolution of seismicity during a sequence of moderate (an M-w 4.7 foreshock and M-w 5.8 mainshock) earthquakes occurring in September 2019 at the transition between a creeping and a locked segment of the North Anatolian fault in the central Sea of Marmara, northwest Turkey. To investigate in detail the seismicity evolution, we apply a matched-filter technique to continuous waveforms, thus reducing the magnitude threshold for detection. Sequences of foreshocks preceding the two largest events are clearly seen, exhibiting two different behaviors: a long-term activation of the seismicity along the entire fault segment and a short-term concentration around the epicenters of the large events. We suggest a two-scale preparation phase, with aseismic slip preparing the mainshock final rupture a few days before, and a cascade mechanism leading to the nucleation of the mainshock. Thus, our study shows a combination of seismic and aseismic slip during the foreshock sequence changing the strength of the fault, bringing it closer to failure. Y1 - 2020 U6 - https://doi.org/10.1785/0220200110 SN - 0895-0695 SN - 1938-2057 VL - 91 IS - 6 SP - 3139 EP - 3147 CY - Boulder ER - TY - JOUR A1 - Engels, Stefan A1 - Medeiros, Andrew S. A1 - Axford, Yarrow A1 - Brooks, Steve A1 - Heiri, Oliver A1 - Luoto, Tomi P. A1 - Nazarova, Larisa B. A1 - Porinchu, David F. A1 - Quinlan, Roberto A1 - Self, Angela E. T1 - Temperature change as a driver of spatial patterns and long-term trends in chironomid (Insecta: Diptera) diversity JF - Global change biology N2 - Anthropogenic activities have led to a global decline in biodiversity, and monitoring studies indicate that both insect communities and wetland ecosystems are particularly affected. However, there is a need for long-term data (over centennial or millennial timescales) to better understand natural community dynamics and the processes that govern the observed trends. Chironomids (Insecta: Diptera: Chironomidae) are often the most abundant insects in lake ecosystems, sensitive to environmental change, and, because their larval exoskeleton head capsules preserve well in lake sediments, they provide a unique record of insect community dynamics through time. Here, we provide the results of a metadata analysis of chironomid diversity across a range of spatial and temporal scales. First, we analyse spatial trends in chironomid diversity using Northern Hemispheric data sets overall consisting of 837 lakes. Our results indicate that in most of our data sets, summer temperature (T-jul) is strongly associated with spatial trends in modern-day chironomid diversity. We observe a strong increase in chironomid alpha diversity with increasing T-jul in regions with present-day T-jul between 2.5 and 14 degrees C. In some areas with T-jul > 14 degrees C, chironomid diversity stabilizes or declines. Second, we demonstrate that the direction and amplitude of change in alpha diversity in a compilation of subfossil chironomid records spanning the last glacial-interglacial transition (similar to 15,000-11,000 years ago) are similar to those observed in our modern data. A compilation of Holocene records shows that during phases when the amplitude of temperature change was small, site-specific factors had a greater influence on the chironomid fauna obscuring the chironomid diversity-temperature relationship. Our results imply expected overall chironomid diversity increases in colder regions such as the Arctic under sustained global warming, but with complex and not necessarily predictable responses for individual sites. KW - Arctic KW - biodiversity KW - climate warming KW - freshwater ecosystems KW - insects KW - palaeoecology KW - Quaternary Y1 - 2019 U6 - https://doi.org/10.1111/gcb.14862 SN - 1354-1013 SN - 1365-2486 VL - 26 IS - 3 SP - 1155 EP - 1169 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Esfahani, Reza Dokht Dolatabadi A1 - Gholami, Ali A1 - Ohrnberger, Matthias T1 - An inexact augmented Lagrangian method for nonlinear dispersion-curve inversion using Dix-type global linear approximation JF - Geophysics N2 - Dispersion-curve inversion of Rayleigh waves to infer subsurface shear-wave velocity is a long-standing problem in seismology. Due to nonlinearity and ill-posedness, sophisticated regularization techniques are required to solve the problem for a stable velocity model. We have formulated the problem as a minimization problem with nonlinear operator constraint and then solve it by using an inexact augmented Lagrangian method, taking advantage of the Haney-Tsai Dix-type relation (a global linear approximation of the nonlinear forward operator). This replaces the original regularized nonlinear problem with iterative minimization of a more tractable regularized linear problem followed by a nonlinear update of the phase velocity (data) in which the update can be performed accurately with any forward modeling engine, for example, the finite-element method. The algorithm allows discretizing the medium with thin layers (for the finite-element method) and thus omitting the layer thicknesses from the unknowns and also allows incorporating arbitrary regularizations to shape the desired velocity model. In this research, we use total variation regularization to retrieve the shear-wave velocity model. We use two synthetic and two real data examples to illustrate the performance of the inversion algorithm with total variation regularization. We find that the method is fast and stable, and it converges to the solution of the original nonlinear problem. Y1 - 2020 U6 - https://doi.org/10.1190/GEO2019-0717.1 SN - 0016-8033 SN - 1942-2156 VL - 85 IS - 5 SP - EN77 EP - EN85 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Esfahani, Reza Dokht Dolatabadi A1 - Gholami, Ali A1 - Ohrnberger, Matthias T1 - An inexact augmented Lagrangian method for nonlinear dispersion-curve inversion using Dix-type global linear approximation JF - Geophysics : a journal of general and applied geophysics N2 - Dispersion-curve inversion of Rayleigh waves to infer subsurface shear-wave velocity is a long-standing problem in seismology. Due to nonlinearity and ill-posedness, sophisticated regularization techniques are required to solve the problem for a stable velocity model. We have formulated the problem as a minimization problem with nonlinear operator constraint and then solve it by using an inexact augmented Lagrangian method, taking advantage of the Haney-Tsai Dix-type relation (a global linear approximation of the nonlinear forward operator). This replaces the original regularized nonlinear problem with iterative minimization of a more tractable regularized linear problem followed by a nonlinear update of the phase velocity (data) in which the update can be performed accurately with any forward modeling engine, for example, the finite-element method. The algorithm allows discretizing the medium with thin layers (for the finite-element method) and thus omitting the layer thicknesses from the unknowns and also allows incorporating arbitrary regularizations to shape the desired velocity model. In this research, we use total variation regularization to retrieve the shear-wave velocity model. We use two synthetic and two real data examples to illustrate the performance of the inversion algorithm with total variation regularization. We find that the method is fast and stable, and it converges to the solution of the original nonlinear problem. KW - surface wave KW - nonlinear KW - inversion KW - modeling KW - finite element Y1 - 2020 U6 - https://doi.org/10.1190/geo2019-0717.1 SN - 0016-8033 SN - 1942-2156 VL - 85 IS - 3 SP - EN77 EP - EN85 PB - GeoScienceWorld CY - Tulsa, Okla. ER - TY - JOUR A1 - Fernandez-Palomino, Carlos Antonio A1 - Hattermann, Fred A1 - Krysanova, Valentina A1 - Vega-Jacome, Fiorella A1 - Bronstert, Axel T1 - Towards a more consistent eco-hydrological modelling through multi-objective calibration BT - a case study in the Andean Vilcanota River basin, Perú JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography. KW - Andes KW - eco-hydrology KW - SWAT KW - hydrological signatures KW - remote sensing KW - equifinality Y1 - 2020 U6 - https://doi.org/10.1080/02626667.2020.1846740 SN - 0262-6667 SN - 2150-3435 VL - 66 IS - 1 SP - 59 EP - 74 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - GEN A1 - Fernandez-Palomino, Carlos Antonio A1 - Hattermann, Fred A1 - Krysanova, Valentina A1 - Vega-Jacome, Fiorella A1 - Bronstert, Axel T1 - Towards a more consistent eco-hydrological modelling through multi-objective calibration BT - a case study in the Andean Vilcanota River basin, Perú T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Most hydrological studies rely on a model calibrated using discharge alone. However, judging the model reliability based on such calibration is problematic, as it does not guarantee the correct representation of internal hydrological processes. This study aims (a) to develop a comprehensive multi-objective calibration framework using remote sensing vegetation data and hydrological signatures (flow duration curve - FDC, and baseflow index) in addition to discharge, and (b) to apply this framework for calibration of the Soil and Water Assessment Tool (SWAT) in a typical Andean catchment. Overall, our calibration approach outperformed traditional discharge-based and FDC signature-based calibration strategies in terms of vegetation, streamflow, and flow partitioning simulation. New hydrological insights for the region are the following: baseflow is the main component of the streamflow sustaining the long dry-season flow, and pasture areas offer higher water yield and baseflow than other land-cover types. The proposed approach could be used in other data-scarce regions with complex topography. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1377 KW - Andes KW - eco-hydrology KW - SWAT KW - hydrological signatures KW - remote sensing KW - equifinality Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-568766 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Figueroa Villegas, Sara A1 - Weiss, Jonathan R. A1 - Hongn, Fernando D. A1 - Pingel, Heiko A1 - Escalante, Leonardo A1 - Elías, Leonardo A1 - Aranda-Viana, R. Germán A1 - Strecker, Manfred T1 - Late pleistocene to recent deformation in the thick-skinned fold-and-thrust belt of Northwestern Argentina (Central Calchaqui Valley, 26 degrees S) JF - Tectonics / American Geophysical Union, AGU ; European Geophysical Society, EGS N2 - The thick-skinned fold-and-thrust belt on the eastern flank of the Andean Plateau in northwestern Argentina (NWA) is a zone of active contractional deformation characterized by fault-bounded mountain ranges with no systematic spatiotemporal pattern of tectonic activity. In contrast, the thin-skinned Subandean fold-and-thrust belt of northern Argentina and southern Bolivia is characterized primarily by in-sequence (i.e., west to east) fault progression, with a narrow zone of Quaternary deformation focused at the front of the orogenic wedge. To better understand how recent deformation is accommodated across these mountain ranges and the Argentinian portion of the orogen in particular, estimating and comparing deformation rates and patterns across different timescales is essential. We present Late Pleistocene shortening rates for the central Calchaqui intermontane valley in NWA associated with at least three episodes of deformation. Global Positioning System data for the same region reveal a gradual decrease in horizontal surface velocities from the Eastern Cordillera toward the foreland, which contrasts with the rapid velocity gradient associated with a locked decollement in the Subandean Ranges of southern Bolivia. Our new results represent a small view of regional deformation that, when considered in combination with the shallow crustal seismicity and decadal-scale surface velocities, support the notion that strain release in NWA is associated with numerous slowly deforming structures that are distributed throughout the orogen. Y1 - 2020 U6 - https://doi.org/10.1029/2020TC006394 SN - 0278-7407 SN - 1944-9194 VL - 40 IS - 1 PB - American Geophysical Union CY - Washington, DC ER - TY - JOUR A1 - Forbriger, Thomas A1 - Gao, Lingli A1 - Malischewsky, Peter A1 - Ohrnberger, Matthias A1 - Pan, Yudi T1 - A single Rayleigh mode may exist with multiple values of phase-velocity at one frequency JF - Geophysical journal international N2 - Other than commonly assumed in seismology, the phase velocity of Rayleigh waves is not necessarily a single-valued function of frequency. In fact, a single Rayleigh mode can exist with three different values of phase velocity at one frequency. We demonstrate this for the first higher mode on a realistic shallow seismic structure of a homogeneous layer of unconsolidated sediments on top of a half-space of solid rock (LOH). In the case of LOH a significant contrast to the half-space is required to produce the phenomenon. In a simpler structure of a homogeneous layer with fixed (rigid) bottom (LFB) the phenomenon exists for values of Poisson's ratio between 0.19 and 0.5 and is most pronounced for P-wave velocity being three times S-wave velocity (Poisson's ratio of 0.4375). A pavement-like structure (PAV) of two layers on top of a half-space produces the multivaluedness for the fundamental mode. Programs for the computation of synthetic dispersion curves are prone to trouble in such cases. Many of them use mode-follower algorithms which loose track of the dispersion curve and miss the multivalued section. We show results for well established programs. Their inability to properly handle these cases might be one reason why the phenomenon of multivaluedness went unnoticed in seismological Rayleigh wave research for so long. For the very same reason methods of dispersion analysis must fail if they imply wave number k(l)(omega) for the lth Rayleigh mode to be a single-valued function of frequency.. This applies in particular to deconvolution methods like phase-matched filters. We demonstrate that a slant-stack analysis fails in the multivalued section, while a Fourier-Bessel transformation captures the complete Rayleigh-wave signal. Waves of finite bandwidth in the multivalued section propagate with positive group-velocity and negative phase-velocity. Their eigenfunctions appear conventional and contain no conspicuous feature. KW - Surface waves and free oscillations KW - Theoretical seismology KW - Wave KW - propagation Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa123 SN - 0956-540X SN - 1365-246X VL - 222 IS - 1 SP - 582 EP - 594 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Foster, William J. A1 - Garvie, Christopher L. A1 - Weiss, Anna M. A1 - Muscente, A. Drew A1 - Aberhan, Martin A1 - Counts, John W. A1 - Martindale, Rowan C. T1 - Resilience of marine invertebrate communities during the early Cenozoic hyperthermals T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The hyperthermal events of the Cenozoic, including the Paleocene-Eocene Thermal Maximum, provide an opportunity to investigate the potential effects of climate warming on marine ecosystems. Here, we examine the shallow benthic marine communities preserved in the late Cretaceous to Eocene strata on the Gulf Coastal Plain (United States). In stark contrast to the ecological shifts following the end-Cretaceous mass extinction, our data show that the early Cenozoic hyperthermals did not have a long-term impact on the generic diversity nor composition of the Gulf Coastal Plain molluscan communities. We propose that these communities were resilient to climate change because molluscs are better adapted to high temperatures than other taxa, as demonstrated by their physiology and evolutionary history. In terms of resilience, these communities differ from other shallow-water carbonate ecosystems, such as reef communities, which record significant changes during the early Cenozoic hyperthermals. These data highlight the strikingly different responses of community types, i.e., the almost imperceptible response of molluscs versus the marked turnover of foraminifera and reef faunas. The impact on molluscan communities may have been low because detrimental conditions did not devastate the entire Gulf Coastal Plain, allowing molluscs to rapidly recolonise vacated areas once harsh environmental conditions ameliorated. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1410 KW - eocene thermal maximum KW - gulf coastal plain KW - climate-change KW - ocean acidification KW - extinction event KW - carbon-cycle KW - heat-stress KW - origination KW - ecosystems KW - diversity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516011 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Foster, William J. A1 - Garvie, Christopher L. A1 - Weiss, Anna M. A1 - Muscente, A. Drew A1 - Aberhan, Martin A1 - Counts, John W. A1 - Martindale, Rowan C. T1 - Resilience of marine invertebrate communities during the early Cenozoic hyperthermals JF - Scientific Reports N2 - The hyperthermal events of the Cenozoic, including the Paleocene-Eocene Thermal Maximum, provide an opportunity to investigate the potential effects of climate warming on marine ecosystems. Here, we examine the shallow benthic marine communities preserved in the late Cretaceous to Eocene strata on the Gulf Coastal Plain (United States). In stark contrast to the ecological shifts following the end-Cretaceous mass extinction, our data show that the early Cenozoic hyperthermals did not have a long-term impact on the generic diversity nor composition of the Gulf Coastal Plain molluscan communities. We propose that these communities were resilient to climate change because molluscs are better adapted to high temperatures than other taxa, as demonstrated by their physiology and evolutionary history. In terms of resilience, these communities differ from other shallow-water carbonate ecosystems, such as reef communities, which record significant changes during the early Cenozoic hyperthermals. These data highlight the strikingly different responses of community types, i.e., the almost imperceptible response of molluscs versus the marked turnover of foraminifera and reef faunas. The impact on molluscan communities may have been low because detrimental conditions did not devastate the entire Gulf Coastal Plain, allowing molluscs to rapidly recolonise vacated areas once harsh environmental conditions ameliorated. KW - eocene thermal maximum KW - gulf coastal plain KW - climate-change KW - ocean acidification KW - extinction event KW - carbon-cycle KW - heat-stress KW - origination KW - ecosystems KW - diversity Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-58986-5 SN - 2045-2322 VL - 10 IS - 1 SP - 1 EP - 11 PB - Springer Nature CY - London ER - TY - THES A1 - Friese, André T1 - Biogeochemistry of ferruginous sediments of Lake Towuti, Sulawesi, Indonesia N2 - Ferruginous conditions were a prominent feature of the oceans throughout the Precambrian Eons and thus throughout much of Earth’s history. Organic matter mineralization and diagenesis within the ferruginous sediments that deposited from Earth’s early oceans likely played a key role in global biogeochemical cycling. Knowledge of organic matter mineralization in ferruginous sediments, however, remains almost entirely conceptual, as modern analogue environments are extremely rare and largely unstudied, to date. Lake Towuti on the island of Sulawesi, Indonesia is such an analogue environment and the purpose of this PhD project was to investigate the rates and pathways of organic matter mineralization in its ferruginous sediments. Lake Towuti is the largest tectonic lake in Southeast Asia and is hosted in the mafic and ultramafic rocks of the East Sulawesi Ophiolite. It has a maximum water depth of 203 m and is weakly thermally stratified. A well-oygenated surface layer extends to 70 m depth, while waters below 130 m are persistently anoxic. Intensive weathering of the ultramafic catchment feeds the lake with large amounts of iron(oxy)hydroxides while the runoff contains only little sulfate, leading to sulfate-poor (< 20 µM) lake water and anoxic ferruginous conditions below 130 m. Such conditions are analogous to the ferruginous water columns that persisted throughout much of the Archean and Proterozoic eons. Short (< 35 cm) sediment cores were collected from different water depths corresponding to different bottom water redox conditions. Also, a drilling campaign of the International Continental Scientific Drilling Program (ICDP) retrieved a 114 m long sediment core dedicated for geomicrobiological investigations from a water depth of 153 m, well below the depth of oxygen penetration at the time of sampling. Samples collected from these sediment cores form the fundament of this thesis and were used to perform a suite of biogeochemical and microbiological analyses. Geomirobiological investigations depend on uncontaminated samples. However, exploration of subsurface environments relies on drilling, which requires the use of a drilling fluid. Drilling fluid infiltration during drilling can not be avoided. Thus, in order to trace contamination of the sediment core and to identify uncontaminated samples for further analyses a simple and inexpensive technique for assessing contamination during drilling operations was developed and applied during the ICDP drilling campaign. This approach uses an aqeous fluorescent pigment dispersion commonly used in the paint industry as a particulate tracer. It has the same physical properties as conventionally used particulate tracers. However, the price is nearly four orders of magnitude lower solving the main problem of particulate tracer approaches. The approach requires only a minimum of equipment and allows for a rapid contamination assessment potentially even directly on site, while the senstitivity is in the range of already established approaches. Contaminated samples in the drill core were identified and not included for further geomicrobiological investigations. Biogeochemical analyses of short sediment cores showed that Lake Towutis sediments are strongly depleted in electron acceptors commonly used in microbial organic matter mineralization (i.e. oxygen, nitrate, sulfate). Still, the sediments harbor high microbial cell densities, which are a function of redox conditions of Lake Towuti’s bottom water. In shallow water depths bottom water oxygenation leads to a higher input of labile organic matter and electron acceptors like sulfate and iron, which promotes a higher microbial abundance. Microbial analyses showed that a versatile microbial community with a potential to perform metabolisms related to iron and sulfate reduction, fermentation as well as methanogenesis inhabits Lake Towuti’s surface sediments. Biogeochemical investigations of the upper 12 m of the 114 m sediment core showed that Lake Towuti’s sediment is extremely rich in iron with total concentrations up to 2500 µmol cm-3 (20 wt. %), which makes it the natural sedimentary environment with the highest total iron concentrations studied to date. In the complete or near absence of oxygen, nitrate and sulfate, organic matter mineralization in ferruginous sediments would be expected to proceed anaerobically via the energetically most favorable terminal electron acceptors available - in this case ferric iron. Astonishingly, however, methanogenesis is the dominant (>85 %) organic matter mineralization process in Lake Towuti’s sediment. Reactive ferric iron known to be available for microbial iron reduction is highly abundant throughout the upper 12 m and thus remained stable for at least 60.000 years. The produced methane is not oxidized anaerobically and diffuses out of the sediment into the water column. The proclivity towards methanogenesis, in these very iron-rich modern sediments, implies that methanogenesis may have played a more important role in organic matter mineralization thoughout the Precambrian than previously thought and thus could have been a key contributor to Earth’s early climate dynamics. Over the whole sequence of the 114 m long sediment core siderites were identified and characterized using high-resolution microscopic and spectroscopic imaging together with microchemical and geochemical analyses. The data show early diagenetic growth of siderite crystals as a response to sedimentary organic matter mineralization. Microchemical zoning was identified in all siderite crystals. Siderite thus likely forms during diagenesis through growth on primary existing phases and the mineralogical and chemical features of these siderites are a function of changes in redox conditions of the pore water and sediment over time. Identification of microchemical zoning in ancient siderites deposited in the Precambrian may thus also be used to infer siderite growth histories in ancient sedimentary rocks including sedimentary iron formations. N2 - Während des Präkambriums und damit während des Großteils der Erdgeschichte, zeichneten sich die Ozeane durch ihren hohen Eisengehalt aus. Sowohl die Remineralisierung von organischem Material, als auch die Diagenese in den Sedimenten, die in den frühen Ozeanen der Erde abgelagert wurden, hatte höchstwahrscheinlich bedeutende Auswirkungen auf die globalen biogeochemischen Stoffkreisläufe. Unser Verständnis des Abbaus von organischem Material in eisenhaltigen Sedimenten ist jedoch sehr begrenzt, da moderne Analogsysteme extrem selten sind und bis heute nicht erforscht wurden. Der Towutisee auf der Insel Sulawesi in Indonesien ist ein solches modernes Analogsystem und Ziel dieser Doktorarbeit war es, die Raten und Pfade des Abbaus von organischem Material in den modernen eisenhaltigen Sedimenten des Towutisees zu erforschen. Der Towutisee ist der größte tektonische See in Südostasien und ist von mafischen und ultramafischen Gesteinen des Ost-Sulawesi-Ophioliten umgeben. Er hat eine maximale Wassertiefe von 203 m und ist schwach thermisch stratifiziert. Bis zu einer Tiefe von 70 m herrschen oxische Bedingungen, während die Wassersäule unterhalb von 130 m permanent anoxisch ist. Intensive Verwitterungsprozesse des ultramafischen Einzugsgebietes führen zu einem hohen Eintrag von Eisen(oxy)hydroxiden, während der Oberflächenabfluss nur wenig Sulfat enthält. Die Konzentrationen von Sulfat in der Wassersäule sind daher außergewöhnlich gering (< 20µM). Diese physikochemischen Verhältnisse sind analog zu denen der Ozeane des Archaikums und des Proterozoikums. Kurze (< 35 cm) Sedimentkerne wurden von verschiedenen Wassertiefen und unterschiedlichen Redox-Bedingungen des Bodenwassers entnommen. Darüber hinaus, wurde, im Zuge einer Bohrkampagne des International Continental Scientific Drilling Programs (ICDP) am Towutisee, ein 114 m langer Sedimentkern aus einer Wassertiefe von 153m, also deutlich unterhalb des Sauerstoffgradienten, erbohrt. Dieser war ausschließlich für geomikrobiologische Probenahmen und Untersuchungen vorgesehen. Die Proben, die aus diesen Sedimentkernen entnommen wurden, bilden das Fundament dieser Doktorarbeit und wurden für biogeochemische und mikrobiologische Untersuchungen verwendet. Unkontaminierte Proben sind für geomikrobiologische Untersuchungen unabdingbar. Das Erforschen von Gebieten unterhalb der Oberfläche ist jedoch auf Bohrungen angewiesen, welche wiederum den Einsatz einer Bohrspülung erfordern. Leider ist es unvermeidlich, dass diese im Zuge des Bohrprozesses in den erbohrten Sedimentkern eindringen. Die einzige Möglichkeit unkontaminierte Proben zu gewinnen ist es daher, den Grad der Kontamination des Bohrkerns nachzuverfolgen und unkontaminierte Proben für weitere Analysen zu identifizieren. Dazu wurde im Zuge dieser Doktorarbeit eine einfache und kostengünstige Methode zur Kontaminationskontrolle während Bohroperationen entwickelt und während der ICDP Bohrkampagne auf dem Towutisee angewandt. Als Tracer kam eine Farbe zum Einsatz, deren physikalische Eigenschaften denen von partikulären Tracern ähnelt. Der Preis dieser Farbe ist im Vergleich zu bisher verwendeten partikulären Tracern, jedoch vier Größenordnungen geringer und löst damit das Hauptproblem dieser Tracer. Die Methode benötigt nur ein Mindestmaß an Equipment und ermöglicht eine schnelle Identifizierung von Kontaminationen, möglicherweise sogar vor Ort. Die Sensitivität der Methode ist im Bereich von etablierten Kontaminationskontrollen. Kontaminierte Proben des erbohrten Sedimentkerns wurden mit dieser Methode identifiziert und nicht für weitere geomikrobiologische Untersuchungen verwendet. Biogeochemische Analysen der Kurzkerne zeigen, dass die Sedimente des Towutisees sehr arm an Elektronenakzeptoren sind, die für den mikrobiellen Abbau von organischem Material verwendet werden (d.h. Sauerstoff, Nitrat und Sulfat). Nichtsdestotrotz zeichnen sich die Sedimente des Towutisees durch hohe Zellzahlen aus, die von den Redox-Bedingungen des Bodenwassers abhängig sind. In niedrigen Wassertiefen führt oxygeniertes Bodenwasser zu einem erhöhten Eintrag von labilem organischen Material sowie Elektronenakzeptoren wie Eisen und Sulfat, wodurch hohe Zellzahlen resultieren. Mikrobiologische Analysen zeigen, dass die Sedimente des Towutisees durch eine vielseitige, mikrobielle Gemeinschaft bevölkert werden, die in der Lage ist, Stoffwechsel, wie Eisenreduktion, Sulfatreduktion, Fermentation sowie Methanogenese auszuführen. Biogeochemische Untersuchungen der oberen 12 m des 114 m langen Sedimentkerns zeigen, dass die Sedimente des Towutisees mit 2500 µM cm-3 extrem hohe Eisengehalte (20 Gew. %) aufweisen und damit das eisenreichste natürliche sedimentäre System sind, welches bisher erforscht wurde. Nach unserem bisherigen Verständnis über biogeochemische Stoffkreisläufe sollte, in Abwesenheit von Sauerstoff, Nitrat oder Sulfat, organisches Material über den energetisch günstigsten verfügbaren Elektronenakzeptoren abgebaut werden – in dem Fall Eisen (III). Erstaunlicherweise jedoch, ist Methanogenese der dominante (> 85 %) Remineralisierungsprozess in den Sedimenten des Towutisees. Mikrobiell theoretisch verfügbares reaktives Eisen (III) hingegen bleibt stabil über die oberen 12 m des Sedimentkerns und damit über mehr als 60.000 Jahre. Produziertes Methan wird nicht anaerob oxidiert und diffundiert aus dem Sediment in die Wassersäule. Die Dominanz von Methanogenese in diesen eisenreichen Sedimenten impliziert, dass dieser Prozess im Präkambrium vermutlich eine viel bedeutendere Rolle in der Remineralisierung von organischem Material eingenommen hat, als bisher angenommen. Methan, als bedeutendes Treibhausgas, war demnach möglicherweise ein wichtiger Regulator des Klimas in der frühen Erdgeschichte. T2 - Biogeochemie eisenreicher Sedimente des Lake Towuti, Sulawesi, Indonesien KW - Geomicrobiology KW - Biogeochemistry KW - Organic matter mineralization KW - Early Earth KW - Contamination Control KW - Biogeochemie KW - Kontaminationskontrolle KW - Frühe Erdgeschichte KW - Geomikrobiologie KW - Mikrobieller Abbau von organischen Material Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475355 ER - TY - JOUR A1 - Ganguli, Poulomi A1 - Paprotny, Dominik A1 - Hasan, Mehedi A1 - Güntner, Andreas A1 - Merz, Bruno T1 - Projected changes in compound flood hazard from riverine and coastal floods in northwestern Europe JF - Earth's future N2 - Compound flooding in coastal regions, that is, the simultaneous or successive occurrence of high sea levels and high river flows, is expected to increase in a warmer world. To date, however, there is no robust evidence on projected changes in compound flooding for northwestern Europe. We combine projected storm surges and river floods with probabilistic, localized relative sea-level rise (SLR) scenarios to assess the future compound flood hazard over northwestern coastal Europe in the high (RCP8.5) emission scenario. We use high-resolution, dynamically downscaled regional climate models (RCM) to drive a storm surge model and a hydrological model, and analyze the joint occurrence of high coastal water levels and associated river peaks in a multivariate copula-based approach. The RCM-forced multimodel mean reasonably represents the observed spatial pattern of the dependence strength between annual maxima surge and peak river discharge, although substantial discrepancies exist between observed and simulated dependence strength. All models overestimate the dependence strength, possibly due to limitations in model parameterizations. This bias affects compound flood hazard estimates and requires further investigation. While our results suggest decreasing compound flood hazard over the majority of sites by 2050s (2040-2069) compared to the reference period (1985-2005), an increase in projected compound flood hazard is limited to around 34% of the sites. Further, we show the substantial role of SLR, a driver of compound floods, which has frequently been neglected. Our findings highlight the need to be aware of the limitations of the current generation of Earth system models in simulating coastal compound floods. KW - compound flood KW - storm surge KW - river floods KW - sea level rise KW - climate KW - change KW - Europe Y1 - 2020 U6 - https://doi.org/10.1029/2020EF001752 SN - 2328-4277 VL - 8 IS - 11 PB - Wiley-Blackwell CY - Hoboken, NJ ER - TY - JOUR A1 - Ghani, Humaad A1 - Sobel, Edward A1 - Zeilinger, Gerold A1 - Glodny, Johannes A1 - Zapata, Sebastian A1 - Irum, Irum T1 - Palaeozoic and Pliocene tectonic evolution of the Salt Range constrained by low-temperature thermochronology JF - Terra nova N2 - The Salt Range in Pakistan exposes Precambrian to Pleistocene strata outcropping along the Salt Range Thrust (SRT). To better understand the in-situ Cambrian and Pliocene tectonic evolution of the Pakistan Subhimalaya, we have conducted low-temperature thermochronological analysis using apatite (U-Th-Sm)/He and fission track dating. We combine cooling ages from different samples located along the thrust front of the SRT into a thermal model that shows two major cooling events associated with rifting and regional erosion in the Late Palaeozoic and SRT activity since the Pliocene. Our results suggest that the SRT maintained a long-term average shortening rate of similar to 5-6 mm/yr and a high exhumation rate above the SRT ramp since similar to 4 Ma. KW - exhumation KW - fault bend fold KW - ramp KW - Salt Range Y1 - 2020 U6 - https://doi.org/10.1111/ter.12515 SN - 0954-4879 SN - 1365-3121 VL - 33 IS - 3 SP - 293 EP - 305 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Giarolla, Emanuel A1 - Veiga, Sandro F. A1 - Nobre, Paulo A1 - Silva, Manoel B. A1 - Capistrano, Vinicius B. A1 - Callegare, Andyara O. T1 - Sea surface height trends in the southern hemisphere oceans simulated by the Brazilian Earth System Model under RCP4.5 and RCP8.5 scenarios JF - Journal of southern hemisphere earth systems science N2 - The Brazilian Earth System Model (BESM-OA2.5), while simulating the historical period proposed by the fifth phase of the Coupled Model Intercomparison Project (CMIP5), detects an increasing trend in the sea surface height (SSH) on the southern hemisphere oceans relative to that of the pre-industrial era. The increasing trend is accentuated in the CMIP5 RCP4.5 and RCP8.5 future scenarios with higher concentrations of greenhouse gases in the atmosphere. This study sheds light on the sources of such trends in these regions. The results suggest an association with the thermal expansion of the oceans in the upper 700 m due to a gradual warming inflicted by those future scenarios. BESM-OA2.5 presents a surface height increase of 0.11 m in the historical period of 1850-2005. Concerning future projections, BESM-OA2.5 projects SSH increases of 0.14 and 0.23 m (relative to the historical 2005 value) for RCP4.5 and RCP8.5, respectively, by the end of 2100. These increases are predominantly in a band of latitude within 35-60 degrees S in the Atlantic and Indian oceans. The reproducibility of the trend signal detected in the BESM-OA2.5 simulations is confirmed by the results of three other CMIP5 models. KW - Brazilian Earth System Model KW - CMIP5 KW - IPCC AR5 scenarios KW - RCP4.5 KW - RCP8.5 KW - sea level trends KW - sea surface height KW - southern hemisphere oceans Y1 - 2020 U6 - https://doi.org/10.1071/ES19042 SN - 2206-5865 VL - 70 IS - 1 SP - 280 EP - 289 PB - CSIRO CY - Clayton ER - TY - JOUR A1 - Glerum, Anne A1 - Brune, Sascha A1 - Stamps, D. Sarah A1 - Strecker, Manfred T1 - Victoria continental microplate dynamics controlled by the lithospheric strength distribution of the East African Rift JF - Nature Communications N2 - The Victoria microplate between the Eastern and Western Branches of the East African Rift System is one of the largest continental microplates on Earth. In striking contrast to its neighboring plates, Victoria rotates counterclockwise with respect to Nubia. The underlying cause of this distinctive rotation has remained elusive so far. Using 3D numerical models, we investigate the role of pre-existing lithospheric heterogeneities in continental microplate rotation. We find that Victoria's rotation is primarily controlled by the distribution of rheologically stronger zones that transmit the drag of the major plates to the microplate and of the mechanically weaker mobile belts surrounding Victoria that facilitate rotation. Our models reproduce Victoria's GPS-derived counterclockwise rotation as well as key complexities of the regional tectonic stress field. These results reconcile competing ideas on the opening of the rift system by highlighting differences in orientation of the far-field divergence, local extension, and the minimum horizontal stress. One of the largest continental microplates on Earth is situated in the center of the East African Rift System, and oddly, the Victoria microplate rotates counterclockwise with respect to the neighboring African tectonic plate. Here, the authors' modelling results suggest that Victoria microplate rotation is caused by edge-driven lithospheric processes related to the specific geometry of rheologically weak and strong regions. Y1 - 2020 U6 - https://doi.org/10.1038/s41467-020-16176-x SN - 2041-1723 VL - 11 IS - 1 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Govin, Gwladys A1 - van der Beek, Pieter A. A1 - Najman, Yani A1 - Millar, Ian A1 - Gemignani, Lorenzo A1 - Huyghe, Pascale A1 - Dupont-Nivet, Guillaume A1 - Bernet, Matthias A1 - Mark, Chris A1 - Wijbrans, Jan T1 - Early onset and late acceleration of rapid exhumation in the Namche Barwa syntaxis, eastern Himalaya JF - Geology N2 - The Himalayan syntaxes, characterized by extreme rates of rock exhumation co-located with major trans-orogenic rivers, figure prominently in the debate on tectonic versus erosional forcing of exhumation. Both the mechanism and timing of rapid exhumation of the Namche Barwa massif in the eastern syntaxis remain controversial. It has been argued that coupling between crustal rock advection and surface erosion initiated in the late Miocene (8-10 Ma). Recent studies, in contrast, suggest a Quaternary onset of rapid exhumation linked to a purely tectonic mechanism. We report new multisystem detrital thermochronology data from the most proximal Neogene clastic sediments downstream of Namche Barwa and use a thermo-kinematic model constrained by new and published data to explore its exhumation history. Modeling results show that exhumation accelerated to similar to 4 km/m.y. at ca. 8 Ma and to similar to 9 km/m.y. after ca. 2 Ma. This three-stage history reconciles apparently contradictory evidence for early and late onset of rapid exhumation and suggests efficient coupling between tectonics and erosion since the late Miocene. Quaternary acceleration of exhumation is consistent with river-profile evolution and may be linked to a Quaternary river-capture event. Y1 - 2020 U6 - https://doi.org/10.1130/G47720.1 SN - 0091-7613 SN - 1943-2682 VL - 48 IS - 12 SP - 1139 EP - 1143 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Grotheer, Hendrik A1 - Meyer, Vera A1 - Riedel, Theran A1 - Pfalz, Gregor A1 - Mathieu, Lucie A1 - Hefter, Jens H. A1 - Gentz, Torben A1 - Lantuit, Hugues A1 - Mollennauer, Gesine A1 - Fritz, Michael T1 - Burial and origin of permafrost-derived carbon in the nearshore zone of the southern Canadian Beaufort Sea JF - Geophysical research letters N2 - Detailed organic geochemical and carbon isotopic (delta C-13 and Delta C-14) analyses are performed on permafrost deposits affected by coastal erosion (Herschel Island, Canadian Beaufort Sea) and adjacent marine sediments (Herschel Basin) to understand the fate of organic carbon in Arctic nearshore environments. We use an end-member model based on the carbon isotopic composition of bulk organic matter to identify sources of organic carbon. Monte Carlo simulations are applied to quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget. The models suggest that similar to 40% of all carbon released by local coastal permafrost erosion is efficiently trapped and sequestered in the nearshore zone. This highlights the importance of sedimentary traps in environments such as basins, lagoons, troughs, and canyons for the carbon sequestration in previously poorly investigated, nearshore areas. Plain Language Summary Increasing air and sea surface temperatures at high latitudes leads to accelerated thaw, destabilization, and erosion of perennially frozen soils (i.e., permafrost), which are often rich in organic carbon. Coastal erosion leads to an increased mobilization of organic carbon into the Arctic Ocean, which there can be converted into greenhouse gases and may therefore contribute to further warming. Carbon decomposition can be limited if organic matter is efficiently deposited on the seafloor, buried in marine sediments, and thus removed from the short-term carbon cycle. Basins, canyons, and troughs near the coastline can serve as sediment traps and potentially accommodate large quantities of organic carbon along the Arctic coast. Here we use biomarkers (source-specific molecules), stable carbon isotopes, and radiocarbon to identify the sources of organic carbon in the nearshore zone of the southern Canadian Beaufort Sea near Herschel Island. We quantify the contribution of coastal permafrost erosion to the sedimentary carbon budget of the area and estimate that more than a third of all carbon released by local permafrost erosion is efficiently trapped in marine sediments. This highlights the importance of regional sediment traps for carbon sequestration. Y1 - 2020 U6 - https://doi.org/10.1029/2019GL085897 SN - 0094-8276 SN - 1944-8007 VL - 47 IS - 3 PB - Wiley CY - Hoboken, NJ ER - TY - JOUR A1 - Guzman, Diego A. A1 - Samprogna Mohor, Guilherme A1 - Mendiondo, Eduardo Mario T1 - Multi-year index-based insurance for adapting Water Utility Companies to hydrological drought BT - case study of a water supply system of the Sao Paulo metropolitan region, Brazil JF - Water N2 - The sustainability of water utility companies is threatened by non-stationary drivers, such as climate and anthropogenic changes. To cope with potential economic losses, instruments such as insurance are useful for planning scenarios and mitigating impacts, but data limitations and risk uncertainties affect premium estimation and, consequently, business sustainability. This research estimated the possible economic impacts of business interruption to the Sao Paulo Water Utility Company derived from hydrological drought and how this could be mitigated with an insurance scheme. Multi-year insurance (MYI) was proposed through a set of "change" drivers: the climate driver, through forcing the water evaluation and planning system (WEAP) hydrological tool; the anthropogenic driver, through water demand projections; and the economic driver, associated with recent water price policies adopted by the utility company during water scarcity periods. In our study case, the evaluated indices showed that MYI contracts that cover only longer droughts, regardless of the magnitude, offer better financial performance than contracts that cover all events (in terms of drought duration). Moreover, through MYI contracts, we demonstrate solvency for the insurance fund in the long term and an annual average actuarially fair premium close to the total expected revenue reduction. KW - multi-year insurance KW - climate change KW - hydrological drought KW - water KW - security and economy Y1 - 2020 U6 - https://doi.org/10.3390/w12112954 SN - 2073-4441 VL - 12 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Heeschen, Katja U. A1 - Janocha, Julian A1 - Spangenberg, Erik A1 - Schicks, Judith Maria A1 - Giese, Ronny T1 - The impact of ice on the tensile strength of unconsolidated sand BT - a model for gas hydrate-bearing sands? JF - Marine and petroleum geology N2 - Tensile strength is an important parameter when it comes to predictions of potential fracturing of sediments by natural processes such as the emplacement of ice or gas hydrate lenses, as well as anthropogenic fracturing or else the stability of engineering constructions such as boreholes. Yet, tensile strength (sigma(tau)) measurements of unconsolidated ice-bearing or gas hydrate-bearing sands are scarce and affected by a large variability.
In the course of the SUGAR project we successfully used ice as a model for pore-filling and "load-bearing" gas hydrate in sand to determine compressional wave velocity. We were thus able to verify comparable formation characteristics and morphologies of ice and gas hydrate within the pore space. As these are important values for the tensile strength of ice/hydrate-bearing sands, ice was also used as a model for hydrate-bearing sands, despite differences in the mechanical behavior and strength of pure ice and gas hydrate. Water-saturated sand cores with ice saturations (S-ice) between 0 and 100% were tested at -6.8 degrees C. The varying S-ice were a result of the freezing point depression caused by saline solutions of different concentrations. The sigma(tau) was directly determined using a sleeve-fracturing test with an internal pressure that was created within the frozen samples. The setup was also adapted to fit a pressure vessel for tests using confining pressure.
The correlation of S-ice - sigma(tau) shows an exponential increase of sigma(tau) with S-ice. Whereas at S-ice < 60% the increase is small, it is large at S-ice > 80%. In conjunction with the change in strength, the viscoelastic behavior changes. A clear peak strength occurs at S-ice > 80%. We conclude that given 60% < S-ice < 80% the pore-filling morphology of the ice converts into a frame-building habitus and at S-ice > 80% the frame gains strength while the amount of residual water decreases. Tensile failure and cracking now exceed grain boundary sliding as the prevailing failure mode. The ice morphology in the sand is non-cementing and comparable to a gas hydrate-sand mixture. KW - tensile strength KW - ice-grain mixture KW - gas hydrate KW - saline permafrost KW - ice KW - frozen soil Y1 - 2020 U6 - https://doi.org/10.1016/j.marpetgeo.2020.104607 SN - 0264-8172 SN - 1873-4073 VL - 122 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hennig, Theresa A1 - Stockmann, Madlen A1 - Kühn, Michael T1 - Simulation of diffusive uranium transport and sorption processes in the Opalinus Clay JF - Applied geochemistry : journal of the International Association of Geochemistry and Cosmochemistry N2 - Diffusive transport and sorption processes of uranium in the Swiss Opalinus Clay were investigated as a function of partial pressure of carbon dioxide pCO(2), varying mineralogy in the facies and associated changes in porewater composition. Simulations were conducted in one-dimensional diffusion models on the 100 m-scale for a time of one million years using a bottom-up approach based on mechanistic surface complexation models as well as cation exchange to quantify sorption. Speciation calculations have shown, uranium is mainly present as U(VI) and must therefore be considered as mobile for in-situ conditions. Uranium migrated up to 26 m in both, the sandy and the carbonate-rich facies, whereas in the shaly facies 16 m was the maximum. The main species was the anionic complex CaUO2(CO3)(3)(2-) . Hence, anion exclusion was taken into account and further reduced the migration distances by 30 %. The concentrations of calcium and carbonates reflected by the set pCO(2) determine speciation and activity of uranium and consequently the sorption behaviour. Our simulation results allow for the first time to prioritize on the far-field scale the governing parameters for diffusion and sorption of uranium and hence outline the sensitivity of the system. Sorption processes are controlled in descending priority by the carbonate and calcium concentrations, pH, pe and the clay mineral content. Therefore, the variation in porewater composition resulting from the heterogeneity of the facies in the Opalinus Clay formation needs to be considered in the assessment of uranium migration in the far field of a potential repository. KW - reactive transport KW - facies KW - heterogeneity KW - carbonate KW - PHREEQC KW - Mont Terri KW - speciation Y1 - 2020 U6 - https://doi.org/10.1016/j.apgeochem.2020.104777 SN - 0883-2927 SN - 1872-9134 VL - 123 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Herzschuh, Ulrike T1 - Legacy of the Last Glacial on the present-day distribution of deciduous versus evergreen boreal forests T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Issue Despite their rather similar climatic conditions, eastern Eurasia and northern North America are largely covered by different plant functional types (deciduous or evergreen boreal forest) composed of larch or pine, spruce and fir, respectively. I propose that these deciduous and evergreen boreal forests represent alternative quasi-stable states, triggered by their different northern tree refugia that reflect the different environmental conditions experienced during the Last Glacial. Evidence This view is supported by palaeoecological and environmental evidence. Once established, Asian larch forests are likely to have stabilized through a complex vegetation-fire-permafrost soil-climate feedback system. Conclusion With respect to future forest developments, this implies that Asian larch forests are likely to be governed by long-term trajectories and are therefore largely resistant to natural climate variability on time-scales shorter than millennia. The effects of regional human impact and anthropogenic global warming might, however, cause certain stability thresholds to be crossed, meaning that irreversible transitions occur and resulting in marked consequences for ecosystem services on these human-relevant time-scales. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1190 KW - boreal forests KW - Glacial refugia KW - Holocene KW - Larix larch KW - permafrost ecosystems KW - Palaeoecology KW - Siberia KW - vegetation‐climate‐fire‐soil feedbacks KW - vegetation states KW - vegetation trajectories Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524057 SN - 1866-8372 IS - 2 ER - TY - THES A1 - Holm, Stine T1 - Methanogenic communities and metaplasmidome-encoded functions in permafrost environments exposed to thaw N2 - This thesis investigates how the permafrost microbiota responds to global warming. In detail, the constraints behind methane production in thawing permafrost were linked to methanogenic activity, abundance and composition. Furthermore, this thesis offers new insights into microbial adaptions to the changing environmental conditions during global warming. This was assesed by investigating the potential ecological relevant functions encoded by plasmid DNA within the permafrost microbiota. Permafrost of both interglacial and glacial origin spanning the Holocene to the late Pleistocene, including Eemian, were studied during long-term thaw incubations. Furthermore, several permafrost cores of different stratigraphy, soil type and vegetation cover were used to target the main constraints behind methane production during short-term thaw simulations. Short- and long-term incubations simulating thaw with and without the addition of substrate were combined with activity measurements, amplicon and metagenomic sequencing of permanently frozen and seasonally thawed active layer. Combined, it allowed to address the following questions. i) What constraints methane production when permafrost thaws and how is this linked to methanogenic activity, abundance and composition? ii) How does the methanogenic community composition change during long-term thawing conditions? iii) Which potential ecological relevant functions are encoded by plasmid DNA in active layer soils? The major outcomes of this thesis are as follows. i) Methane production from permafrost after long-term thaw simulation was found to be constrained mainly by the abundance of methanogens and the archaeal community composition. Deposits formed during periods of warmer temperatures and increased precipitation, (here represented by deposits from the Late Pleistocene of both interstadial and interglacial periods) were found to respond strongest to thawing conditions and to contain an archaeal community dominated by methanogenic archaea (40% and 100% of all detected archaea). Methanogenic population size and carbon density were identified as main predictors for potential methane production in thawing permafrost in short-term incubations when substrate was sufficiently available. ii) Besides determining the methanogenic activity after long-term thaw, the paleoenvironmental conditions were also found to influence the response of the methanogenic community composition. Substantial shifts within methanogenic community structure and a drop in diversity were observed in deposits formed during warmer periods, but not in deposits from stadials, when colder and drier conditions occurred. Overall, a shift towards a dominance of hydrogenotrophic methanogens was observed in all samples, except for the oldest interglacial deposits from the Eemian, which displayed a potential dominance of acetoclastic methanogens. The Eemian, which is discussed to serve as an analogue to current climate conditions, contained highly active methanogenic communities. However, all potential limitation of methane production after permafrost thaw, it means methanogenic community structure, methanogenic population size, and substrate pool might be overcome after permafrost had thawed on the long-term. iii) Enrichments with soil from the seasonally thawed active layer revealed that its plasmid DNA (‘metaplasmidome’) carries stress-response genes. In particular it encoded antibiotic resistance genes, heavy metal resistance genes, cold shock proteins and genes encoding UV-protection. Those are functions that are directly involved in the adaptation of microbial communities to stresses in polar environments. It was further found that metaplasmidomes from the Siberian active layer originate mainly from Gammaproteobacteria. By applying enrichment cultures followed by plasmid DNA extraction it was possible to obtain a higher average contigs length and significantly higher recovery of plasmid sequences than from extracting plasmid sequences from metagenomes. The approach of analyzing ‘metaplasmidomes’ established in this thesis is therefore suitable for studying the ecological role of plasmids in polar environments in general. This thesis emphasizes that including microbial community dynamics have the potential to improve permafrost-carbon projections. Microbially mediated methane release from permafrost environments may significantly impact future climate change. This thesis identified drivers of methanogenic composition, abundance and activity in thawing permafrost landscapes. Finally, this thesis underlines the importance to study how the current warming Arctic affects microbial communities in order to gain more insight into microbial response and adaptation strategies. N2 - Diese Dissertation untersucht die Reaktion der Permafrost-Mikrobiota auf die globale Erwärmung. Im Detail wurden mögliche Faktoren, die die Methanproduktion in tauendem Permafrost einschränken, im Zusammenhang methanogener Aktivität, Abundanz und Gemeinschaftszusammensetzung untersucht. Darüber hinaus bietet diese Dissertation neue Einblicke in mikrobielle Anpassungen an die sich ändernden Umweltbedingungen während der globalen Erwärmung. Dies wurde durch Untersuchung der potenziell ökologisch relevanten Funktionen bewertet, die von Plasmid-DNA innerhalb der Permafrost-Mikrobiota codiert werden. Permafrost, der seinen Ursprung in den Interglazialen und Glazialen aus dem Holozän bis zum späten Pleistozän, einschließlich des Eem, hat, wurde in Langzeit-Tau-Inkubationen untersucht. Darüber hinaus wurden mehrere Permafrostkerne mit unterschiedlicher Stratigraphie, Vegetationsbedeckung und unterschiedlichem Bodentyp verwendet, um die Faktoren, die die Methanproduktion während kurzfristiger Auftausimulationen bestimmen, zu ermitteln. Kurz- und Langzeitinkubationen, die das Auftauen mit und ohne Zugabe von Substrat in Kombination mit Aktivitätsmessungen, Amplikon- und Metagenom-Sequenzierung von permanent gefrorenem und saisonal aufgetautem Boden simulieren, ermöglichten die Beantwortung folgender Fragen: i) Welche Faktoren hemmen die Methanproduktion beim Auftauen des Permafrosts und wie hängt dies mit der Aktivität, Abundanz und Zusammensetzung methanogener Organismen zusammen? ii) Wie verändert sich die Gemeinschaftszusammensetzung methanogener Organismen unter langfristigen Auftaubedingungen? iii) Welche potenziell ökologisch relevanten Funktionen werden von Plasmid-DNA in saisonal getauten Böden kodiert? Die wichtigsten Ergebnisse dieser Arbeit können wie folgt zusammengefasst werden. i) Die Methanproduktion in langfristig getautem Permafrost wird hauptsächlich durch die Anzahl der methanogenen Archaeen und ihrem Anteil innerhalb der Archaeen bestimmt. Ablagerungen, die in wärmeren Perioden mit erhöhtem Niederschlag gebildet wurden, reagierten am stärksten auf das Tauen und enthielten eine von Methanogenen dominierte Archaeen-Gemeinschaft. In Kurzzeitinkubationen mit ausreichender Verfügbarkeit von Substrat wurden die Populationsgröße der methanogenen Organismen und die Kohlenstoffdichte als Hauptprädiktoren für die potenzielle Methanproduktion beim Auftauen von Permafrost identifiziert. ii) Auch die paläoökologischen Bedingungen beeinflussen die Reaktion der methanogenen Gemeinschaft und Aktivität, wenn Permafrost taut. Es wurden erhebliche Verschiebungen innerhalb der Gemeinschaftsstruktur und ein Rückgang der Diversität in Ablagerungen beobachtet, die in wärmeren Perioden gebildet wurden, jedoch nicht bei Ablagerungen aus kälteren und trockeneren Perioden. Insgesamt wurde in allen Proben eine Verschiebung hin zu einer Dominanz von hydrogenotrophen Methanogenen beobachtet, mit Ausnahme der ältesten interglazialen Ablagerungen aus dem Eem, die eine potenzielle Dominanz von acetoklastischen Methanogenen aufwiesen. Das Eem, das als Analogon zu den aktuellen Klimabedingungen diskutiert wird, enthielt hochaktive methanogene Gemeinschaften. iii) Anreicherungen aus Boden der saisonalen Auftauschicht zeigten, dass die enthaltene Plasmid-DNA („Metaplasmidom“) Stress-Reaktions-Gene trägt. Insbesondere codierte die Plasmid-DNA Antibiotikaresistenzgene, Schwermetallresistenzgene, Kälteschock-proteine und Gene, für den UV-Schutz, also Funktionen, die direkt an der Anpassung mikrobieller Gemeinschaften an Stress in polaren Umgebungen beteiligt sind. Weiterhin stammten die Metaplasmidome der saisonalen Auftauschicht Sibiriens hauptsächlich von Gammaproteobakterien. Durch die Anreicherung von Kulturen, gefolgt von einer Extraktion der Plasmid-DNA, war es möglich, eine höhere durchschnittliche Contig-Länge und eine signifikant höhere Wiederherstellung von Plasmidsequenzen zu erhalten als durch Extrahieren von Plasmidsequenzen aus Metagenomen. Der in dieser Arbeit etablierte Ansatz zur Analyse von „Metaplasmidomen“ ist ein geeigneter Ansatz zur Untersuchung der ökologischen Rolle von Plasmiden in polaren Regionen insgesamt. Diese Dissertation hebt hervor, wie wichtig es ist, die Abundanz, Zusammensetzung und Funktionen der mikrobiellen Gemeinschaft in Permafrost-Kohlenstoff-Projektionen einzubeziehen, und zwar nicht nur, da die mikrobiell vermittelte Methanfreisetzung aus Permafrostablagerungen das Potenzial hat, den zukünftigen Klimawandel erheblich zu beeinflussen. Vielmehr wurden in dieser Arbeit Abhängigkeiten methanogener Gemeinschaftsstrukturen, Abundanz und Aktivität identifiziert. Abschließend verdeutlicht diese Arbeit, wie wichtig es ist zu untersuchen, wie sich die derzeitige Erwärmung der Arktis auf mikrobielle Gemeinschaften auswirkt, um Einblicke in mikrobielle Reaktions- und Anpassungsstrategien zu erhalten. KW - methanogenic archaea KW - methane KW - glacial and interglacial permafrost KW - Permafrost carbon feedback KW - carbon density KW - Siberia KW - Herschel Island Qikiqtaruk KW - active layer KW - plasmidome KW - stress-tolerance genes Y1 - 2020 ER - TY - JOUR A1 - Huang, Sichao A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna A1 - Zimmermann, Heike Hildegard A1 - Davydova, Paraskovya A1 - Biskaborn, Boris A1 - Shevtsova, Iuliia A1 - Stoof-Leichsenring, Kathleen Rosemarie T1 - Genetic and morphologic determination of diatom community composition in surface sediments from glacial and thermokarst lakes in the Siberian Arctic JF - Journal of paleolimnolog N2 - Lakes cover large parts of the climatically sensitive Arctic landscape and respond rapidly to environmental change. Arctic lakes have different origins and include the predominant thermokarst lakes, which are small, young and highly dynamic, as well as large, old and stable glacial lakes. Freshwater diatoms dominate the primary producer community in these lakes and can be used to detect biotic responses to climate and environmental change. We used specific diatom metabarcoding on sedimentary DNA, combined with next-generation sequencing and diatom morphology, to assess diatom diversity in five glacial and 15 thermokarst lakes within the easternmost expanse of the Siberian treeline ecotone in Chukotka, Russia. We obtained 163 verified diatom sequence types and identified 176 diatom species morphologically. Although there were large differences in taxonomic assignment using the two approaches, they showed similar high abundances and diversity of Fragilariceae and Aulacoseiraceae. In particular, the genetic approach detected hidden within-lake variations of fragilarioids in glacial lakes and dominance of centric Aulacoseira species, whereas Lindavia ocellata was predominant using morphology. In thermokarst lakes, sequence types and valve counts also detected high diversity of Fragilariaceae, which followed the vegetation gradient along the treeline. Ordination analyses of the genetic data from glacial and thermokarst lakes suggest that concentrations of sulfate (SO42-), an indicator of the activity of sulfate-reducing microbes under anoxic conditions, and bicarbonate (HCO3-), which relates to surrounding vegetation, have a significant influence on diatom community composition. For thermokarst lakes, we also identified lake depth as an important variable, but SO42- best explains diatom diversity derived from genetic data, whereas HCO3- best explains the data from valve counts. Higher diatom diversity was detected in glacial lakes, most likely related to greater lake age and different edaphic settings, which gave rise to diversification and endemism. In contrast, small, dynamic thermokarst lakes are inhabited by stress-tolerant fragilarioids and are related to different vegetation types along the treeline ecotone. Our study demonstrated that genetic investigations of lake sediments can be used to interpret climate and environmental responses of diatoms. It also showed how lake type affects diatom diversity, and that such genetic analyses can be used to track diatom community changes under ongoing warming in the Arctic. KW - diatoms KW - diversity KW - glacial lakes KW - sedimentary DNA KW - Siberian arctic KW - thermokarst Y1 - 2020 U6 - https://doi.org/10.1007/s10933-020-00133-1 SN - 0921-2728 SN - 1573-0417 VL - 64 IS - 3 SP - 225 EP - 242 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Hudson, Paul T1 - The affordability of flood risk property-level adaptation measures JF - Risk Analysis N2 - The affordability of property-level adaptation measures against flooding is crucial due to the movement toward integrated flood risk management, which requires the individuals threatened by flooding to actively manage flooding. It is surprising to find that affordability is not often discussed, given the important roles that affordability and social justice play regarding flood risk management. This article provides a starting point for investigating the potential rate of unaffordability of flood risk property-level adaptation measures across Europe using two definitions of affordability, which are combined with two different affordability thresholds from within flood risk research. It uses concepts of investment and payment affordability, with affordability thresholds based on residual income and expenditure definitions of unaffordability. These concepts, in turn, are linked with social justice through fairness concerns, in that, all should have equal capability to act, of which affordability is one avenue. In doing so, it was found that, for a large proportion of Europe, property owners generally cannot afford to make one-time payment of the cost of protective measures. These can be made affordable with installment payment mechanisms or similar mechanisms that spread costs over time. Therefore, the movement toward greater obligations for flood-prone residents to actively adapt to flooding should be accompanied by socially accessible financing mechanisms. KW - Affordability KW - flood risk KW - social justice KW - risk reduction Y1 - 2020 U6 - https://doi.org/10.1111/risa.13465 SN - 0272-4332 SN - 1539-6924 VL - 40 IS - 6 SP - 1151 EP - 1167 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Izgi, Gizem A1 - Eken, Tuna A1 - Gaebler, Peter A1 - Eulenfeld, Tom A1 - Taymaz, Tuncay T1 - Crustal seismic attenuation parameters in the western region of the North Anatolian Fault Zone JF - Journal of geodynamics N2 - Detailed knowledge of the crustal structure along the North Anatolian Fault Zone can help in understanding past and present tectonic processes in relation to the deformation history. To estimate the frequency-dependent crustal attenuation parameters beneath the western part of the North Anatolian Fault Zone we apply acoustic radiative transfer theory under the assumption of multiple isotropic scattering to generate synthetic seismogram envelopes. The inversion depends on finding an optimal fit between observed and synthetically computed coda wave envelopes in five frequency bands. 2-D lateral variation of intrinsic and scattering attenuation at various frequencies tends to three crustal blocks (i.e., Armutlu-Almacik, Istanbul-Zonguldak and Sakarya Zones) separated by the southern and northern branches of the western part of the North Anatolian Fault Zone. Overall, scattering attenuation appears to be dominant over intrinsic attenuation in the study area at lower frequencies. Relatively low attenuation properties are observed beneath the older Istanbul Zone whereas higher attenuation properties are found for the younger Sakarya Zone. The Armutlu Almacik Zone exhibits more complex lateral variations. Very high attenuation values towards the west characterize the area of the Kuzuluk Basin, a pull-apart basin formed under west-east extension. Our coda-derived moment magnitudes are similar to the local magnitude estimates that were previously calculated for the same earthquakes. For smaller earthquakes (M-L < 2.5), however, the relation between local and moment magnitudes appears to lose its coherency. This may stem from various reasons including the use of seismic data recorded in finite sampling interval, possible biases in local magnitude estimates of earthquake catalogues as well as biases due to wrong assumptions to consider anelastic attenuation terms. Y1 - 2020 U6 - https://doi.org/10.1016/j.jog.2020.101694 SN - 0264-3707 VL - 134 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Jones, Benjamin M. A1 - Arp, Christopher D. A1 - Grosse, Guido A1 - Nitze, Ingmar A1 - Lara, Mark J. A1 - Whitman, Matthew S. A1 - Farquharson, Louise M. A1 - Kanevskiy, Mikhail A1 - Parsekian, Andrew D. A1 - Breen, Amy L. A1 - Ohara, Nori A1 - Rangel, Rodrigo Correa A1 - Hinkel, Kenneth M. T1 - Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska JF - Permafrost and Periglacial Processes N2 - Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km(2) study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries. KW - Arctic lakes KW - drained lake basins KW - lake drainage KW - permafrost regions KW - thermokarst lakes Y1 - 2020 U6 - https://doi.org/10.1002/ppp.2038 VL - 31 IS - 1 SP - 110 EP - 127 PB - Wiley CY - New York ER - TY - GEN A1 - Jones, Benjamin M. A1 - Arp, Christopher D. A1 - Grosse, Guido A1 - Nitze, Ingmar A1 - Lara, Mark J. A1 - Whitman, Matthew S. A1 - Farquharson, Louise M. A1 - Kanevskiy, Mikhail A1 - Parsekian, Andrew D. A1 - Breen, Amy L. A1 - Ohara, Nori A1 - Rangel, Rodrigo Correa A1 - Hinkel, Kenneth M. T1 - Identifying historical and future potential lake drainage events on the western Arctic coastal plain of Alaska T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km(2) study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1376 KW - Arctic lakes KW - drained lake basins KW - lake drainage KW - permafrost regions KW - thermokarst lakes Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-610435 SN - 1866-8372 IS - 1 ER - TY - THES A1 - Karamzadeh Toularoud, Nasim T1 - Earthquake source and receiver array optimal configuration T1 - Optimale Konfiguration von Quell- und Empfängerarray für Erdbeben N2 - Seismic receiver arrays have variety of applications in seismology, particularly when the signal enhancement is a prerequisite to detect seismic events, and in situations where installing and maintaining sparse networks are impractical. This thesis has mainly focused on the development of a new approach for seismological source and receiver array design.The proposed approach deals with the array design task as an optimization problem. The criteria and prerequisite constraints in array design task are integrated in objective function definition and evaluation of a optimization process. Three cases are covered in this thesis: (1) a 2-D receiver array geometry optimization, (2) a 3-D source array optimization, and (3) an array application to monitor microseismic data, where the effect of different types of noise are evaluated. A flexible receiver array design framework implements a customizable scenario modelling and optimization scheme by making use of synthetic seismograms. Using synthetic seismograms to evaluate array performance makes it possible to consider additional constraints, e.g. land ownership, site-specific noise levels or characteristics of the seismic sources under investigation. The use of synthetic array beamforming as an array design criteria is suggested. The framework is customized by designing a 2-D small scale receiver array to monitor earthquake swarm activity in northwest Bohemia/ Vogtland in central Europe. Two sub-functions are defined to verify the accuracy of horizontal slowness estimation; one to suppress aliasing effects due to possible secondary lobes of synthetic array beamforming calculated in horizontal slowness space, and the other to reduce the event's mislocation caused by miscalculation of the horizontal slowness vector. Subsequently, a weighting technique is applied to combine the sub-functions into one single scalar objective function to use in the optimization process. The idea of optimal array is employed to design a 3-D source array, given a well-located catalog of events. The conditions to make source arrays are formulated in four objective functions and a weighted sum technique is used to combine them in one single scalar function. The criteria are: (1) accurate slowness vector estimation, (2) high waveform coherency, (3) low location error and (4) high energy of coda phases. The method is evaluated by two experiments, (1) a synthetic test using realistic synthetic seismograms, (2) using real seismograms, and for each case optimized SA elements are configured using the data from the Vogtland area. The location of a possible scatterer in the velocity model, that makes the converted/reflected phases, e.g. sp-phases, is retrieved by a grid search method using the optimized SA. The accuracy of the approach and the obtained results demonstrated that the method is applicable to study the crustal structure and the location of crustal scatterers when the strong converted phases are observed in the data and a well-located catalog is available. Small aperture arrays are employed in seismology for a variety of applications, ranging from pure event detection to monitor and study of microcosmic activities. The monitoring of microseismicity during temporary human activities is often difficult, as the signal-to-noise ratio is very low and noise is strongly increased during the operation. The combination of small aperture seismic arrays with shallow borehole sensors offers a solution. We tested this monitoring approach at two different sites, (1) accompanying a fracking experiment in sedimentary shale at 4~km depth, and (2) above a gas field under depletion. Arrays recordings are compared with recordings available from shallow borehole sensors and examples of detection and location performance of the array are given. The effect of different types of noise at array and borehole stations are compared and discussed. N2 - Seismische Arrays haben eine Vielzahl von Anwendungen in der Seismologie, insbesondere wenn die Signalverbesserung eine Voraussetzung ist für die seismische Ereignisse erkennen, und in Situationen, in denen die Installation und Wartung spärlicher Netzwerke ist unpraktisch. Diese Arbeit hat sich vor allem auf die Entwicklung eines neuen Ansatzes für seismologische Quellen und Empfänger-Array-Design konzentriert. Der vorgeschlagene Ansatz beschäftigt sich mit der Array-Design-Aufgabe als Optimierungsproblem. Die notwendigen Kriterien und Randbedingungen, die für die seismologische Array-Design-Aufgabe wichtig sind, werden in die objektive Funktionsdefinition und Bewertung eines Optimierungsprozesses integriert. In dieser Arbeit werden drei Fälle behandelt. (1) eine 2-D-Empfänger-Array-Geometrieoptimierung, (2) eine 3D-Quellfeldoptimierung, und (3) eine Array-Anwendung zum Überwachen mikroseismischer Daten, wobei die Auswirkungen verschiedener Arten von Lärm werden bewertet. Ein flexibles Empfänger-Array-Design-Framework wird eingeführt, das ein anpassbares Szenario-Modellierungs- und Optimierungsschema unter Verwendung synthetischer Seismogramme implementiert. Die Verwendung synthetischer Seismogramme zur Bewertung der Array-Leistung ermöglicht es, zusätzliche Einschränkungen, wie z.B. Landbesitz, zu berücksichtigen, standortspezifische Lärmpegel oder Eigenschaften der seismischen Quellen unter Berücksichtigung von Untersuchung. Die Verwendung von synthetischem Array-Strahlformung als Array-Design-Kriterium wird vorgeschlagen. Das Array-Design-Framework wird durch die Entwicklung eines 2-D-Kleinempfänger-Arrays zur Überwachung der Erdbebenschwarmaktivität im Vogtland in Mitteleuropa angepasst. Es werden zwei Teilfunktionen definiert, um die Genauigkeit der horizontalen Langsamkeitsschätzung zu überprüfen. Eine zur Unterdrückung von Aliasing-Effekten aufgrund möglicher Nebenkeulen der synthetischen Strahlformung, berechnet im horizontalen Langsamkeitsraum, und zum anderen, um die Fehlstellung des Ereignisses durch eine Fehlberechnung des horizontalen Langsamkeitsvektors zu reduzieren. Anschliessend wird eine Gewichtungstechnik angewendet, um die Kombination von die Unterfunktionen zu einer einzigen skalaren Zielfunktion zusammenfassen, die in der Optimierungsprozess verwendet werden kann. Die Idee des Array Optimal Design wird verwendet, um ein 3-D Source Array zu entwerfen, das einen gut lokalisierten Katalog von Erdbebenereignissen enthält. Die Bedingungen für die Herstellung von Quellarrays werden in vier Zielfunktionen formuliert, und eine gewichtete Summentechnik wird verwendet, um sie in einer einzigen skalaren Funktion zu kombinieren. Die Kriterien sind: (1) genaue Langsamkeitsvektorschätzung, (2) hohe Wellenform-Kohärenz, (3) niedriger Ortsfehler und (4) bis hohe Energie der Coda-Phasen. Die Methode wird durch zwei Experimente bewertet, (1) ein synthetischer Test mit realistischen synthetischen Seismogrammen, (2) mit realen Seismogrammen und optimierte SA-Elemente werden für jeden Fall unter Verwendung der Daten aus dem Vogtland gefunden. Die Position eines möglichen Streuers im Geschwindigkeitsmodell, der die konvertierten/reflektierten Phasen, z.B. sp-Phasen, erzeugt, wird durch ein Rastersuchverfahren mit dem optimierten SA ermittelt. Die Genauigkeit des Ansatzes und die erhaltenen Ergebnisse sind überzeugend, dass die Methode anwendbar ist, um die Krustenstruktur und die Position von Krustalstreuern zu untersuchen, wenn die stark konvertierten Phasen in den Daten beobachtet werden und ein gut lokalisierter Katalog verfügbar ist. Die Überwachung der Mikroseismizität bei solchen temporären menschlichen Aktivitäten ist oft schwierig, da der Signal-Rausch-Verhältnis sehr niedrig ist und das Rauschen während des Betriebs stark erhöht wird. Die Kombination von seismischen Arrays mit kleiner Apertur und flachen Bohrlochsensoren bietet eine Lösung. Wir haben diesen Überwachungsansatz an zwei verschiedenen Standorten getestet. (1) Begleiten eines Fracking-Experiments in sedimentärem Schiefer in 4 km Tiefe und (2) über einem Gasfeld unter Erschöpfung. Die Aufzeichnungen von Arrays werden mit den Aufzeichnungen von flachen Bohrlochsensoren verglichen, und es werden Beispiele für die Detektions- und Standortleistung der Arrays gegeben. Die Auswirkungen verschiedener Arten von Lärm an Array- und Bohrlochstationen werden verglichen und diskutiert. KW - seismic array KW - earthquake source array KW - array design KW - optimal array configuration KW - source array optimal design KW - scatterer location KW - scattered phases KW - seismicity modelling KW - synthetic array beam power KW - Array-Entwurf KW - Erdbebenquellen-Array KW - optimale Array-Konfiguration KW - gestreute Phasen KW - Standort des Streuers KW - seismisches Array KW - Seismizitätsmodellierung KW - Quell-Array optimales Design KW - synthetische Array-Strahlleistung Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459828 ER - TY - JOUR A1 - Karamzadeh Toularoud, Nasim A1 - Heimann, Sebastian A1 - Dahm, Torsten A1 - Krüger, Frank T1 - Earthquake source arrays BT - optimal configuration and applications in crustal structure studies JF - Geophysical journal international N2 - A collection of earthquake sources recorded at a single station, under specific conditions, are considered as a source array (SA), that is interpreted as if earthquake sources originate at the station location and are recorded at the source location. Then, array processing methods, that is array beamforming, are applicable to analyse the recorded signals. A possible application is to use source array multiple event techniques to locate and characterize near-source scatterers and structural interfaces. In this work the aim is to facilitate the use of earthquake source arrays by presenting an automatic search algorithm to configure the source array elements. We developed a procedure to search for an optimal source array element distribution given an earthquake catalogue including accurate origin time and hypocentre locations. The objective function of the optimization process can be flexibly defined for each application to ensure the prerequisites (criteria) of making a source array. We formulated four quantitative criteria as subfunctions and used the weighted sum technique to combine them in one single scalar function. The criteria are: (1) to control the accuracy of the slowness vector estimation using the time domain beamforming method, (2) to measure the waveform coherency of the array elements, (3) to select events with lower location error and (4) to select traces with high energy of specific phases, that is, sp- or ps-phases. The proposed procedure is verified using synthetic data as well as real examples for the Vogtland region in Northwest Bohemia. We discussed the possible application of the optimized source arrays to identify the location of scatterers in the velocity model by presenting a synthetic test and an example using real waveforms. KW - location of scatterers KW - optimization KW - source array design Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa002 SN - 0956-540X SN - 1365-246X VL - 221 IS - 1 SP - 352 EP - 370 PB - Oxford Univ. Press CY - Oxford ER - TY - THES A1 - Kaya, Mustafa T1 - Cretaceous-Paleogene evolution of the proto-Paratethys Sea in Central Asia BT - mechanisms and paleoenvironmental impacts BT - Mechanismen und paläoökologische Auswirkungen N2 - Unlike today’s prevailing terrestrial features, the geologic past of Central Asia witnessed marine environments and conditions as well. A vast, shallow sea, known as proto-Paratethys, extended across Eurasia from the Mediterranean Tethys to the Tarim Basin in western China during Cretaceous to Paleogene times. This sea formed about 160 million years ago (during Jurassic times) when the waters of the Tethys Ocean flooded into Eurasia. It drastically retreated to the west and became isolated as the Paratethys during the Late Eocene-Oligocene (ca. 34 Ma). Having well-constrained timing and paleogeography for the Cretaceous-Paleogene proto-Paratethys sea incursions in Central Asia is essential to properly understand and distinguish the controlling mechanisms and their link to Asian paleoenvironmental and paleoclimatic change. The Cretaceous-Paleogene tectonic evolution of the Pamir and Tibet and their far-field effects play a significant role on the sedimentological and structural evolution of the Central Asian basins and on the evolution of the proto-Paratethys sea fluctuations as well. Comparing the records of the sea incursions to the tectonic and eustatic events has paramount importance to reveal the controlling mechanisms behind the sea incursions. However, due to inaccuracies in the dating of rocks (mostly continental rocks and marine rocks with benthic microfossils providing low-resolution biostratigraphic constraints) and conflicting results, there has been no consensus on the timing of the sea incursions and interpretation of their records has been in question. Here, we present a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy as well as a detailed paleoenvironmental analysis for the Cretaceous and Paleogene proto-Paratethys Sea incursions in the Tajik and Tarim basins, in Central Asia. This enables us to identify the major drivers of marine fluctuations and their potential consequences on regional and global climate, particularly Asian aridification and the global carbon cycle perturbations such as the Paleocene-Eocene Thermal Maximum (PETM). To estimate the paleogeographic evolution of the proto-Paratethys Sea, the refined age constraints and detailed paleoenvironmental interpretations are combined with successive paleogeographic maps. Regional coastlines and depositional environments during the Cretaceous-Paleogene sea advances and retreats were drawn based on the results of this thesis and integrated with existing literature to generate new paleogeographic maps. Before its final westward retreat in the Eocene, a total of six Cretaceous and Paleogene major sea incursions have been distinguished from the sedimentary records of the Tajik and Tarim basins in Central Asia. All have been studied and documented here. We identify the presence of marine conditions already in the Early Cretaceous in the western Tajik Basin, followed by the Cenomanian (ca. 100 Ma) and Santonian (ca. 86 Ma) major marine incursions far into the eastern Tajik and Tarim basins separated by a Turonian-Coniacian (ca. 92-86 Ma) regression. Basin-wide tectonic subsidence analyses imply that the Early Cretaceous invasion of the sea into the Tajik Basin is related to increased Pamir tectonism (at ca. 130 – 90 Ma) in a retro-arc basin setting inferred to be linked to collision and subduction. This tectonic event mainly governed the Cenomanian (ca. 100 Ma) sea incursion in conjunction with a coeval global eustatic high resulting in the maximum geographic extent of the sea. The following Turonian-Coniacian (ca. 92-86 Ma) major regression, driven by eustasy, coincides with a sharp slowdown in tectonic subsidence related to a regime change in Pamir tectonism from compression to extension. The Santonian (ca. 86 Ma) major sea incursion was more likely controlled dominantly by eustasy as also evidenced by the coeval fluctuations in the west Siberian Basin. During the early Maastrichtian, the global Late Cretaceous cooling is inferred from the disappearance of mollusk-rich limestones and the dominance of bryozoan-rich and echinoderm-rich limestones in the Tajik Basin documenting the first evidence for the Late Cretaceous cooling event in Central Asia. Following the last Cretaceous sea incursion, a major regional restriction event, marked by the exceptionally thick (≤ 400 m) shelf evaporites is assigned a Danian-Selandian age (ca. 63-59 Ma). This is followed by the largest recorded proto-Paratethys sea incursion with a transgression estimated as early Thanetian (ca. 59-57 Ma) and a regression within the Ypresian (ca. 53-52 Ma). The transgression of the next incursion is now constrained as early Lutetian (ca. 47-46 Ma), whereas its regression is constrained as late Lutetian (ca. 41 Ma) and is associated with a drastic increase in both tectonic subsidence and basin infilling. The age of the final and least pronounced sea incursion restricted to the westernmost margin of the Tarim Basin is assigned as Bartonian–Priabonian (ca. 39.7-36.7 Ma). We interpret the long-term westward retreat of the proto-Paratethys Sea starting at ca. 41 Ma to be associated with far-field tectonic effects of the Indo-Asia collision and Pamir/Tibetan plateau uplift. Short-term eustatic sea level transgressions are superimposed on this long-term regression and seem coeval with the transgression events in the other northern Peri-Tethyan sedimentary provinces for the 1st and 2nd Paleogene sea incursions. However, the last Paleogene sea incursion is interpreted as related to tectonism. The transgressive and regressive intervals of the proto-Paratethys Sea correlate well with the reported humid and arid phases, respectively in the Qaidam and Xining basins, thus demonstrating the role of the proto-Paratethys Sea as an important moisture source for the Asian interior and its regression as a contributor to Asian aridification. We lastly study the mechanics, relative contribution and preservation efficiency of ancient epicontinental seas as carbon sinks with new and existing data, using organic rich (sapropel) deposits dated to the PETM from the extensive epicontinental proto-Paratethys and West Siberian seas. We estimate ca. 1390±230 Gt organic C burial, a substantial amount compared to previously estimated global total excess organic C burial (ca. 1700-2900 Gt) is focused in the proto-Paratethys and West Siberian seas alone. We also speculate that enhanced organic carbon burial later over much of the proto-Paratethys (and later Paratethys) basin (during the deposition of the Kuma Formation and Maikop series, repectively) may have majorly contributed to drawdown of atmospheric carbon dioxide before and during the EOT cooling and glaciation of Antarctica. For past periods with smaller epicontinental seas, the effectiveness of this negative carbon cycle feedback was arguably diminished, and the same likely applies to the present-day. N2 - Im Gegensatz zu den heute vorherrschenden kontinentalen Bedingungen war die geologische Vergangenheit Zentralasiens auch Zeuge marin dominierter Phasen. Ein riesiges Schelfmeer, bekannt als Proto-Paratethys, erstreckte sich während der Kreidezeit bis zum Paläogen über Eurasien - von der Tethys im Mittelmeer bis zum Tarimbecken im Westen Chinas. Dieses Meer bildete sich vor etwa 160 Millionen Jahren während der Jurazeit, als das Wasser des Tethys-Ozeans nach Eurasien strömte. Es zog sich drastisch nach Westen zurück und wurde während des späten Eozän-Oligozäns (ca. 34 Ma) als Paratethys isoliert. Eine gut eingegrenzte zeitliche Einordnung und Paläogeographische Charakterisierung für die kretazisch-paläogenen proto-Paratethys-Meerestransgressionen in Zentralasien ist unerlässlich, um die Kontrollmechanismen und ihre Verbindung mit den paläoökologischen und paläoklimatischen Veränderungen in Asien richtig zu verstehen und zu unterscheiden. Die kreidezeitlich-paläogene tektonische Entwicklung des Pamir und Tibets und ihre Fernfeldeffekte spielen eine bedeutende Rolle für die Entwicklung der zentralasiatischen Becken und der proto-paläozoischen Meeresschwankungen. Aufgrund von Ungenauigkeiten bei der Datierung der Gesteine und widersprüchlichen Ergebnissen gab es jedoch bislang keinen Konsens über den Zeitpunkt der Meerestransgressionen. Die Interpretation der dabei abgelagerten Sedimentfolgen wurde in Frage gestellt. Hier präsentieren wir eine neue, zeitliche Einordung auf Grundlage von Biostratigraphie und Magnetostratigraphie sowie eine detaillierte Paläoumweltanalyse für die Transgressionen des kreidezeitlichen und paläogenen proto-Paratethys-Meeres im tadschikischen und Tarimbecken in Zentralasien. Dies ermöglicht es uns, die wichtigsten Triebkräfte der marinen Fluktuationen und ihre möglichen Auswirkungen auf das regionale und globale Klima zu identifizieren - insbesondere die asiatische Aridifizierung und die Störungen des globalen Kohlenstoffkreislaufs etwa während des paläozän-eozänen thermischen Maximums (PETM). Beckenweite tektonische Senkungsanalysen deuten darauf hin, dass die frühkretazische Transgressionsphase im Tadschikischen Becken mit einer Intensivierung der Kollisionstektonik im Pamir (zwischen ca. 130 und 90 Ma) und der damit verbundenen Bildung eines Retro-Arc-Beckens in Zusammenhang stehen. Die globale Abkühlung der Spätkreide wird aus dem Verschwinden von molluskenreichen Kalksteinen und der Dominanz von bryozoen- und echinodermenreichen Kalksteinen im Tadschikischen Becken abgeleitet. Dies liefert den ersten Nachweis für das Abkühlungsereignis der Spätkreide in Zentralasien. Wir interpretieren die langfristige paläogene Regression des Proto-Paratethys-Meeres Richtung Westen ab ca. 41 Ma mit den tektonischen Fernfeldeffekten der indo-asiatischen Kollision und der Hebung des Pamir/Tibetischen Plateaus. Die transgressiven und regressiven Intervalle der proto-Paratethys-See korrelieren gut mit den bekannten feuchten und ariden Phasen im Qaidam- bzw. Xining-Becken, was die Rolle der proto-Paratethys-See als wichtige Feuchtigkeitsquelle für das asiatische Binnenland und ihren Rückzug als Mitverursacher der asiatischen Aridifizierung verdeutlicht. Schließlich untersuchen wir die Wirkungsfaktoren, den relativen Beitrag und die Erhaltungseffizienz alter epikontinentaler Meere als Kohlenstoffsenken mit neuen und bestehenden Daten. Dabei verwenden wir organik-reiche Ablagerungen aus den ausgedehnten epikontinentalen Proto-Paratethys- und westsibirischen Meeren, die auf das PETM datiert sind. Wir schätzen eine Einlagerung von ca. 1390±230 Gt organischer Kohlenstoffverbindungen. Das stellt eine beachtliche Menge, verglichen mit der zuvor geschätzten globalen Gesamtmenge an überschüssiger organischer Kohlenstoffeinlagerung (ca. 1700-2900 Gt) dar, welche sich allein auf die Proto-Paratethys und die westsibirischen Meere konzentriert. Für vergangene und zukünftige Perioden mit kleineren epikontinentalen Meeren würde die Wirksamkeit dieser negativen Rückkopplung des Kohlenstoffkreislaufs wohl abnehmen. T2 - Kreidezeit - Paläogene Entwicklung des Proto-Paratethys-Meeres in Zentralasien KW - Geology KW - Paleoclimatology KW - Sedimentology KW - Stratigraphy KW - Paleogeography KW - Geologie KW - Paläoklimatologie KW - Sedimentologie KW - Stratigraphie KW - Paläogeographie Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-483295 ER - TY - JOUR A1 - Kaya, Mustafa Yuecel A1 - Dupont-Nivet, Guillaume A1 - Proust, Jean-Noël A1 - Roperch, Pierrick A1 - Meijer, Niels A1 - Frieling, Joost A1 - Fioroni, Chiara A1 - Altiner, Sevinç Özkan A1 - Stoica, Marius A1 - Aminov, Jovid A1 - Mamtimin, Mehmut A1 - Guo, Zhaojie T1 - Cretaceous evolution of the Central Asian Proto-Paratethys Sea BT - tectonic, eustatic, and climatic controls JF - Tectonics N2 - The timing and mechanisms of the Cretaceous sea incursions into Central Asia are still poorly constrained. We provide a new chronostratigraphic framework based on biostratigraphy and magnetostratigraphy together with detailed paleoenvironmental analyses of Cretaceous records of the proto-Paratethys Sea fluctuations in the Tajik and Tarim basins. The Early Cretaceous marine incursion in the western Tajik Basin was followed by major marine incursions during the Cenomanian (ca. 100 Ma) and Santonian (ca. 86 Ma) that reached far into the eastern Tajik and Tarim basins. These marine incursions were separated by a Turonian-Coniacian (ca. 92-86 Ma) regression. Basin-wide tectonic subsidence analyses imply that the Early Cretaceous sea incursion into the Tajik Basin was related to increased Pamir tectonism. We find that thrusting along the northern edge of the Pamir at ca. 130-90 Ma resulted in increased subsidence in a retro-arc basin setting. This tectonic event and coeval eustatic highstand resulted in the maximum observed geographic extent of the sea during the Cenomanian (ca. 100 Ma). The following Turonian-Coniacian (ca. 92-86 Ma) major regression, driven by eustasy, coincides with a sharp slowdown in tectonic subsidence during the late orogenic unloading period with limited thrusting. The Santonian (ca. 86 Ma) major sea incursion was likely controlled by eustasy as evidenced by the coeval fluctuations in the west Siberian Basin. An early Maastrichtian cooling (ca. 71-70 Ma), potentially connected to global Late Cretaceous trends, is inferred from the replacement of mollusk-rich limestones by bryozoan- and echinoderm-rich limestones. Y1 - 2020 U6 - https://doi.org/10.1029/2019TC005983 SN - 0278-7407 SN - 1944-9194 VL - 39 IS - 9 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Klose, Tim A1 - Chaparro, M. Carme A1 - Schilling, Frank A1 - Butscher, Christoph A1 - Klumbach, Steffen A1 - Blum, Philipp T1 - Fluid flow simulations of a large-scale borehole leakage experiment JF - Transport in Porous Media N2 - Borehole leakage is a common and complex issue. Understanding the fluid flow characteristics of a cemented area inside a borehole is crucial to monitor and quantify the wellbore integrity as well as to find solutions to minimise existing leakages. In order to improve our understanding of the flow behaviour of cemented boreholes, we investigated experimental data of a large-scale borehole leakage tests by means of numerical modelling using three different conceptual models. The experiment was performed with an autoclave system consisting of two vessels bridged by a cement-filled casing. After a partial bleed-off at the well-head, a sustained casing pressure was observed due to fluid flow through the cementsteel composite. The aim of our simulations is to investigate and quantify the permeability of the cement-steel composite. From our model results, we conclude that the flow occurred along a preferential flow path at the cement-steel interface. Thus, the inner part of the cement core was impermeable during the duration of the experiment. The preferential flow path can be described as a highly permeable and highly porous area with an aperture of about 5 mu m and a permeability of 3 . 10(-12) m(2) (3 Darcy). It follows that the fluid flow characteristics of a cemented area inside a borehole cannot be described using one permeability value for the entire cement-steel composite. Furthermore, it can be concluded that the quality of the cement and the filling process regarding the cement-steel interface is crucial to minimize possible well leakages. KW - borehole leakage KW - sustained casing pressure KW - permeability test KW - cement KW - modelling Y1 - 2020 U6 - https://doi.org/10.1007/s11242-020-01504-y SN - 0169-3913 SN - 1573-1634 VL - 136 IS - 1 SP - 125 EP - 145 PB - Springer CY - New York ER - TY - GEN A1 - Klose, Tim A1 - Chaparro, M. Carme A1 - Schilling, Frank A1 - Butscher, Christoph A1 - Klumbach, Steffen A1 - Blum, Philipp T1 - Fluid flow simulations of a large-scale borehole leakage experiment T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Borehole leakage is a common and complex issue. Understanding the fluid flow characteristics of a cemented area inside a borehole is crucial to monitor and quantify the wellbore integrity as well as to find solutions to minimise existing leakages. In order to improve our understanding of the flow behaviour of cemented boreholes, we investigated experimental data of a large-scale borehole leakage tests by means of numerical modelling using three different conceptual models. The experiment was performed with an autoclave system consisting of two vessels bridged by a cement-filled casing. After a partial bleed-off at the well-head, a sustained casing pressure was observed due to fluid flow through the cementsteel composite. The aim of our simulations is to investigate and quantify the permeability of the cement-steel composite. From our model results, we conclude that the flow occurred along a preferential flow path at the cement-steel interface. Thus, the inner part of the cement core was impermeable during the duration of the experiment. The preferential flow path can be described as a highly permeable and highly porous area with an aperture of about 5 mu m and a permeability of 3 . 10(-12) m(2) (3 Darcy). It follows that the fluid flow characteristics of a cemented area inside a borehole cannot be described using one permeability value for the entire cement-steel composite. Furthermore, it can be concluded that the quality of the cement and the filling process regarding the cement-steel interface is crucial to minimize possible well leakages. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1372 KW - borehole leakage KW - sustained casing pressure KW - permeability test KW - cement KW - modelling Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-573539 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Koyan, Philipp A1 - Tronicke, Jens T1 - 3D modeling of ground-penetrating radar data across a realistic sedimentary model JF - Computers & geosciences : an international journal devoted to the publication of papers on all aspects of geocomputation and to the distribution of computer programs and test data sets ; an official journal of the International Association for Mathematical Geology N2 - Ground-penetrating radar (GPR) is an established geophysical tool to explore a wide range of near-surface environments. Today, the use of synthetic GPR data is largely limited to 2D because 3D modeling is computationally more expensive. In fact, only recent developments of modeling tools and powerful hardware allow for a time-efficient computation of extensive 3D data sets. Thus, 3D subsurface models and resulting GPR data sets, which are of great interest to develop and evaluate novel approaches in data analysis and interpretation, have not been made publicly available up to now.
We use a published hydrofacies data set of an aquifer-analog study within fluvio-glacial deposits to infer a realistic 3D porosity model showing heterogeneities at multiple spatial scales. Assuming fresh-water saturated sediments, we generate synthetic 3D GPR data across this model using novel GPU-acceleration included in the open-source software gprMax. We present a numerical approach to examine 3D wave-propagation effects in modeled GPR data. Using the results of this examination study, we conduct a spatial model decomposition to enable a computationally efficient 3D simulation of a typical GPR reflection data set across the entire model surface. We process the resulting GPR data set using a standard 3D structural imaging sequence and compare the results to selected input data to demonstrate the feasibility and potential of the presented modeling studies. We conclude on conceivable applications of our 3D GPR reflection data set and the underlying porosity model, which are both publicly available and, thus, can support future methodological developments in GPR and other near-surface geophysical techniques. KW - Applied geophysics KW - Ground-penetrating radar KW - 3D modeling Y1 - 2020 U6 - https://doi.org/10.1016/j.cageo.2020.104422 SN - 0098-3004 SN - 1873-7803 VL - 137 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Krmíček, Lukáš A1 - Timmerman, Martin Jan A1 - Ziemann, Martin Andreas A1 - Sudo, Masafumi A1 - Ulrych, Jaromir T1 - 40Ar/39Ar step-heating dating of phlogopite and kaersutite megacrysts from the Železná hůrka (Eisenbühl) Pleistocene scoria cone, Czech Republic JF - Geologica Carpathica N2 - (40)A/Ar-39 step-heating of mica and amphibole megacrysts from hauyne-bearing olivine melilitite scoria/tephra from the Zelezna hurka yielded a 435 +/- 108 ka isotope correlation age for phlogopite and a more imprecise 1.55 Ma total gas age of the kaersutite megacryst. The amphibole megacrysts may constitute the first, and the younger phlogopite megacrysts the later phase of mafic, hydrous melilitic magma crystallization. It cannot be ruled out that the amphibole megacrysts are petrogenetically unrelated to tephra and phlogopite megacrysts and were derived from mantle xenoliths or disaggregated older, deep crustal pegmatites. This is in line both with the rarity of amphibole at Zelezna hurka and with the observed signs of magmatic resorption at the edges of amphibole crystals. KW - Bohemian Massif KW - Zelezna hurka KW - Eisenbuhl KW - argon dating KW - mica KW - amphibole KW - melilitite Y1 - 2020 U6 - https://doi.org/10.31577/GeolCarp.71.4.6 SN - 1335-0552 SN - 1336-8052 VL - 71 IS - 4 SP - 382 EP - 387 PB - Veda CY - Bratislava ER - TY - JOUR A1 - Kruse, Stefan A1 - Kolmogorov, Aleksey I. A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Long-lived larch clones may conserve adaptations that could restrict treeline migration in northern Siberia JF - Ecology and evolution N2 - The occurrence of refugia beyond the arctic treeline and genetic adaptation therein play a crucial role of largely unknown effect size. While refugia have potential for rapidly colonizing the tundra under global warming, the taxa may be maladapted to the new environmental conditions. Understanding the genetic composition and age of refugia is thus crucial for predicting any migration response. Here, we genotype 194 larch individuals from an similar to 1.8 km(2)area in northcentral Siberia on the southern Taimyr Peninsula by applying an assay of 16 nuclear microsatellite markers. For estimating the age of clonal individuals, we counted tree rings at sections along branches to establish a lateral growth rate that was then combined with geographic distance. Findings reveal that the predominant reproduction type is clonal (58.76%) by short distance spreading of ramets. One outlier of clones 1 km apart could have been dispersed by reindeer. In clonal groups and within individuals, we find that somatic mutations accumulate with geographic distance. Clonal groups of two or more individuals are observed. Clonal age estimates regularly suggest individuals as old as 2,200 years, which coincides with a major environmental change that forced a treeline retreat in the region. We conclude that individuals with clonal growth mode were naturally selected as it lowers the likely risk of extinction under a harsh environment. We discuss this legacy from the past that might now be a maladaptation and hinder expansion under currently strongly increasing temperatures. KW - adaptation KW - clonal growth KW - growth rate KW - Larix KW - leading edge KW - treeline KW - migration Y1 - 2020 U6 - https://doi.org/10.1002/ece3.6660 SN - 2045-7758 VL - 10 IS - 18 SP - 10017 EP - 10030 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Krüger, Frank A1 - Dahm, Torsten A1 - Hannemann, Katrin T1 - Mapping of Eastern North Atlantic Ocean seismicity from Po/So observations at a mid-aperture seismological broad-band deep sea array JF - Geophysical journal international N2 - A mid-aperture broad-band test array (OBS array DOCTAR) was deployed from June 2011 to April 2012 about 100 km north of the Gloria fault in the Eastern North Atlantic in about 5000 m water depth. In addition arrays were installed on Madeira Island and in western Portugal mainland. For the first time in the Eastern North Atlantic, we recorded a large number of high frequency Po and So waves from local and regional small and moderate earthquakes (M-L < 4). An incoherent beamforming method was adapted to scan continuous data for such Po and So arrivals applying a sliding window waveform migration and frequency-wavenumber technique. We identify about 320 Po and 1550 So arrivals and compare the phase onsets with the ISC catalogue (ISC 2015) for the same time span. Up to a distance of 6 degrees to the DOCTAR stations all events listed in the ISC catalogue could be associated to Po and So phases. Arrivals from events in more than 10 degrees distance could be identified only in some cases. Only few Po and/or So arrivals were detected for earthquakes from the European and African continental area, the continental shelf regions and for earthquakes within or northwest of the Azores plateau. Unexpectedly, earthquake clusters are detected within the oceanic plates north and south of the Gloria fault and far from plate boundaries, indicating active intraplate structures. We also observe and locate numerous small magnitude earthquakes on the segment of the Gloria fault directly south of DOCTAR, which likely coincides with the rupture of the 25 November 1941 event. Local small magnitude earthquakes located beneath DOCTAR show hypocentres up to 30 km depth and strike-slip focal mechanisms. A comparison with detections at temporary mid-aperture arrays on Madeira and in western Portugal shows that the deep ocean array performs much better than the island and the continental array regarding the detection threshold for events in the oceanic plates. We conclude that sparsely distributed mid-aperture seismic arrays in the deep ocean could decrease the detection and location threshold for seismicity with M-L < 4 in the oceanic plate and might constitute a valuable tool to monitor oceanic plate seismicity. KW - body waves KW - earthquake source observations KW - seismicity and tectonics Y1 - 2020 U6 - https://doi.org/10.1093/gji/ggaa054 SN - 0956-540X SN - 1365-246X VL - 221 IS - 2 SP - 1055 EP - 1080 PB - Oxford Univ. Press CY - Oxford ER - TY - GEN A1 - Kumar, Rohini A1 - Hesse, Fabienne A1 - Rao, P. Srinivasa A1 - Musolff, Andreas A1 - Jawitz, James A1 - Sarrazin, Francois A1 - Samaniego, Luis A1 - Fleckenstein, Jan H. A1 - Rakovec, Oldrich A1 - Thober, S. A1 - Attinger, Sabine T1 - Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on the controls of subsurface vulnerability do not consider the transient behaviour of transport dynamics in the root zone. Here, using state-of-the-art hydrologic simulations driven by observed hydroclimatic forcing, we demonstrate the strong spatiotemporal heterogeneity of hydrologic transport dynamics and reveal that these dynamics are primarily controlled by the hydroclimatic gradient of the aridity index across Europe. Contrasting the space-time dynamics of transport times with reactive timescales of denitrification in soil indicate that similar to 75% of the cultivated areas across Europe are potentially vulnerable to nitrate leaching for at least onethird of the year. We find that neglecting the transient nature of transport and reaction timescale results in a great underestimation of the extent of vulnerable regions by almost 50%. Therefore, future vulnerability and risk assessment studies must account for the transient behaviour of transport and biogeochemical transformation processes. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1352 KW - travel time distributions KW - groundwater vulnerability KW - flux tracking KW - transit-time KW - water age KW - nitrogen KW - model KW - dynamics KW - pollution KW - patterns Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549875 SN - 1866-8372 IS - 1 ER - TY - JOUR A1 - Kumar, Rohini A1 - Hesse, Fabienne A1 - Rao, P. Srinivasa A1 - Musolff, Andreas A1 - Jawitz, James A1 - Sarrazin, Francois A1 - Samaniego, Luis A1 - Fleckenstein, Jan H. A1 - Rakovec, Oldrich A1 - Thober, S. A1 - Attinger, Sabine T1 - Strong hydroclimatic controls on vulnerability to subsurface nitrate contamination across Europe JF - Nature Communications N2 - Subsurface contamination due to excessive nutrient surpluses is a persistent and widespread problem in agricultural areas across Europe. The vulnerability of a particular location to pollution from reactive solutes, such as nitrate, is determined by the interplay between hydrologic transport and biogeochemical transformations. Current studies on the controls of subsurface vulnerability do not consider the transient behaviour of transport dynamics in the root zone. Here, using state-of-the-art hydrologic simulations driven by observed hydroclimatic forcing, we demonstrate the strong spatiotemporal heterogeneity of hydrologic transport dynamics and reveal that these dynamics are primarily controlled by the hydroclimatic gradient of the aridity index across Europe. Contrasting the space-time dynamics of transport times with reactive timescales of denitrification in soil indicate that similar to 75% of the cultivated areas across Europe are potentially vulnerable to nitrate leaching for at least onethird of the year. We find that neglecting the transient nature of transport and reaction timescale results in a great underestimation of the extent of vulnerable regions by almost 50%. Therefore, future vulnerability and risk assessment studies must account for the transient behaviour of transport and biogeochemical transformation processes. KW - travel time distributions KW - groundwater vulnerability KW - flux tracking KW - transit-time KW - water age KW - nitrogen KW - model KW - dynamics KW - pollution KW - patterns Y1 - 2020 U6 - https://doi.org/10.1038/s41467-020-19955-8 SN - 2041-1723 VL - 11 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Ladeira, Guenia A1 - Marwan, Norbert A1 - Destro-Filho, Joao-Batista A1 - Ramos, Camila Davi A1 - Lima, Gabriela T1 - Frequency spectrum recurrence analysis JF - Scientific reports N2 - In this paper, we present the new frequency spectrum recurrence analysis technique by means of electro-encephalon signals (EES) analyses. The technique is suitable for time series analysis with noise and disturbances. EES were collected, and alpha waves of the occipital region were analysed by comparing the signals from participants in two states, eyes open and eyes closed. Firstly, EES were characterized and analysed by means of techniques already known to compare with the results of the innovative technique that we present here. We verified that, standard recurrence quantification analysis by means of EES time series cannot statistically distinguish the two states. However, the new frequency spectrum recurrence quantification exhibit quantitatively whether the participants have their eyes open or closed. In sequence, new quantifiers are created for analysing the recurrence concentration on frequency bands. These analyses show that EES with similar frequency spectrum have different recurrence levels revealing different behaviours of the nervous system. The technique can be used to deepen the study on depression, stress, concentration level and other neurological issues and also can be used in any complex system. KW - Biomedical engineering KW - Brain injuries KW - Computational models KW - Computational neuroscience KW - Data acquisition KW - Data processing KW - Electrical and electronic engineering KW - Neural circuits KW - Visual system Y1 - 2020 U6 - https://doi.org/10.1038/s41598-020-77903-4 SN - 2045-2322 VL - 10 IS - 1 PB - Nature portfolio CY - Berlin ER - TY - GEN A1 - Lehr, Christian A1 - Lischeid, Gunnar T1 - Efficient screening of groundwater head monitoring data for anthropogenic effects and measurement errors T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Groundwater levels are monitored by environmental agencies to support the sustainable use of groundwater resources. For this purpose continuous and spatially comprehensive monitoring in high spatial and temporal resolution is desired. This leads to large datasets that have to be checked for quality and analysed to distinguish local anthropogenic influences from natural variability of the groundwater level dynamics at each well. Both technical problems with the measurements as well as local anthropogenic influences can lead to local anomalies in the hydrographs. We suggest a fast and efficient screening method for the identification of well-specific peculiarities in hydrographs of groundwater head monitoring networks. The only information required is a set of time series of groundwater heads all measured at the same instants of time. For each well of the monitoring network a reference hydrograph is calculated, describing expected “normal” behaviour at the respective well as is typical for the monitored region. The reference hydrograph is calculated by multiple linear regression of the observed hydrograph with the “stable” principal components (PCs) of a principal component analysis of all groundwater head series of the network as predictor variables. The stable PCs are those PCs which were found in a random subsampling procedure to be rather insensitive to the specific selection of the analysed observation wells, i.e. complete series, and to the specific selection of measurement dates. Hence they can be considered to be representative for the monitored region in the respective period. The residuals of the reference hydrograph describe local deviations from the normal behaviour. Peculiarities in the residuals allow the data to be checked for measurement errors and the wells with a possible anthropogenic influence to be identified. The approach was tested with 141 groundwater head time series from the state authority groundwater monitoring network in northeastern Germany covering the period from 1993 to 2013 at an approximately weekly frequency of measurement. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1424 KW - streamflow variability KW - principal components KW - united states KW - time-series KW - water KW - network KW - nonstationarity KW - fluctuations KW - rotation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-511992 SN - 1866-8372 IS - 2 ER - TY - JOUR A1 - Liu, Qi A1 - Adler, Karsten A1 - Lipus, Daniel A1 - Kämpf, Horst A1 - Bussert, Robert A1 - Plessen, Birgit A1 - Schulz, Hans-Martin A1 - Krauze, Patryk A1 - Horn, Fabian A1 - Wagner, Dirk A1 - Mangelsdorf, Kai A1 - Alawi, Mashal T1 - Microbial signatures in deep CO2-saturated miocene sediments of the active Hartousov mofette system (NW Czech Republic) JF - Frontiers in microbiology N2 - The Hartousov mofette system is a natural CO2 degassing site in the central Cheb Basin (Eger Rift, Central Europe). In early 2016 a 108 m deep core was obtained from this system to investigate the impact of ascending mantle-derived CO2 on indigenous deep microbial communities and their surrounding life habitat. During drilling, a CO2 blow out occurred at a depth of 78.5 meter below surface (mbs) suggesting a CO2 reservoir associated with a deep low-permeable CO2-saturated saline aquifer at the transition from Early Miocene terrestrial to lacustrine sediments. Past microbial communities were investigated by hopanoids and glycerol dialkyl glycerol tetraethers (GDGTs) reflecting the environmental conditions during the time of deposition rather than showing a signal of the current deep biosphere. The composition and distribution of the deep microbial community potentially stimulated by the upward migration of CO2 starting during Mid Pleistocene time was investigated by intact polar lipids (IPLs), quantitative polymerase chain reaction (qPCR), and deoxyribonucleic acid (DNA) analysis. The deep biosphere is characterized by microorganisms that are linked to the distribution and migration of the ascending CO2-saturated groundwater and the availability of organic matter instead of being linked to single lithological units of the investigated rock profile. Our findings revealed high relative abundances of common soil and water bacteria, in particular the facultative, anaerobic and potential iron-oxidizing Acidovorax and other members of the family Comamonadaceae across the whole recovered core. The results also highlighted the frequent detection of the putative sulfate-oxidizing and CO2-fixating genus Sulfuricurvum at certain depths. A set of new IPLs are suggested to be indicative for microorganisms associated to CO2 accumulation in the mofette system. KW - geo-bio interaction KW - CO2 KW - mofette systems KW - Eger Rift KW - microbial lipid KW - biomarker KW - microbial diversity KW - deep biosphere KW - saline groundwater Y1 - 2020 U6 - https://doi.org/10.3389/fmicb.2020.543260 SN - 1664-302X VL - 11 PB - Frontiers Media CY - Lausanne ER - TY - THES A1 - Liu, Sibiao T1 - Controls of foreland-deformation patterns in the orogen-foreland shortening system N2 - The Andean Plateau (Altiplano-Puna Plateau) of the southern Central Andes is the second-highest orogenic plateau on our planet after Tibet. The Andean Plateau and its foreland exhibit a pronounced segmentation from north to south regarding the style and magnitude of deformation. In the Altiplano (northern segment), more than 300 km of tectonic shortening has been recorded, which started during the Eocene. A well-developed thin-skinned thrust wedge located at the eastern flank of the plateau (Subandes) indicates a simple-shear shortening mode. In contrast, the Puna (southern segment) records approximately half of the shortening of the Altiplano - and the shortening started later. The tectonic style in the Puna foreland switches to a thick-skinned mode, which is related to pure-shear shortening. In this study, carried out in the framework of the StRATEGy project, high-resolution 2D thermomechanical models were developed to systematically investigate controls of deformation patterns in the orogen-foreland pair. The 2D and 3D models were subsequently applied to study the evolution of foreland deformation and surface topography in the Altiplano-Puna Plateau. The models demonstrate that three principal factors control the foreland-deformation patterns: (i) strength differences in the upper lithosphere between the orogen and its foreland, rather than a strength difference in the entire lithosphere; (ii) gravitational potential energy of the orogen (GPE) controlled by crustal and lithospheric thicknesses, and (iii) the strength and thickness of foreland-basin sediments. The high-resolution 2D models are constrained by observations and successfully reproduce deformation structures and surface topography of different segments of the Altiplano-Puna plateau and its foreland. The developed 3D models confirm these results and suggest that a relatively high shortening rate in the Altiplano foreland (Subandean foreland fold-and-thrust belt) is due to simple-shear shortening facilitated by thick and mechanically weak sediments, a process which requires a much lower driving force than the pure-shear shortening deformation mode in the adjacent broken foreland of the Puna, where these thick sedimentary basin fills are absent. Lower shortening rate in the Puna foreland is likely accommodated in the forearc by the slab retreat. N2 - Das Andenplateau (Altiplano-Puna-Plateau) in den südlichen Zentralanden ist nach Tibet das zweithöchste orogene Plateau auf unserem Planeten. Dieses Plateau und sein Vorland weisen eine ausgeprägte Segmentierung von Nord nach Süd hinsichtlich Art und Ausmaß der Verformung auf. Im Altiplano (nördliches Segment) wird seit der im Eozän stattfindenden Deformation mehr als 300 km tektonische Verkürzung dokumentiert. Ein gut entwickelter sedimentärer Schubkeil bzw. Vorland-Überschiebungsgürtel (Subandin) an der Ostflanke des Plateaus (thin-skinned foreland deformation) deutet in dieser Region des Vorlandes auf Prozesse einfacher Scherung hin (simple-shear modus). Im Gegensatz dazu weist die Puna (südliches Plateausegment) ungefähr die Hälfte der Verkürzung des Altiplano auf - und die Verkürzung begann später. Außerdem geht der tektonische Stil im Puna-Vorland zu einem zerbrochenen Vorland mit Kristallinblöcken (thick-skinned foreland) über, der mit der Verkürzung durch reine Scherung (pure-shear modus) erklärt werden kann. In dieser Studie, die im Rahmen des StRATEGy-Projekts durchgeführt wurde, wurden hochauflösende thermomechanische 2D-Modelle entwickelt, um systematisch die Kontrolle von Verformungsmustern im Orogen-Vorland-Paar zu untersuchen. Die 2D- und 3D-Modelle wurden anschließend angewendet, um die Entwicklung der Vorlanddeformation und der Oberflächentopographie im Altiplano-Puna-Plateau zu verstehen. Die Modelle zeigen, dass drei Hauptfaktoren die Deformationsmuster des Vorlandes steuern: (i) Festigkeitsunterschiede in der oberen Lithosphäre zwischen dem Orogen und seinem Vorland - und nicht Festigkeitsunterschiede in der gesamten Lithosphäre; (ii) die gravitationsbezogene potentielle Energie des Orogens (GPE), die durch die Krusten- und Lithosphärenmächtigkeit gesteuert wird und (iii) die Festigkeit sowie Mächtigkeiten der Vorlandbeckensedimente. Die hochauflösenden 2D-Modelle sind auf tatsächliche Daten aus Beobachtungen beschränkt und reproduzieren erfolgreich Deformationsstrukturen sowie die topographischen Verhältnisse der verschiedenen Segmente des Altiplano-Puna-Plateaus und seines Vorlandes. Die entwickelten 3D-Modelle bestätigen diese Ergebnisse und legen nahe, dass die relativ hohe Verkürzungsrate im Altiplano-Vorland (Subandin) bei den vorhandenen mächtigen Sedimentabfolgen geringer mechanischer Festigkeit weniger Kraftaufwand erfordert als die Deformation des Puna-Vorlandes, wo diese Sedimente weitgehend fehlen. Die geringeren Verkürzungsbeträge im Puna-Vorland werden wahrscheinlich durch das Zurückweichen der Subduktionszone im Forearc-Bereich ausgeglichen. KW - geodynamics KW - numerical modeling KW - Central Andes KW - foreland deformation KW - geophysics KW - Geodynamik KW - numerische Modellierung KW - Zentralanden KW - Vorlanddeformation KW - Geophysik Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445730 ER - TY - JOUR A1 - Lu, Yin A1 - Dewald, Nico A1 - Koutsodendris, Andreas A1 - Kaboth-Bahr, Stefanie A1 - Rösler, Wolfgang A1 - Fang, Xiaomin A1 - Pross, Jörg A1 - Appel, Erwin A1 - Friedrich, Oliver T1 - Sedimentological evidence for pronounced glacial-interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene JF - Paleoceanography and Paleoclimatology N2 - The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (similar to 500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial-interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies. KW - Western Qaidam Basin KW - grain-size distribution KW - lake Donggi Cona KW - Chinese loess KW - Central-Asia KW - transport processes KW - Qilian mountains KW - dust sources KW - plateau KW - record Y1 - 2020 VL - 35 IS - 5 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - Lu, Yin A1 - Dewald, Nico A1 - Koutsodendris, Andreas A1 - Kaboth-Bahr, Stefanie A1 - Rösler, Wolfgang A1 - Fang, Xiaomin A1 - Pross, Jörg A1 - Appel, Erwin A1 - Friedrich, Oliver T1 - Sedimentological evidence for pronounced glacial-interglacial climate fluctuations in NE Tibet in the latest Pliocene to early Pleistocene T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The intensification of Northern Hemisphere glaciation (iNHG) and uplift of the Tibetan Plateau have been argued to be among the main drivers of climate change in midlatitude Central Asia during the Pliocene/Pleistocene. While most proxy records that support this hypothesis are from regions outside the Tibetan Plateau (such as from the Chinese Loess Plateau), detailed paleoclimatic information for the plateau itself during that time has yet remained elusive. Here we present a temporally highly resolved (similar to 500 years) sedimentological record from the Qaidam Basin situated on the northeastern Tibetan Plateau that shows pronounced glacial-interglacial climate variability during the interval from 2.7 to 2.1 Ma. Glacial (interglacial) intervals are generally characterized by coarser (finer) grain size, minima (maxima) in organic matter content, and maxima (minima) in carbonate content. Comparison of our results with Earth's orbital parameters and proxy records from the Chinese Loess Plateau suggests that the observed climate fluctuations were mainly driven by changes in the Siberian High/East Asian winter monsoon system as a response to the iNHG. They are further proposed to be enhanced by the topography of the Tibetan Plateau and its impact on the position and intensity of the westerlies. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1198 KW - Western Qaidam Basin KW - grain-size distribution KW - lake Donggi Cona KW - Chinese loess KW - Central-Asia KW - transport processes KW - Qilian mountains KW - dust sources KW - plateau KW - record Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525765 SN - 1866-8372 IS - 5 ER - TY - JOUR A1 - Marcisz, Katarzyna A1 - Jassey, Vincent E. J. A1 - Kosakyan, Anush A1 - Krashevska, Valentyna A1 - Lahr, Daniel J. G. A1 - Lara, Enrique A1 - Lamentowicz, Lukasz A1 - Lamentowicz, Mariusz A1 - Macumber, Andrew A1 - Mazei, Yuri A1 - Mitchell, Edward A. D. A1 - Nasser, Nawaf A. A1 - Patterson, R. Timothy A1 - Roe, Helen M. A1 - Singer, David A1 - Tsyganov, Andrey N. A1 - Fournier, Bertrand T1 - Testate amoeba functional traits and their use in paleoecology JF - Frontiers in Ecology and Evolution N2 - This review provides a synthesis of current knowledge on the morphological and functional traits of testate amoebae, a polyphyletic group of protists commonly used as proxies of past hydrological changes in paleoecological investigations from peatland, lake sediment and soil archives. A trait-based approach to understanding testate amoebae ecology and paleoecology has gained in popularity in recent years, with research showing that morphological characteristics provide complementary information to the commonly used environmental inferences based on testate amoeba (morpho-)species data. We provide a broad overview of testate amoeba morphological and functional traits and trait-environment relationships in the context of ecology, evolution, genetics, biogeography, and paleoecology. As examples we report upon previous ecological and paleoecological studies that used trait-based approaches, and describe key testate amoebae traits that can be used to improve the interpretation of environmental studies. We also highlight knowledge gaps and speculate on potential future directions for the application of trait-based approaches in testate amoeba research. KW - protists KW - functional traits KW - morphological traits KW - ecology KW - peatlands KW - lakes KW - soils KW - trait-based approaches Y1 - 2020 U6 - https://doi.org/10.3389/fevo.2020.575966 SN - 2296-701X VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - THES A1 - Meijer, Niels T1 - Asian dust, monsoons and westerlies during the Eocene N2 - The East Asian monsoons characterize the modern-day Asian climate, yet their geological history and driving mechanisms remain controversial. The southeasterly summer monsoon provides moisture, whereas the northwesterly winter monsoon sweeps up dust from the arid Asian interior to form the Chinese Loess Plateau. The onset of this loess accumulation, and therefore of the monsoons, was thought to be 8 million years ago (Ma). However, in recent years these loess records have been extended further back in time to the Eocene (56-34 Ma), a period characterized by significant changes in both the regional geography and global climate. Yet the extent to which these reconfigurations drive atmospheric circulation and whether the loess-like deposits are monsoonal remains debated. In this thesis, I study the terrestrial deposits of the Xining Basin previously identified as Eocene loess, to derive the paleoenvironmental evolution of the region and identify the geological processes that have shaped the Asian climate. I review dust deposits in the geological record and conclude that these are commonly represented by a mix of both windblown and water-laid sediments, in contrast to the pure windblown material known as loess. Yet by using a combination of quartz surface morphologies, provenance characteristics and distinguishing grain-size distributions, windblown dust can be identified and quantified in a variety of settings. This has important implications for tracking aridification and dust-fluxes throughout the geological record. Past reversals of Earth’s magnetic field are recorded in the deposits of the Xining Basin and I use these together with a dated volcanic ash layer to accurately constrain the age to the Eocene period. A combination of pollen assemblages, low dust abundances and other geochemical data indicates that the early Eocene was relatively humid suggesting an intensified summer monsoon due to the warmer greenhouse climate at this time. A subsequent shift from predominantly freshwater to salt lakes reflects a long-term aridification trend possibly driven by global cooling and the continuous uplift of the Tibetan Plateau. Superimposed on this aridification are wetter intervals reflected in more abundant lake deposits which correlate with highstands of the inland proto-Paratethys Sea. This sea covered the Eurasian continent and thereby provided additional moisture to the winter-time westerlies during the middle to late Eocene. The long-term aridification culminated in an abrupt shift at 40 Ma reflected by the onset of windblown dust, an increase in steppe-desert pollen, the occurrence of high-latitude orbital cycles and northwesterly winds identified in deflated salt deposits. Together, these indicate the onset of a Siberian high atmospheric pressure system driving the East Asian winter monsoon as well as dust storms and was triggered by a major sea retreat from the Asian interior. These results therefore show that the proto-Paratethys Sea, though less well recognized than the Tibetan Plateau and global climate, has been a major driver in setting up the modern-day climate in Asia. N2 - Die ostasiatischen Monsune prägen das heutige asiatische Klima, doch ihr geologischer Ursprung und ihre Antriebsmechanismen sind nach wie vor umstritten. Der südöstliche Sommermonsun bringt Feuchtigkeit, während der nordwestliche Wintermonsun Staub aus dem trockenen asiatischen Inland aufwirbelt und das chinesische Lössplateau bildet. Der Ursprung dieses Lösses und damit des Monsuns wurde vor 8 Millionen Jahren vermutet (Ma). In den letzten Jahren sind diese Lößablagerungen jedoch weiter in das Eozän (56-34 Ma) zurückverlegt worden, einer Periode, die durch bedeutende Änderungen sowohl in der regionalen Geographie als auch im globalen Klima gekennzeichnet ist. Inwieweit diese Rekonfigurationen die atmosphärische Zirkulation antrieben und ob es sich bei den lößartigen Sedimenten um monsunartige Ablagerungen handelt, bleibt jedoch umstritten. In dieser Dissertation untersuche ich die terrestrischen Ablagerungen des Xining-Beckens, die zuvor als Löss aus dem Eozän identifiziert wurden, um die paläo-umweltbedingte Entwicklung der Region abzuleiten und die geologischen Prozesse zu identifizieren, die das asiatische Klima geprägt haben. Ich überprüfe die Staubablagerungen im geologischen Archiv und komme zu dem Schluss, dass diese durch eine Mischung aus windgetriebenen und wassergelagerten Sedimenten dargestellt werden, im Gegensatz zu dem rein windgetriebenen Material, das als Löß bekannt ist. Doch durch die Verwendung einer Kombination der oberflächenmorphologien von Quartz, Herkunftsmerkmalen und unterscheidenden Korngrößenverteilungen kann windgetriebener Staub in einer Vielzahl von Umgebungen identifiziert und quantifiziert werden. Dies hat wichtige Auswirkungen auf die Nachverfolgung der Aridifizierung und der Staubflüsse in dem gesamten geologischen Archiv. Frühere Umkehrungen des Erdmagnetfeldes werden in den Ablagerungen des Xining-Beckens aufgezeichnet und ich verwende diese zusammen mit einer datierten vulkanischen Ascheschicht, um das Alter genau auf die Eozän-Periode einzugrenzen. Eine Kombination aus Pollenansammlungen, geringen Staubhäufigkeiten und anderen geochemischen Daten deutet darauf hin, dass das frühe Eozän relativ feucht war, was auf einen verstärkten Sommermonsun aufgrund des wärmeren Treibhausklimas zu dieser Zeit hinweist. Eine anschließende Verschiebung von überwiegend Süßwasser zu Salzseen spiegelt einen langfristigen Aridifizierungstrend wider, der möglicherweise durch die globale Abkühlung und die kontinuierliche Hebung des Tibetischen Plateaus angetrieben wurde. Überlagert wird diese Aridifizierung von feuchteren Intervallen, die durch eine Zunahme in Seeablagerungen gekennzeichnet werden und mit den Hochständen des inländischen proto-Paratethys-Meeres korrelieren. Dieses Meer bedeckte den eurasischen Kontinent und versorgte dadurch die winterlichen Westwinde mit zusätzlicher Feuchtigkeit im mittleren bis späten Eozän. T2 - Asiatischer Staub, Monsune und Westwind während des Eozäns KW - Paleoclimatology KW - Asia KW - Eocene KW - Stratigraphy KW - Asien KW - Stratigrafie KW - Monsoon KW - Monsun KW - Paläoklimatologie KW - Eozän Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-488687 ER - TY - THES A1 - Menges, Johanna T1 - Organic Carbon Storage, Transfer and Transformation in the Himalaya BT - insights from the Kali Gandaki Valley in Central Nepal N2 - The transfer of particulate organic carbon from continents to the ocean is an important component of the global carbon cycle. Transfer to and burial of photosynthetically fixed biospheric organic carbon in marine sediments can effectively sequester atmospheric carbon dioxide over geological timescales. The exhumation and erosion of fossil organic carbon contained in sedimentary rocks, i.e. petrogenic carbon, can result in remineralization, releasing carbon to the atmosphere. In contrast, eroded petrogenic organic carbon that gets transferred back to the ocean and reburied does not affect atmospheric carbon content. Mountain ranges play a key role in this transfer since they can source vast amounts of sediment including particulate organic carbon. Globally, the export of both, biospheric and petrogenic organic carbon has been linked to sediment export. Additionally, short transfer times from mountains to the ocean and high sediment concentrations have been shown to increase the likelihood of organic carbon burial. While the importance of mountain ranges in the organic carbon cycle is now widely recognized, the processes acting within mountain ranges to influence the storage, cycling and mobilization of organic carbon, as well as carbon fluxes from mountain ranges remain poorly constrained. In this thesis, I employ different methods to assess the nature and fate of particulate organic carbon in mountain belts, ranging from the molecular to regional landscape scale. These studies are located along the Trans-Himalayan Kali Gandaki River in Central Nepal. This river traverses all major geological and climatic zones of the Himalaya, from the dry northern Tibetan plateau to the high-relief, monsoon dominated steep High Himalaya and the lower relief and abundant vegetation of the Lesser Himalayan region. First, I document how biospheric organic matter has accumulated during the Holocene in the headwaters of the Kali Gandaki River valley, by combining compound specific isotope measurements with different dating methods and grain size data, and investigate the stability of this organic carbon reservoir on millennial timescales. I show, that around 1.6 ka an eco-geomorphic tipping point occurred leading to a destabilization of the landscape resulting in today’s high erosion rates and the excavation of the aged organic carbon reservoir. This study highlights the climatic and geomorphic controls on biospheric organic carbon storage and release from mountain ranges. Second, I systematically investigate the spatial variation of particulate organic carbon fluxes across the Himalaya along the Kali Gandaki River, using bulk stable and radioactive isotopes combined with a new Bayesian modeling approach. The detailed dataset allows the distinction of aged and modern biospheric organic carbon as well as petrogenic organic carbon across the Himalayan mountain range and the investigation of the role of climatic and geomorphic factors in their riverine export. The data suggest a decoupling of the particulate organic carbon from the sediment yield along the Kali Gandaki River, partially driven by climatic and geomorphic processes. In contrast to the suspended sediment, a large part of the particulate organic carbon exported by the river originates from the Tibetan part of the catchment and is dominated by petrogenic organic carbon derived from Jurassic shales with only minor contributions of modern and aged biospheric organic carbon. These findings emphasize the importance of organic carbon source distribution and erosion mechanisms in determining the organic carbon export from mountain ranges. In a third step, I explore the potential of ultra-high resolution mass spectrometry for particulate organic carbon transport studies. I have generated a novel and unprecedented high-resolution molecular dataset, which contains up to 103 molecular formulas of the lipid fraction of particulate organic matter for modern and aged biospheric carbon, petrogenic organic carbon and river sediments. First, I test if this dataset can be used to better resolve different organic carbon sources and to identify new geochemical tracers. Using multivariate statistics, I identify up to 10² characteristic molecular formulas for the major organic carbon sources in the upper part of the Kali Gandaki catchment, and trace their transfer from the surrounding landscape into the river sediment. Second, I test the potential of the molecular dataset to trace molecular transformations along source-to-sink pathways. I identify changes in molecular metrics derived from the dataset, which are characteristic of transformation processes during incorporation of litter into soil, the aging of soil material, and the mobilization of the organic carbon into the river. These two studies demonstrate that high-resolution molecular datasets open a promising analytical window on particulate organic carbon and can provide novel insights into the composition, sourcing and transformation of riverine particulate organic carbon. Collectively, these studies advance our understanding of the processes contributing to the storage and mobilization of organic carbon in the Central Himalaya, the mountain belt that dominates global erosional fluxes. They do so by identifying the major sources of particulate organic carbon to the Trans-Himalayan Kali Gandaki River, by elucidating their sensitivity to climate and geomorphic processes, and by identifying some of the transformations of this material on the molecular scale. As a result, the thesis demonstrates that the amount and composition of organic carbon routed from mountain belts is a function of the dynamic interactions of geologic, biologic, geomorphic and climatic processes within the mountain belt. This understanding will ultimately help in answering whether the build-up and erosion of mountain ranges over geological time represents a net carbon source or sink to the atmosphere. Beyond this, the thesis contributes to our technical ability to characterize organic matter and attribute it to sources by scoping the potential of high-end molecular analysis. KW - organic carbon cycle KW - biomarker KW - isotopes KW - Himalaya KW - rivers Y1 - 2020 ER - TY - JOUR A1 - Menges, Johanna A1 - Hovius, Niels A1 - Andermann, Christoff A1 - Lupker, Maarten A1 - Haghipour, Negar A1 - Märki, Lena A1 - Sachse, Dirk T1 - Variations in organic carbon sourcing along a trans-Himalayan river determined by a Bayesian mixing approach JF - Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society N2 - Rivers transfer particulate organic carbon (POC) from eroding mountains into geological sinks. Organic carbon source composition and selective mobilization have been shown to affect the type and quantity of POC export, but their combined effects across complex mountain ranges remain underexplored. Here, we examine the variation in organic carbon sourcing and transport in the trans-Himalayan Kali Gandaki River catchment, along strong gradients in precipitation, rock type and vegetation. Combining bulk stable nitrogen, and stable and radioactive organic carbon isotopic composition of bedrock, litter, soil and river sediment samples with a Bayesian end-member mixing approach, we differentiate POC sources along the river and quantify their export. Our analysis shows that POC export from the Tibetan segment of the catchment, where carbon bearing shales are partially covered by aged and modern soils, is dominated by petrogenic POC. Based on our data we re-assess the presence of aged biospheric OC in this part of the catchment, and its contribution to the river load. In the High Himalayan segment, we observed low inputs of petrogenic and biospheric POC, likely due to very low organic carbon concentrations in the metamorphic bedrock, combined with erosion dominated by deep-seated landslides. Our findings show that along the Kali Gandaki River, the sourcing of sediment and organic carbon are decoupled, due to differences in rock organic carbon content, soil and above ground carbon stocks, and geomorphic process activity. While the fast eroding High Himalayas are the principal source of river sediment, the Tibetan headwaters, where erosion rates are lower, are the principal source of organic carbon. To robustly estimate organic carbon export from the Himalayas, the mountain range should be divided into tectono-physiographic zones with distinct organic carbon yields due to differences in substrate and erosion processes and rates. KW - particulate organic carbon KW - Himalaya KW - rivers KW - carbon cycle KW - stable KW - isotopes KW - erosion KW - end-member mixing Y1 - 2020 U6 - https://doi.org/10.1016/j.gca.2020.07.003 SN - 0016-7037 VL - 286 SP - 159 EP - 176 PB - Elsevier CY - New York [u.a.] ER - TY - JOUR A1 - Merz, Bruno A1 - Kuhlicke, Christian A1 - Kunz, Michael A1 - Pittore, Massimiliano A1 - Babeyko, Andrey A1 - Bresch, David N. A1 - Domeisen, Daniela I. A1 - Feser, Frauke A1 - Koszalka, Inga A1 - Kreibich, Heidi A1 - Pantillon, Florian A1 - Parolai, Stefano A1 - Pinto, Joaquim G. A1 - Punge, Heinz Jürgen A1 - Rivalta, Eleonora A1 - Schröter, Kai A1 - Strehlow, Karen A1 - Weisse, Ralf A1 - Wurpts, Andreas T1 - Impact forecasting to support emergency management of natural hazards JF - Reviews of geophysics N2 - Forecasting and early warning systems are important investments to protect lives, properties, and livelihood. While early warning systems are frequently used to predict the magnitude, location, and timing of potentially damaging events, these systems rarely provide impact estimates, such as the expected amount and distribution of physical damage, human consequences, disruption of services, or financial loss. Complementing early warning systems with impact forecasts has a twofold advantage: It would provide decision makers with richer information to take informed decisions about emergency measures and focus the attention of different disciplines on a common target. This would allow capitalizing on synergies between different disciplines and boosting the development of multihazard early warning systems. This review discusses the state of the art in impact forecasting for a wide range of natural hazards. We outline the added value of impact-based warnings compared to hazard forecasting for the emergency phase, indicate challenges and pitfalls, and synthesize the review results across hazard types most relevant for Europe. KW - impact forecasting KW - natural hazards KW - early warning Y1 - 2020 U6 - https://doi.org/10.1029/2020RG000704 SN - 8755-1209 SN - 1944-9208 VL - 58 IS - 4 PB - American Geophysical Union CY - Washington ER - TY - THES A1 - Milewski, Robert T1 - Potential of optical remote sensing for the analysis of salt pan environments N2 - Salt pans also termed playas are common landscape features of hydrologically closed basins in arid and semiarid zones, where evaporation significantly exceeds the local precipitation. The analysis and monitoring of salt pan environments is important for the evaluation of current and future impact of these landscape features. Locally, salt pans have importance for the ecosystem, wildlife and human health, and through dust emissions they influence the climate on regional and global scales. Increasing economic exploitation of these environments in the last years, e.g. by brine extraction for raw materials, as well as climate change severely affect the water, material and energy balance of these systems. Optical remote sensing has the potential to characterise salt pan environments and to increase the understanding of processes in playa basins, as well as to assess wider impacts and feedbacks that exist between climate forcing and human intervention in their regions. Remote sensing techniques can provide information for extensive regions on a high temporal basis compared to traditional field samples and ground observations. Specifically, for salt pans that are often challenging to study because of their large size, remote location, and limited accessibility due to missing infrastructure and ephemeral flooding. Furthermore, the availability of current and upcoming hyperspectral remote sensing data opened the opportunity for the analyses of the complex reflectance signatures that relate to the mineralogical mixtures found in the salt pan sediments. However, these new advances in sensor technology, as well as increased data availability currently have not been fully explored for the study of salt pan environments. The potential of new sensors needs to be assessed and state of the art methods need to be adapted and improved to provide reliable information for in depth analysis of processes and characterisation of the recent condition, as well as to support long-term monitoring and to evaluate environmental impacts of changing climate and anthropogenic activity. This thesis provides an assessment of the capabilities of optical remote sensing for the study of salt pan environments that combines the information of hyperspectral data with the increased temporal coverage of multispectral observations for a more complete understanding of spatial and temporal complexity of salt pan environments using the Omongwa salt pan located in the south-west Kalahari as a test site. In particular, hyperspectral data are used for unmixing of the mineralogical surface composition, spectral feature-based modelling for quantification of main crust components, as well as time-series based classification of multispectral data for the assessment of the long-term dynamic and the analysis of the seasonal process regime. The results show that the surface of the Omongwa pan can be categorized into three major crust types based on diagnostic absorption features and mineralogical ground truth data. The mineralogical crust types can be related to different zones of surface dynamic as well as pan morphology that influences brine flow during the pan inundation and desiccation cycles. Using current hyperspectral imagery, as well as simulated data of upcoming sensors, robust quantification of the gypsum component could be derived. For the test site the results further indicate that the crust dynamic is mainly driven by flooding events in the wet season, but it is also influenced by temperature and aeolian activity in the dry season. Overall, the scientific outcomes show that optical remote sensing can provide a wide range of information helpful for the study of salt pan environments. The thesis also highlights that remote sensing approaches are most relevant, when they are adapted to the specific site conditions and research scenario and that upcoming sensors will increase the potential for mineralogical, sedimentological and geomorphological analysis, and will improve the monitoring capabilities with increased data availability. N2 - Salzpfannen, auch Playas genannt, sind häufige Landschaftsformen endorheischer Becken in ariden und semi-ariden Zonen, in denen die Evaporation den lokalen Niederschlag deutlich übersteigt. Die Analyse und das Monitoring von Salzpfannen sind wichtig für die Bewertung des aktuellen und zukünftigen Wandels dieser Systeme. Salzpfannen haben große Bedeutung für das lokale Ökosystem, für die Gesundheit von Mensch und Tier, und durch ihre Staubemissionen können sie das Klima auf regionaler und globaler Ebene beeinflussen. Die zunehmende industrielle Nutzung dieser Räume in den letzten Jahren, z.B. durch Soleförderung zur Rohstoffgewinnung, sowie der Klimawandel haben erhebliche Auswirkungen auf ihre Wasser-, Stoff- und Energiebilanz. Die optische Fernerkundung bietet das Potenzial diese Landschaftsformen zu charakterisieren, Veränderungen zu erkennen und das Prozessverständnis zu fördern, sowie umfassende Auswirkungen und Rückkopplungen zwischen klimatischen und anthropogenen Einflüssen in diesen Regionen zu erkennen. Im Vergleich zu traditionellen Feldmethoden bietet der Einsatz von Fernerkundung eine Basis für großräumige und wiederholte Untersuchungen. Das gilt insbesondere für Salzpfannen, die aufgrund ihrer Größe, abgelegener Lage und durch begrenzte Zugänglichkeit, aufgrund fehlender Infrastruktur und episodischen Überschwemmungen, häufig schwer zu untersuchen sind. Darüber hinaus eröffnete die aktuelle und zukünftig gesteigerte Verfügbarkeit von hyperspektralen Fernerkundungsdaten die Möglichkeit zur detaillierten Analyse der Reflexionseigenschaften der komplexen Mineralogie und Sedimenteigenschaften von Salzpfannenoberflächen. Der Einsatz neuer Sensorik sowie die erhöhte Datenverfügbarkeit sind jedoch derzeit noch nicht ausreichend für die Untersuchung von Salzpfannen erforscht. Das Potenzial neuer Sensoren muss bewertet und die aktuelle Methodik angepasst und verbessert werden, um zuverlässige Informationen für die Charakterisierung und Analyse des aktuellen Zustands zu liefern, sowie eine langfristige Überwachung und Bewertung der Auswirkungen von Klimaveränderung und der anthropogenen Aktivität auf Salzpfannen und deren Regionen zu ermöglichen. Diese Arbeit bietet eine Bewertung des Potentials der optischen Fernerkundung für die Untersuchung von Salzpfannen. Der Fokus liegt insbesondere auf der kombinierten Nutzung der analytischer Stärke von hyperspektralen Daten mit der erhöhten zeitlichen Auflösung von multispektralen Beobachtungen, um ein gesteigertes Verständnis der räumlichen und zeitlichen Komplexität von Salzpfannen zu erreichen. Als Testgebiet hierfür dient die Omongwa Salzpfanne in der Süd-Westlichen Kalahari. Im Rahmen dieser Arbeit werden hyperspektrale Fernerkundungsdaten für die spektrale Entmischung der mineralogischen Oberflächenzusammensetzung und für die Quantifizierung mittels spektraler Parameter genutzt. Gleichzeitig ermöglicht die multitemporale Klassifikation von Multispektraldaten die Beurteilung der Langzeitdynamik und die Analyse des saisonalen Prozessgeschehens. Die Ergebnisse zeigen, dass die Oberfläche der Omongwa-Salzpfanne in drei Hauptklassen, dominiert von verschiedenen Evaporitmineralen, eingeteilt werden kann, die aufgrund diagnostischen Absorptionsmerkmalen und durch die Analyse von in-situ Daten unterschieden werden können. Diese mineralogischen Hauptklassen korrelieren mit Zonen unterschiedlicher zeitlicher Dynamik, sowie mit dem morphologischen Aufbau der Salzpfanne, die die räumliche Verteilung von Oberflächenwasser während episodischer Flutungen und die Ausfällung von Salzen während der Trockenzeiten beeinflussen. Des Weiteren konnte auf Grundlage hyperspektralen Daten von aktuellen Sensoren, sowie anhand simulierten Daten von in Planung befindlicher Sensoren eine robuste Quantifizierung der Gipskomponente in den Oberflächensedimenten abgeleitet werden. Für das Untersuchungsgebiet deuten die Ergebnisse der Zeitreihenanalyse darauf hin, dass die Krustendynamik und Oberflächenmineralogie hauptsächlich durch die wiederkehrenden Überschwemmungsereignisse in der Regenzeit geprägt sind, aber auch durch die Temperatur und äolische Aktivität in der Trockenzeit beeinflusst wird. Zusammenfassend zeigen die Ergebnisse, dass die optische Fernerkundung großes Potenzial zur genaueren Erforschung von Salzpfannen bietet und detaillierte Informationen zu saisonalen und langzeitlichen Veränderungen liefern kann. Die Arbeit hebt auch hervor, dass der Einsatz von Fernerkundungsmethoden am erfolgreichsten ist, wenn sie an die lokalen Bedingungen und die Forschungsfrage angepasst werden. Der Ausblick zeigt, dass zukünftige Sensoren die Möglichkeiten für die Erforschung dieser Räume weiter erhöhen und ein systematisches Monitoring durch die größere Datenverfügbarkeit verbessert wird. T2 - Potential der Optischen Fernerkundung für die Analyse von Salzpfannen KW - Optische Fernerkundung KW - Hyperspektral KW - Salzpfanne KW - Playa KW - Sedimente KW - Optical remote sensing KW - Salt pan KW - Playa KW - sediments Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-473732 ER - TY - GEN A1 - Milewski, Robert A1 - Chabrillat, Sabine A1 - Bookhagen, Bodo T1 - Analyses of Namibian Seasonal Salt Pan Crust Dynamics and Climatic Drivers Using Landsat 8 Time-Series and Ground Data T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Salt pans are highly dynamic environments that are difficult to study by in situ methods because of their harsh climatic conditions and large spatial areas. Remote sensing can help to elucidate their environmental dynamics and provide important constraints regarding their sedimentological, mineralogical, and hydrological evolution. This study utilizes spaceborne multitemporal multispectral optical data combined with spectral endmembers to document spatial distribution of surface crust types over time on the Omongwa pan located in the Namibian Kalahari. For this purpose, 49 surface samples were collected for spectral and mineralogical characterization during three field campaigns (2014–2016) reflecting different seasons and surface conditions of the salt pan. An approach was developed to allow the spatiotemporal analysis of the salt pan crust dynamics in a dense time-series consisting of 77 Landsat 8 cloud-free scenes between 2014 and 2017, covering at least three major wet–dry cycles. The established spectral analysis technique Sequential Maximum Angle Convex Cone (SMACC) extraction method was used to derive image endmembers from the Landsat time-series stack. Evaluation of the extracted endmember set revealed that the multispectral data allowed the differentiation of four endmembers associated with mineralogical mixtures of the crust’s composition in dry conditions and three endmembers associated with flooded or muddy pan conditions. The dry crust endmember spectra have been identified in relation to visible, near infrared, and short-wave infrared (VNIR–SWIR) spectroscopy and X-ray diffraction (XRD) analyses of the collected surface samples. According these results, the spectral endmembers are interpreted as efflorescent halite crust, mixed halite–gypsum crust, mixed calcite quartz sepiolite crust, and gypsum crust. For each Landsat scene the spatial distribution of these crust types was mapped with the Spectral Angle Mapper (SAM) method and significant spatiotemporal dynamics of the major surface crust types were observed. Further, the surface crust dynamics were analyzed in comparison with the pan’s moisture regime and other climatic parameters. The results show that the crust dynamics are mainly driven by flooding events in the wet season, but are also influenced by temperature and aeolian activity in the dry season. The approach utilized in this study combines the advantages of multitemporal satellite data for temporal event characterization with advantages from hyperspectral methods for the image and ground data analyses that allow improved mineralogical differentiation and characterization. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 988 KW - salt pan KW - playa KW - spectral analysis KW - crust KW - saline pan cycle KW - evaporites KW - time-series mapping Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-475685 SN - 1866-8372 IS - 988 ER - TY - JOUR A1 - Milewski, Robert A1 - Chabrillat, Sabine A1 - Bookhagen, Bodo T1 - Analyses of Namibian Seasonal Salt Pan Crust Dynamics and Climatic Drivers Using Landsat 8 Time-Series and Ground Data JF - Remote Sensing N2 - Salt pans are highly dynamic environments that are difficult to study by in situ methods because of their harsh climatic conditions and large spatial areas. Remote sensing can help to elucidate their environmental dynamics and provide important constraints regarding their sedimentological, mineralogical, and hydrological evolution. This study utilizes spaceborne multitemporal multispectral optical data combined with spectral endmembers to document spatial distribution of surface crust types over time on the Omongwa pan located in the Namibian Kalahari. For this purpose, 49 surface samples were collected for spectral and mineralogical characterization during three field campaigns (2014–2016) reflecting different seasons and surface conditions of the salt pan. An approach was developed to allow the spatiotemporal analysis of the salt pan crust dynamics in a dense time-series consisting of 77 Landsat 8 cloud-free scenes between 2014 and 2017, covering at least three major wet–dry cycles. The established spectral analysis technique Sequential Maximum Angle Convex Cone (SMACC) extraction method was used to derive image endmembers from the Landsat time-series stack. Evaluation of the extracted endmember set revealed that the multispectral data allowed the differentiation of four endmembers associated with mineralogical mixtures of the crust’s composition in dry conditions and three endmembers associated with flooded or muddy pan conditions. The dry crust endmember spectra have been identified in relation to visible, near infrared, and short-wave infrared (VNIR–SWIR) spectroscopy and X-ray diffraction (XRD) analyses of the collected surface samples. According these results, the spectral endmembers are interpreted as efflorescent halite crust, mixed halite–gypsum crust, mixed calcite quartz sepiolite crust, and gypsum crust. For each Landsat scene the spatial distribution of these crust types was mapped with the Spectral Angle Mapper (SAM) method and significant spatiotemporal dynamics of the major surface crust types were observed. Further, the surface crust dynamics were analyzed in comparison with the pan’s moisture regime and other climatic parameters. The results show that the crust dynamics are mainly driven by flooding events in the wet season, but are also influenced by temperature and aeolian activity in the dry season. The approach utilized in this study combines the advantages of multitemporal satellite data for temporal event characterization with advantages from hyperspectral methods for the image and ground data analyses that allow improved mineralogical differentiation and characterization. KW - salt pan KW - playa KW - spectral analysis KW - crust KW - saline pan cycle KW - evaporites KW - time-series mapping Y1 - 2019 U6 - https://doi.org/10.3390/rs12030474 SN - 2072-4292 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mogrovejo Arias, Diana Carolina A1 - Brill, Florian H. H. A1 - Wagner, Dirk T1 - Potentially pathogenic bacteria isolated from diverse habitats in Spitsbergen, Svalbard JF - Environmental earth sciences N2 - The Arctic ecosystem, a reservoir of genetic microbial diversity, represents a virtually unlimited source of microorganisms that could interact with human beings. Despite continuous exploration of Arctic habitats and description of their microbial communities, bacterial phenotypes commonly associated with pathogenicity, such as hemolytic activity, have rarely been reported. In this study, samples of snow, fresh and marine water, soil, and sediment from several habitats in the Arctic archipelago of Svalbard were collected during Summer, 2017. Bacterial isolates were obtained after incubation on oligotrophic media at different temperatures and their hemolytic potential was assessed on sheep blood agar plates. Partial (alpha) or true (beta) hemolysis was observed in 32 out of 78 bacterial species. Genes expressing cytolytic compounds, such as hemolysins, likely increase the general fitness of the producing microorganisms and confer a competitive advantage over the availability of nutrients in natural habitats. In environmental species, the nutrient-acquisition function of these compounds presumably precedes their function as toxins for mammalian erythrocytes. However, in the light of global warming, the presence of hemolytic bacteria in Arctic environments highlights the possible risks associated with these microorganisms in the event of habitat melting/destruction, ecosystem transition, and re-colonization. KW - Arctic KW - Svalbard KW - hemolysins KW - climate change KW - pathogens KW - virulence Y1 - 2020 U6 - https://doi.org/10.1007/s12665-020-8853-4 SN - 1866-6280 SN - 1866-6299 VL - 79 IS - 5 PB - Springer CY - Berlin ; Heidelberg ER - TY - JOUR A1 - Montero-Lopez, Carolina A1 - Hongn, Fernando D. A1 - Lopez Steinmetz, Romina L. A1 - Aramayo, Alejandro A1 - Pingel, Heiko A1 - Strecker, Manfred A1 - Cottle, John A1 - Bianchi, Carlos T1 - Development of an incipient Paleogene topography between the present-day Eastern Andean Plateau (Puna) and the Eastern Cordillera, southern Central Andes, NW Argentina JF - Basin research / publ. in conjunction with the European Association of Geoscientists & Engineers and the International Association of Sedimentologists N2 - The structural and topographic evolution of orogenic plateaus is an important research topic because of its impact on atmospheric circulation patterns, the amount and distribution of rainfall, and resulting changes in surface processes. The Puna region in the north-western Argentina (between 13 degrees S and 27 degrees S) is part of the Andean Plateau, which is the world's second largest orogenic plateau. In order to investigate the deformational events responsible for the initial growth of this part of the Andean plateau, we carried out structural and stratigraphic investigations within the present-day transition zone between the northern Puna and the adjacent Eastern Cordillera to the east. This transition zone is characterized by ubiquitous exposures of continental middle Eocene redbeds of the Casa Grande Formation. Our structural mapping, together with a sedimentological analysis of these units and their relationships with the adjacent mountain ranges, has revealed growth structures and unconformities that are indicative of syntectonic deposition. These findings support the notion that tectonic shortening in this part of the Central Andes was already active during the middle Paleogene, and that early Cenozoic deformation in the region that now constitutes the Puna occurred in a spatially irregular manner. The patterns of Paleogene deformation and uplift along the eastern margin of the present-day plateau correspond to an approximately north-south oriented swath of reactivated basement heterogeneities (i.e. zones of mechanical weakness) stemming from regional Paleozoic mountain building that may have led to local concentration of deformation belts. KW - Andean Plateau KW - Eastern Cordillera KW - Eocene deformation KW - growth structures KW - northern Puna KW - north-western Argentina KW - southern Central Andes Y1 - 2020 U6 - https://doi.org/10.1111/bre.12510 SN - 0950-091X SN - 1365-2117 VL - 33 IS - 2 SP - 1194 EP - 1217 PB - Wiley-Blackwell CY - Oxford ER - TY - JOUR A1 - Morgenstern, Anne A1 - Overduin, Pier Paul A1 - Günther, Frank A1 - Stettner, Samuel A1 - Ramage, Justine A1 - Schirrmeister, Lutz A1 - Grigoriev, Mikhail N. A1 - Grosse, Guido T1 - Thermo-erosional valleys in Siberian ice-rich permafrost JF - Permafrost and Periglacial Processes N2 - Thermal erosion is a major mechanism of permafrost degradation, resulting in characteristic landforms. We inventory thermo-erosional valleys in ice-rich coastal lowlands adjacent to the Siberian Laptev Sea based on remote sensing, Geographic Information System (GIS), and field investigations for a first regional assessment of their spatial distribution and characteristics. Three study areas with similar geological (Yedoma Ice Complex) but diverse geomorphological conditions vary in valley areal extent, incision depth, and branching geometry. The most extensive valley networks are incised deeply (up to 35 m) into the broad inclined lowland around Mamontov Klyk. The flat, low-lying plain forming the Buor Khaya Peninsula is more degraded by thermokarst and characterized by long valleys of lower depth with short tributaries. Small, isolated Yedoma Ice Complex remnants in the Lena River Delta predominantly exhibit shorter but deep valleys. Based on these hydrographical network and topography assessments, we discuss geomorphological and hydrological connections to erosion processes. Relative catchment size along with regional slope interact with other Holocene relief-forming processes such as thermokarst and neotectonics. Our findings suggest that thermo-erosional valleys are prominent, hitherto overlooked permafrost degradation landforms that add to impacts on biogeochemical cycling, sediment transport, and hydrology in the degrading Siberian Yedoma Ice Complex. KW - geomorphology KW - periglacial landscapes KW - permafrost degradation KW - thermal KW - erosion KW - valley distribution KW - Yedoma Ice Complex Y1 - 2020 U6 - https://doi.org/10.1002/ppp.2087 SN - 1045-6740 SN - 1099-1530 VL - 32 IS - 1 SP - 59 EP - 75 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Morishita, Yu A1 - Lazecky, Milan A1 - Wright, Tim J. A1 - Weiss, Jonathan R. A1 - Elliott, John R. A1 - Hooper, Andy T1 - LiCSBAS BT - An Open-Source InSAR Time Series Analysis Package Integrated with the LiCSAR Automated Sentinel-1 InSAR Processor T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (~km) relative displacements with an accuracy of <1 cm/epoch and ~2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1078 KW - InSAR KW - Sentinel-1 KW - time series analysis KW - deformation monitoring KW - tectonics KW - subsidence KW - automatic processing KW - global Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472431 SN - 1866-8372 IS - 1078 ER - TY - JOUR A1 - Morishita, Yu A1 - Lazecky, Milan A1 - Wright, Tim J. A1 - Weiss, Jonathan R. A1 - Elliott, John R. A1 - Hooper, Andy T1 - LiCSBAS BT - an open-source InSAR time series analysis package integrated with the LiCSAR automated Sentinel-1 InSAR processor JF - Remote sensing N2 - For the past five years, the 2-satellite Sentinel-1 constellation has provided abundant and useful Synthetic Aperture Radar (SAR) data, which have the potential to reveal global ground surface deformation at high spatial and temporal resolutions. However, for most users, fully exploiting the large amount of associated data is challenging, especially over wide areas. To help address this challenge, we have developed LiCSBAS, an open-source SAR interferometry (InSAR) time series analysis package that integrates with the automated Sentinel-1 InSAR processor (LiCSAR). LiCSBAS utilizes freely available LiCSAR products, and users can save processing time and disk space while obtaining the results of InSAR time series analysis. In the LiCSBAS processing scheme, interferograms with many unwrapping errors are automatically identified by loop closure and removed. Reliable time series and velocities are derived with the aid of masking using several noise indices. The easy implementation of atmospheric corrections to reduce noise is achieved with the Generic Atmospheric Correction Online Service for InSAR (GACOS). Using case studies in southern Tohoku and the Echigo Plain, Japan, we demonstrate that LiCSBAS applied to LiCSAR products can detect both large-scale (>100 km) and localized (similar to km) relative displacements with an accuracy of <1 cm/epoch and similar to 2 mm/yr. We detect displacements with different temporal characteristics, including linear, periodic, and episodic, in Niigata, Ojiya, and Sanjo City, respectively. LiCSBAS and LiCSAR products facilitate greater exploitation of globally available and abundant SAR datasets and enhance their applications for scientific research and societal benefit. KW - InSAR KW - Sentinel-1 KW - time series analysis KW - deformation monitoring KW - tectonics KW - subsidence KW - automatic processing KW - global Y1 - 2020 U6 - https://doi.org/10.3390/rs12030424 SN - 2072-4292 VL - 12 IS - 3 PB - MDPI CY - Basel ER - TY - JOUR A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Bürger, Gerd A1 - Vormoor, Klaus Josef T1 - Meteorological and hydrological drought assessment in Lake Malawi and Shire River basins (1970-2013) JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - The study assesses the variability and trends of both meteorological and hydrological droughts from 1970 to 2013 in Lake Malawi and Shire River basins using the standardized precipitation index (SPI) and standardized precipitation and evaporation index (SPEI) for meteorological droughts and the lake level change index (LLCI) for hydrological droughts. Trends and slopes in droughts and drought drivers are estimated using Mann-Kendall test and Sen's slope, respectively. Results suggest that meteorological droughts are increasing due to a decrease in precipitation which is exacerbated by an increase in temperature (potential evapotranspiration). The hydrological system of Lake Malawi seems to have a >24-month memory towards meteorological conditions, since the 36-month SPEI can predict hydrological droughts 10 months in advance. The study has found the critical lake level that would trigger hydrological drought to be 474.1 m a.s.l. The increase in drought is a concern as this will have serious impacts on water resources and hydropower supply in Malawi. KW - Lake Malawi basin KW - Shire River basin KW - meteorological drought KW - hydrological drought KW - SPEI KW - SPI KW - trend analysis Y1 - 2020 U6 - https://doi.org/10.1080/02626667.2020.1837384 SN - 0262-6667 SN - 2150-3435 VL - 65 IS - 16 SP - 2750 EP - 2764 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Muldashev, Iskander A. A1 - Sobolev, Stephan T1 - What controls maximum magnitudes of giant subduction earthquakes? JF - Geochemistry, geophysics, geosystems N2 - Giant earthquakes with magnitudes above 8.5 occur only in subduction zones. Despite the developments made in observing large subduction zone earthquakes with geophysical instruments, the factors controlling the maximum size of these earthquakes are still poorly understood. Previous studies have suggested the importance of slab shape, roughness of the plate interface contact, state of the strain in the upper plate, thickness of sediments filling the trenches, and subduction rate. Here, we present 2-D cross-scale numerical models of seismic cycles for subduction zones with various geometries, subduction channel friction configurations, and subduction rates. We found that low-angle subduction and thick sediments in the subduction channel are the necessary conditions for generating giant earthquakes, while the subduction rate has a negligible effect. We suggest that these key parameters determine the maximum magnitude of a subduction earthquake by controlling the seismogenic zone width and smoothness of the subduction interface. This interpretation supports previous studies that are based upon observations and scaling laws. Our modeling results also suggest that low static friction in the sediment-filled subduction channel results in neutral or moderate compressive deformation in the overriding plate for low-angle subduction zones hosting giant earthquakes. These modeling results agree well with observations for the largest earthquakes. Based on our models we predict maximum magnitudes of subduction earthquakes worldwide, demonstrating the fit to magnitudes of all giant earthquakes of the 20th and 21st centuries and good agreement with the predictions based on statistical analyses of observations. KW - giant earthquakes KW - earthquake modeling KW - subduction Y1 - 2020 U6 - https://doi.org/10.1029/2020GC009145 SN - 1525-2027 VL - 21 IS - 9 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Naliboff, John B. A1 - Glerum, Anne A1 - Brune, Sascha A1 - Péron-Pinvidic, G. A1 - Wrona, Thilo T1 - Development of 3-D rift heterogeneity through fault network evolution JF - Geophysical Research Letters N2 - Observations of rift and rifted margin architecture suggest that significant spatial and temporal structural heterogeneity develops during the multiphase evolution of continental rifting. Inheritance is often invoked to explain this heterogeneity, such as preexisting anisotropies in rock composition, rheology, and deformation. Here, we use high-resolution 3-D thermal-mechanical numerical models of continental extension to demonstrate that rift-parallel heterogeneity may develop solely through fault network evolution during the transition from distributed to localized deformation. In our models, the initial phase of distributed normal faulting is seeded through randomized initial strength perturbations in an otherwise laterally homogeneous lithosphere extending at a constant rate. Continued extension localizes deformation onto lithosphere-scale faults, which are laterally offset by tens of km and discontinuous along-strike. These results demonstrate that rift- and margin-parallel heterogeneity of large-scale fault patterns may in-part be a natural byproduct of fault network coalescence. KW - magma-poor KW - continental lithosphere KW - extension KW - insights KW - margins KW - architecture KW - systems KW - models KW - sea KW - reactivation Y1 - 2019 VL - 47 IS - 13 PB - John Wiley & Sons, Inc. CY - New Jersey ER - TY - GEN A1 - Naliboff, John B. A1 - Glerum, Anne A1 - Brune, Sascha A1 - Péron-Pinvidic, G. A1 - Wrona, Thilo T1 - Development of 3-D rift heterogeneity through fault network evolution T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Observations of rift and rifted margin architecture suggest that significant spatial and temporal structural heterogeneity develops during the multiphase evolution of continental rifting. Inheritance is often invoked to explain this heterogeneity, such as preexisting anisotropies in rock composition, rheology, and deformation. Here, we use high-resolution 3-D thermal-mechanical numerical models of continental extension to demonstrate that rift-parallel heterogeneity may develop solely through fault network evolution during the transition from distributed to localized deformation. In our models, the initial phase of distributed normal faulting is seeded through randomized initial strength perturbations in an otherwise laterally homogeneous lithosphere extending at a constant rate. Continued extension localizes deformation onto lithosphere-scale faults, which are laterally offset by tens of km and discontinuous along-strike. These results demonstrate that rift- and margin-parallel heterogeneity of large-scale fault patterns may in-part be a natural byproduct of fault network coalescence. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1183 KW - magma-poor KW - continental lithosphere KW - extension KW - insights KW - margins KW - architecture KW - systems KW - models KW - sea KW - reactivation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-524661 SN - 1866-8372 IS - 13 ER -