TY - JOUR A1 - Rohn, Isabelle A1 - Raschke, Stefanie A1 - Aschner, Michael A1 - Tuck, Simon A1 - Kuehnelt, Doris A1 - Kipp, Anna Patricia A1 - Schwerdtle, Tanja A1 - Bornhorst, Julia T1 - Treatment of caenorhabditis elegans with small selenium species enhances antioxidant defense systems JF - Molecular nutrition & food research : bioactivity, chemistry, immunology, microbiology, safety, technology N2 - ScopeSmall selenium (Se) species play a key role in Se metabolism and act as dietary sources of the essential trace element. However, they are redox-active and trigger pro- and antioxidant responses. As health outcomes are strongly species-dependent, species-specific characteristics of Se compounds are tested in vivo. Methods and resultsIn the model organism Caenorhabditis elegans (C. elegans), immediate and sustained effects of selenite, selenomethionine (SeMet), and Se-methylselenocysteine (MeSeCys) are studied regarding their bioavailability, incorporation into proteins, as well as modulation of the cellular redox status. While all tested Se compounds are bioavailable, only SeMet persistently accumulates and is non-specifically incorporated into proteins. However, the protection toward chemically-induced formation of reactive species is independent of the applied Se compound. Increased thioredoxin reductase (TXNRD) activity and changes in mRNA expression levels of antioxidant proteins indicate the activation of cellular defense mechanisms. However, in txnrd-1 deletion mutants, no protective effects of the Se species are observed anymore, which is also reflected by differential gene expression data. ConclusionSe species protect against chemically-induced reactive species formation. The identified immediate and sustained systemic effects of Se species give rise to speculations on possible benefits facing subsequent periods of inadequate Se intake. KW - antioxidant defense systems KW - caenorhabditis elegans KW - selenium KW - oxidative stress KW - selenoproteins Y1 - 2019 U6 - https://doi.org/10.1002/mnfr.201801304 SN - 1613-4125 SN - 1613-4133 VL - 63 IS - 9 PB - Wiley CY - Hoboken ER - TY - GEN A1 - Schwarz, Maria A1 - Lossow, Kristina A1 - Kopp, Johannes F. A1 - Schwerdtle, Tanja A1 - Kipp, Anna Patricia T1 - Crosstalk of Nrf2 with the Trace Elements Selenium, Iron, Zinc, and Copper T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Trace elements, like Cu, Zn, Fe, or Se, are important for the proper functioning of antioxidant enzymes. However, in excessive amounts, they can also act as pro-oxidants. Accordingly, trace elements influence redox-modulated signaling pathways, such as the Nrf2 pathway. Vice versa, Nrf2 target genes belong to the group of transport and metal binding proteins. In order to investigate whether Nrf2 directly regulates the systemic trace element status, we used mice to study the effect of a constitutive, whole-body Nrf2 knockout on the systemic status of Cu, Zn, Fe, and Se. As the loss of selenoproteins under Se-deprived conditions has been described to further enhance Nrf2 activity, we additionally analyzed the combination of Nrf2 knockout with feeding diets that provide either suboptimal, adequate, or supplemented amounts of Se. Experiments revealed that the Nrf2 knockout partially affected the trace element concentrations of Cu, Zn, Fe, or Se in the intestine, liver, and/or plasma. However, aside from Fe, the other three trace elements were only marginally modulated in an Nrf2-dependent manner. Selenium deficiency mainly resulted in increased plasma Zn levels. One putative mediator could be the metal regulatory transcription factor 1, which was up-regulated with an increasing Se supply and downregulated in Se-supplemented Nrf2 knockout mice. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1081 KW - Nrf2 KW - selenium KW - iron KW - copper KW - zinc KW - homeostasis Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472873 SN - 1866-8372 IS - 1081 ER - TY - JOUR A1 - Schwarz, Maria A1 - Lossow, Kristina A1 - Kopp, Johannes Florian A1 - Schwerdtle, Tanja A1 - Kipp, Anna Patricia T1 - Crosstalk of Nrf2 with the Trace Elements Selenium, Iron, Zinc, and Copper JF - Nutrients N2 - Trace elements, like Cu, Zn, Fe, or Se, are important for the proper functioning of antioxidant enzymes. However, in excessive amounts, they can also act as pro-oxidants. Accordingly, trace elements influence redox-modulated signaling pathways, such as the Nrf2 pathway. Vice versa, Nrf2 target genes belong to the group of transport and metal binding proteins. In order to investigate whether Nrf2 directly regulates the systemic trace element status, we used mice to study the effect of a constitutive, whole-body Nrf2 knockout on the systemic status of Cu, Zn, Fe, and Se. As the loss of selenoproteins under Se-deprived conditions has been described to further enhance Nrf2 activity, we additionally analyzed the combination of Nrf2 knockout with feeding diets that provide either suboptimal, adequate, or supplemented amounts of Se. Experiments revealed that the Nrf2 knockout partially affected the trace element concentrations of Cu, Zn, Fe, or Se in the intestine, liver, and/or plasma. However, aside from Fe, the other three trace elements were only marginally modulated in an Nrf2-dependent manner. Selenium deficiency mainly resulted in increased plasma Zn levels. One putative mediator could be the metal regulatory transcription factor 1, which was up-regulated with an increasing Se supply and downregulated in Se-supplemented Nrf2 knockout mice. KW - Nrf2 KW - selenium KW - iron KW - copper KW - zinc KW - homeostasis Y1 - 2019 U6 - https://doi.org/10.3390/nu11092112 SN - 2072-6643 VL - 11 IS - 9 PB - MDPI CY - Basel ER -