TY - JOUR A1 - Grimm, Christiane A1 - Meyer, Thomas A1 - Czapla, Sylvia A1 - Nikolaus, Jörg A1 - Scheidt, Holger A. A1 - Vogel, Alexander A1 - Herrmann, Andreas A1 - Wessig, Pablo A1 - Huster, Daniel A1 - Müller, Peter T1 - Structure and dynamics of molecular rods in membranes application of a Spin-Labeled rod JF - Chemistry - a European journal N2 - Molecular rods consisting of a hydrophobic backbone and terminally varying functional groups have been synthesized for applications for the functionalization of membranes. In the present study, we employ a spin-labeled analogue of a recently described new class of molecular rods to characterize their dynamic interactions with membranes. By using the different approaches of ESR and NMR spectroscopy, we show that the spin moiety of the membrane-embedded spin-labeled rod is localized in the upper chain/glycerol region of membranes of different compositions. The rod is embedded within the membrane in a tilted orientation to adjust for the varying hydrophobic thicknesses of these bilayers. This orientation does not perturb the membrane structure. The water solubility of the rod is increased significantly in the presence of certain cyclodextrins. These cyclodextrins also allow the rods to be extracted from the membrane and incorporated into preformed membranes. The latter will improve the future applications of these rods in cellular systems as stable membrane-associated anchors for the functionalization of membrane surfaces. KW - hydrophobic mismatch KW - membranes KW - molecular rods KW - phospholipids KW - spiro compounds Y1 - 2013 U6 - https://doi.org/10.1002/chem.201202500 SN - 0947-6539 VL - 19 IS - 8 SP - 2703 EP - 2710 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mertens, Monique A1 - Hilsch, Malte A1 - Haralampiev, Ivan A1 - Volkmer, Rudolf A1 - Wessig, Pablo A1 - Müller, Peter T1 - Synthesis and characterization of a new Bifunctionalized, Fluorescent, and Amphiphilic molecule for recruiting SH-Containing molecules to membranes JF - ChemBioChem N2 - This study describes the synthesis and characterization of an amphiphilic construct intended to recruit SH-containing molecules to membranes. The construct consists of 1)an aliphatic chain to enable anchoring within membranes, 2)a maleimide moiety to react with the sulfhydryl group of a soluble (bio)molecule, and 3)a fluorescence moiety to allow the construct to be followed by fluorescence spectroscopy and microscopy. It is shown that the construct can be incorporated into preformed membranes, thus allowing application of the approach with biological membranes. The close proximity between the fluorophore and the maleimide moiety within the construct causes fluorescence quenching. This allows monitoring of the reaction with SH-containing molecules by measurement of increases in fluorescence intensity and lifetime. Notably, the construct distributes into laterally ordered membrane domains of lipid vesicles, which is probably triggered by the length of its membrane anchor. The advantages of the new construct can be employed for several biological, biotechnological, and medicinal applications. KW - DBD dyes KW - fatty acids KW - liposomes KW - maleimide KW - membranes KW - palmitoylation Y1 - 2018 U6 - https://doi.org/10.1002/cbic.201800268 SN - 1439-4227 SN - 1439-7633 VL - 19 IS - 15 SP - 1643 EP - 1647 PB - Wiley-VCH CY - Weinheim ER -