TY - THES A1 - Heck, Christian T1 - Gold and silver nanolenses self-assembled by DNA origami T1 - Gold- und Silbernanolinsen, selbstassembliert durch DNA-Origami N2 - Nanolenses are linear chains of differently-sized metal nanoparticles, which can theoretically provide extremely high field enhancements. The complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, the technique of DNA origami was used to self-assemble DNA-coated 10 nm, 20 nm, and 60 nm gold or silver nanoparticles into gold or silver nanolenses. Three different geometrical arrangements of gold nanolenses were assembled, and for each of the three, sets of single gold nanolenses were investigated in detail by atomic force microscopy, scanning electron microscopy, dark-field scattering and Raman spectroscopy. The surface-enhanced Raman scattering (SERS) capabilities of the single nanolenses were assessed by labelling the 10 nm gold nanoparticle selectively with dye molecules. The experimental data was complemented by finite-difference time-domain simulations. For those gold nanolenses which showed the strongest field enhancement, SERS signals from the two different internal gaps were compared by selectively placing probe dyes on the 20 nm or 60 nm gold particles. The highest enhancement was found for the gap between the 20 nm and 10 nm nanoparticle, which is indicative of a cascaded field enhancement. The protein streptavidin was labelled with alkyne groups and served as a biological model analyte, bound between the 20 nm and 10 nm particle of silver nanolenses. Thereby, a SERS signal from a single streptavidin could be detected. Background peaks observed in SERS measurements on single silver nanolenses could be attributed to amorphous carbon. It was shown that the amorphous carbon is generated in situ. N2 - Nanolinsen sind Strukturen aus linear angeordneten, unterschiedlich großen metallischen Nanopartikeln. Elektromagnetische Felder können durch sie theoretisch extrem verstärkt werden, aufgrund ihres komplexen Aufbaus sind sie bislang aber wenig erforscht. Im Rahmen dieser Dissertation wurden Nanolinsen mit Hilfe der DNA-Origami-Technik aus DNA-beschichteten 10 nm-, 20 nm- und 60 nm-Gold- oder Silbernanopartikeln hergestellt. Für Goldnanolinsen sind die Partikel dabei in drei unterschiedlichen Geometrien angeordnet worden. Einzelne Goldnanolinsen wurden mittels Rasterkraftmikroskopie, Rasterelektronenmikroskopie, Dunkelfeld- und Ramanspektroskopie untersucht. Um die Raman-Verstärkung quantifizieren zu können, trugen dabei jeweils die 10 nm-Goldpartikel Farbstoffmoleküle in ihrer Beschichtung. Die Interpretation der Messdaten wurde durch numerische Simulationen unterstützt. Nanolinsen zeichnen sich durch eine stufenweise Feldverstärkung aus. Dieser Effekt konnte experimentell bestätigt werden, indem selektiv die 20 nm- oder 60 nm-Partikel von Goldnanolinsen mit Farbstoffen markiert und die resultierenden Raman-Signale verglichen wurden. Ein mit Alkingruppen markiertes Protein ist ortsselektiv in Silbernanolinsen integriert worden. Es war möglich, das für das Alkin charakteristische oberflächenverstärkte Raman-Signal im Spektrum einer einzelnen Nanolinse und damit eines einzelnen Proteins zu beobachten. Bei den Messungen mit Silbernanolinsen sind für amorphe Kohlenstoffspezies charakterstische Hintergrundsignale beobachtet worden. Durch zeitabhängige Messungen konnte gezeigt werden, dass diese Spezies erst in situ gebildet werden. KW - DNA origami KW - gold nanoparticles KW - silver nanoparticles KW - SERS KW - self-assembly KW - plasmonics KW - nanolenses KW - DNA-Origami KW - Goldnanopartikel KW - Silbernanopartikel KW - SERS KW - Selbstassemblierung KW - Plasmonik KW - Nanolinsen Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409002 ER - TY - THES A1 - Sarhan, Radwan Mohamed T1 - Plasmon-driven photocatalytic reactions monitored by surface-enhanced Raman spectroscopy T1 - Plasmonen-getriebene photokatalytische Reaktionen, gemessen mittels oberflächenverstärkter Raman-Spektroskopie N2 - Plasmonic metal nanostructures can be tuned to efficiently interact with light, converting the photons into energetic charge carriers and heat. Therefore, the plasmonic nanoparticles such as gold and silver nanoparticles act as nano-reactors, where the molecules attached to their surfaces benefit from the enhanced electromagnetic field along with the generated energetic charge carriers and heat for possible chemical transformations. Hence, plasmonic chemistry presents metal nanoparticles as a unique playground for chemical reactions on the nanoscale remotely controlled by light. However, defining the elementary concepts behind these reactions represents the main challenge for understanding their mechanism in the context of the plasmonically assisted chemistry. Surface-enhanced Raman scattering (SERS) is a powerful technique employing the plasmon-enhanced electromagnetic field, which can be used for probing the vibrational modes of molecules adsorbed on plasmonic nanoparticles. In this cumulative dissertation, I use SERS to probe the dimerization reaction of 4-nitrothiophenol (4-NTP) as a model example of plasmonic chemistry. I first demonstrate that plasmonic nanostructures such as gold nanotriangles and nanoflowers have a high SERS efficiency, as evidenced by probing the vibrations of the rhodamine dye R6G and the 4-nitrothiophenol 4-NTP. The high signal enhancement enabled the measurements of SERS spectra with a short acquisition time, which allows monitoring the kinetics of chemical reactions in real time. To get insight into the reaction mechanism, several time-dependent SERS measurements of the 4-NTP have been performed under different laser and temperature conditions. Analysis of the results within a mechanistic framework has shown that the plasmonic heating significantly enhances the reaction rate, while the reaction is probably initiated by the energetic electrons. The reaction was shown to be intensity-dependent, where a certain light intensity is required to drive the reaction. Finally, first attempts to scale up the plasmonic catalysis have been performed showing the necessity to achieve the reaction threshold intensity. Meanwhile, the induced heat needs to quickly dissipate from the reaction substrate, since otherwise the reactants and the reaction platform melt. This study might open the way for further work seeking the possibilities to quickly dissipate the plasmonic heat generated during the reaction and therefore, scaling up the plasmonic catalysis. N2 - Plasmonische Metallnanostrukturen können so eingestellt werden, dass sie effizient mit Licht interagieren, Photonen in energetische Ladungsträger und wärmeenergie umwandeln. Aus diesem Grund wirken plasmonische Nanopartikel wie Gold und Silbernanopartikel als Nanoreaktoren, wenn Moleküle mit deren Oberfläche verbunden sind. Durch das verstärkte elektromagnetische Feld und den somit erzeugten energetischen Ladungsträgern und der wärmeenergie können chemische Umwandlungen entstehen. Das bedeutet, in der plasmonischen Chemie sind Metallnanopartikel ein einzigartiges system um chemische Reaktionen auf der Nanoebene unter der Kontrolle von Licht verfolgen zu können. Die Herausforderung liegt darin, grundlegende Konzepte hinter den Reaktionen für das mechanistische Verständnis in Bezug auf die plasmonisch unterstützte Chemie zu definieren. Oberflächenverstärkte Raman Streuung (SERS) ist eine leistungsfähige Technik, die sich mit plasmonverstärkten, elektromagnetischen Feldern beschäftigt, um die Vibrationsmoden von den auf den Nanopartikeln absorbierten Molekülen zu analysieren. In dieser kumulativen Dissertation wurde die Dimerisierung von 4-Nitrothiophenol (4-NTP) mittels SERS als Beispielreaktion für die plasmonische Chemie untersucht. Aufgrund der hohen SERS Signalverstärkung konnten die SERS Spektren mit einer kurzen Erfassungszeit aufgenommen werden, was die Untersuchung der Kinetik und des Reaktionsmechanismus in Echtzeit ermöglichte. KW - plasmonic chemistry KW - plasmonische Chemie KW - heiße Elektronen KW - SERS KW - SERS Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-433304 ER -