TY - GEN A1 - Pearce, Warren A1 - Özkula, Suay M. A1 - Greene, Amanda K. A1 - Teeling, Lauren A1 - Bansard, Jennifer S. A1 - Omena, Janna Joceli A1 - Rabello, Elaine Teixeira T1 - Visual cross-platform analysis BT - Digital methods to research social media images T2 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe N2 - Analysis of social media using digital methods is a flourishing approach. However, the relatively easy availability of data collected via platform application programming interfaces has arguably led to the predominance of single-platform research of social media. Such research has also privileged the role of text in social media analysis, as a form of data that is more readily gathered and searchable than images. In this paper, we challenge both of these prevailing forms of social media research by outlining a methodology for visual cross-platform analysis (VCPA), defined as the study of still and moving images across two or more social media platforms. Our argument contains three steps. First, we argue that cross-platform analysis addresses a gap in research methods in that it acknowledges the interplay between a social phenomenon under investigation and the medium within which it is being researched, thus illuminating the different affordances and cultures of web platforms. Second, we build on the literature on multimodal communication and platform vernacular to provide a rationale for incorporating the visual into cross-platform analysis. Third, we reflect on an experimental cross-platform analysis of images within social media posts (n = 471,033) used to communicate climate change to advance different modes of macro- and meso-levels of analysis that are natively visual: image-text networks, image plots and composite images. We conclude by assessing the research pathways opened up by VCPA, delineating potential contributions to empirical research and theory and the potential impact on practitioners of social media communication. T3 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe - 199 KW - research methodology KW - visual analysis KW - social media KW - climate change Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515539 SN - 1867-5808 IS - 2 ER - TY - GEN A1 - Palmer, Matthew D. A1 - Gregory, Jonathan A1 - Bagge, Meike A1 - Calvert, Daley A1 - Hagedoorn, Jan Marius A1 - Howard, Tom A1 - Klemann, Volker A1 - Lowe, Jason A. A1 - Roberts, Chris A1 - Slangen, Aimee B. A. A1 - Spada, Giorgio T1 - Exploring the drivers of global and local sea‐level change over the 21st century and beyond T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - We present a new set of global and local sea‐level projections at example tide gauge locations under the RCP2.6, RCP4.5, and RCP8.5 emissions scenarios. Compared to the CMIP5‐based sea‐level projections presented in IPCC AR5, we introduce a number of methodological innovations, including (i) more comprehensive treatment of uncertainties, (ii) direct traceability between global and local projections, and (iii) exploratory extended projections to 2300 based on emulation of individual CMIP5 models. Combining the projections with observed tide gauge records, we explore the contribution to total variance that arises from sea‐level variability, different emissions scenarios, and model uncertainty. For the period out to 2300 we further breakdown the model uncertainty by sea‐level component and consider the dependence on geographic location, time horizon, and emissions scenario. Our analysis highlights the importance of local variability for sea‐level change in the coming decades and the potential value of annual‐to‐decadal predictions of local sea‐level change. Projections to 2300 show a substantial degree of committed sea‐level rise under all emissions scenarios considered and highlight the reduced future risk associated with RCP2.6 and RCP4.5 compared to RCP8.5. Tide gauge locations can show large ( > 50%) departures from the global average, in some cases even reversing the sign of the change. While uncertainty in projections of the future Antarctic ice dynamic response tends to dominate post‐2100, we see substantial differences in the breakdown of model variance as a function of location, time scale, and emissions scenario. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1353 KW - climate change KW - CMIP5 models KW - RCP scenarios KW - sea-level projections KW - tide gauge observations Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-549881 SN - 1866-8372 IS - 9 ER - TY - GEN A1 - Huber, Veronika A1 - Krummenauer, Linda A1 - Peña-Ortiz, Cristina A1 - Lange, Stefan A1 - Gasparrini, Antonio A1 - Vicedo-Cabrera, Ana Maria A1 - Garcia-Herrera, Ricardo A1 - Frieler, Katja T1 - Temperature-related excess mortality in German cities at 2 °C and higher degrees of global warming T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Background: Investigating future changes in temperature-related mortality as a function of global mean temperature (GMT) rise allows for the evaluation of policy-relevant climate change targets. So far, only few studies have taken this approach, and, in particular, no such assessments exist for Germany, the most populated country of Europe. Methods: We assess temperature-related mortality in 12 major German cities based on daily time-series of all-cause mortality and daily mean temperatures in the period 1993-2015, using distributed-lag non-linear models in a two-stage design. Resulting risk functions are applied to estimate excess mortality in terms of GMT rise relative to pre-industrial levels, assuming no change in demographics or population vulnerability. Results: In the observational period, cold contributes stronger to temperature-related mortality than heat, with overall attributable fractions of 5.49% (95%CI: 3.82-7.19) and 0.81% (95%CI: 0.72-0.89), respectively. Future projections indicate that this pattern could be reversed under progressing global warming, with heat-related mortality starting to exceed cold-related mortality at 3 degrees C or higher GMT rise. Across cities, projected net increases in total temperature-related mortality were 0.45% (95%CI: -0.02-1.06) at 3 degrees C, 1.53% (95%CI: 0.96-2.06) at 4 degrees C, and 2.88% (95%CI: 1.60-4.10) at 5 degrees C, compared to today's warming level of 1 degrees C. By contrast, no significant difference was found between projected total temperature-related mortality at 2 degrees C versus 1 degrees C of GMT rise. Conclusions: Our results can inform current adaptation policies aimed at buffering the health risks from increased heat exposure under climate change. They also allow for the evaluation of global mitigation efforts in terms of local health benefits in some of Germany's most populated cities. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1430 KW - temperature-related mortality KW - climate change KW - Future projections KW - Germany KW - global mean temperature Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-516511 SN - 1866-8372 ER - TY - GEN A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Pestryakova, Luidmila Agafyevna A1 - Epp, Laura Saskia A1 - Herzschuh, Ulrike T1 - Phylogenetic diversity and environment form assembly rules for Arctic diatom genera BT - a study on recent and ancient sedimentary DNA T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Aim This study investigates taxonomic and phylogenetic diversity in diatom genera to evaluate assembly rules for eukaryotic microbes across the Siberian tree line. We first analysed how phylogenetic distance relates to taxonomic richness and turnover. Second, we used relatedness indices to evaluate if environmental filtering or competition influences the assemblies in space and through time. Third, we used distance-based ordination to test which environmental variables shape diatom turnover. Location Yakutia and Taymyria, Russia: we sampled 78 surface sediments and a sediment core, extending to 7,000 years before present, to capture the forest-tundra transition in space and time respectively. Taxon Arctic freshwater diatoms. Methods We applied metabarcoding to retrieve diatom diversity from surface and core sedimentary DNA. The taxonomic assignment binned sequence types (lineages) into genera and created taxonomic (abundance of lineages within different genera) and phylogenetic datasets (phylogenetic distances of lineages within different genera). Results Contrary to our expectations, we find a unimodal relationship between phylogenetic distance and richness in diatom genera. We discern a positive relationship between phylogenetic distance and taxonomic turnover in spatially and temporally distributed diatom genera. Furthermore, we reveal positive relatedness indices in diatom genera across the spatial environmental gradient and predominantly in time slices at a single location, with very few exceptions assuming effects of competition. Distance-based ordination of taxonomic and phylogenetic turnover indicates that lake environment variables, like HCO3- and water depth, largely explain diatom turnover. Main conclusion Phylogenetic and abiotic assembly rules are important in understanding the regional assembly of diatom genera across lakes in the Siberian tree line ecotone. Using a space-time approach we are able to exclude the influence of geography and elucidate that lake environmental variables primarily shape the assemblies. We conclude that some diatom genera have greater capabilities to adapt to environmental changes, whereas others will be putatively replaced or lost due to the displacement of the Arctic tundra biome under recent global warming. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1442 KW - ancient sedimentary DNA KW - Arctic lakes KW - assembly rules KW - climate change KW - diatoms KW - environmental filtering KW - phylogenetic diversity KW - Siberian tree line Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-515485 SN - 1866-8372 IS - 5 ER - TY - GEN A1 - Mtilatila, Lucy Mphatso Ng'ombe A1 - Bronstert, Axel A1 - Vormoor, Klaus Josef T1 - Temporal evaluation and projections of meteorological droughts in the Greater Lake Malawi Basin, Southeast Africa T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The study examined the potential future changes of drought characteristics in the Greater Lake Malawi Basin in Southeast Africa. This region strongly depends on water resources to generate electricity and food. Future projections (considering both moderate and high emission scenarios) of temperature and precipitation from an ensemble of 16 bias-corrected climate model combinations were blended with a scenario-neutral response surface approach to analyses changes in: (i) the meteorological conditions, (ii) the meteorological water balance, and (iii) selected drought characteristics such as drought intensity, drought months, and drought events, which were derived from the Standardized Precipitation and Evapotranspiration Index. Changes were analyzed for a near-term (2021–2050) and far-term period (2071–2100) with reference to 1976–2005. The effect of bias-correction (i.e., empirical quantile mapping) on the ability of the climate model ensemble to reproduce observed drought characteristics as compared to raw climate projections was also investigated. Results suggest that the bias-correction improves the climate models in terms of reproducing temperature and precipitation statistics but not drought characteristics. Still, despite the differences in the internal structures and uncertainties that exist among the climate models, they all agree on an increase of meteorological droughts in the future in terms of higher drought intensity and longer events. Drought intensity is projected to increase between +25 and +50% during 2021–2050 and between +131 and +388% during 2071–2100. This translates into +3 to +5, and +7 to +8 more drought months per year during both periods, respectively. With longer lasting drought events, the number of drought events decreases. Projected droughts based on the high emission scenario are 1.7 times more severe than droughts based on the moderate scenario. That means that droughts in this region will likely become more severe in the coming decades. Despite the inherent high uncertainties of climate projections, the results provide a basis in planning and (water-)managing activities for climate change adaptation measures in Malawi. This is of particular relevance for water management issues referring hydro power generation and food production, both for rain-fed and irrigated agriculture. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1287 KW - meteorological drought KW - drought intensity KW - climate change KW - drought events KW - Lake Malawi KW - Shire River KW - drought projections KW - South-Eastern Africa Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-571284 SN - 1866-8372 IS - 1287 ER - TY - GEN A1 - Oguntunde, Philip G. A1 - Abiodun, Babatunde Joseph A1 - Lischeid, Gunnar A1 - Abatan, Abayomi A. T1 - Droughts projection over the Niger and Volta River basins of West Africa at specific global warming levels T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - This study investigates possible impacts of four global warming levels (GWLs: GWL1.5, GWL2.0, GWL2.5, and GWL3.0) on drought characteristics over Niger River basin (NRB) and Volta River basin (VRB). Two drought indices-Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI)-were employed in characterizing droughts in 20 multi-model simulation outputs from the Coordinated Regional Climate Downscaling Experiment (CORDEX). The performance of the simulation in reproducing basic hydro-climatological features and severe drought characteristics (i.e., magnitude and frequency) in the basins were evaluated. The projected changes in the future drought frequency were quantified and compared under the four GWLs for two climate forcing scenarios (RCP8.5 and RCP4.5). The regional climate model (RCM) ensemble gives a realistic simulation of historical hydro-climatological variables needed to calculate the drought indices. With SPEI, the simulation ensemble projects an increase in the magnitude and frequency of severe droughts over both basins (NRB and VRB) at all GWLs, but the increase, which grows with the GWLs, is higher over NRB than over VRB. More than 75% of the simulations agree on the projected increase at GWL1.5 and all simulations agree on the increase at higher GWLs. With SPI, the projected changes in severe drought is weaker and the magnitude remains the same at all GWLs, suggesting that SPI projection may underestimate impacts of the GWLs on the intensity and severity of future drought. The results of this study have application in mitigating impact of global warming on future drought risk over the regional water systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1203 KW - climate change KW - drought index KW - global warming levels KW - river basins KW - West Africa KW - CORDEX data Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-525943 SN - 1866-8372 IS - 13 ER - TY - GEN A1 - Marzetz, Vanessa A1 - Spijkerman, Elly A1 - Striebel, Maren A1 - Wacker, Alexander T1 - Phytoplankton Community Responses to Interactions Between Light Intensity, Light Variations, and Phosphorus Supply T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In a changing world, phytoplankton communities face a large variety of challenges including altered light regimes. These alterations are caused by more pronounced stratification due to rising temperatures, enhanced eutrophication, and browning of lakes. Community responses toward these effects can emerge as alterations in physiology, biomass, biochemical composition, or diversity. In this study, we addressed the combined effects of changes in light and nutrient conditions on community responses. In particular, we investigated how light intensity and variability under two nutrient conditions influence (1) fast responses such as adjustments in photosynthesis, (2) intermediate responses such as pigment adaptation and (3) slow responses such as changes in community biomass and species composition. Therefore, we exposed communities consisting of five phytoplankton species belonging to different taxonomic groups to two constant and two variable light intensity treatments combined with two levels of phosphorus supply. The tested phytoplankton communities exhibited increased fast reactions of photosynthetic processes to light variability and light intensity. The adjustment of their light harvesting mechanisms via community pigment composition was not affected by light intensity, variability, or nutrient supply. However, pigment specific effects of light intensity, light variability, and nutrient supply on the proportion of the respective pigments were detected. Biomass was positively affected by higher light intensity and nutrient concentrations while the direction of the effect of variability was modulated by light intensity. Light variability had a negative impact on biomass at low, but a positive impact at high light intensity. The effects on community composition were species specific. Generally, the proportion of green algae was higher under high light intensity, whereas the cyanobacterium performed better under low light conditions. In addition to that, the diatom and the cryptophyte performed better with high nutrient supply while the green algae as well as the cyanobacterium performed better at low nutrient conditions. This shows that light intensity, light variability, and nutrient supply interactively affect communities. Furthermore, the responses are highly species and pigment specific, thus to clarify the effects of climate change a deeper understanding of the effects of light variability and species interactions within communities is important. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1109 KW - phytoplankton communities KW - light variability KW - photosynthetic rate KW - climate change KW - resource competition KW - light intensity (irradiance) KW - pigment composition KW - nutrient supply Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-491041 SN - 1866-8372 IS - 1109 ER - TY - GEN A1 - Ayzel, Georgy A1 - Izhitskiy, Alexander T1 - Climate change impact assessment on freshwater inflow into the Small Aral Sea T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - During the last few decades, the rapid separation of the Small Aral Sea from the isolated basin has changed its hydrological and ecological conditions tremendously. In the present study, we developed and validated the hybrid model for the Syr Darya River basin based on a combination of state-of-the-art hydrological and machine learning models. Climate change impact on freshwater inflow into the Small Aral Sea for the projection period 2007–2099 has been quantified based on the developed hybrid model and bias corrected and downscaled meteorological projections simulated by four General Circulation Models (GCM) for each of three Representative Concentration Pathway scenarios (RCP). The developed hybrid model reliably simulates freshwater inflow for the historical period with a Nash–Sutcliffe efficiency of 0.72 and a Kling–Gupta efficiency of 0.77. Results of the climate change impact assessment showed that the freshwater inflow projections produced by different GCMs are misleading by providing contradictory results for the projection period. However, we identified that the relative runoff changes are expected to be more pronounced in the case of more aggressive RCP scenarios. The simulated projections of freshwater inflow provide a basis for further assessment of climate change impacts on hydrological and ecological conditions of the Small Aral Sea in the 21st Century. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1071 KW - Small Aral Sea KW - hydrology KW - climate change KW - modeling KW - machine learning Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472794 SN - 1866-8372 IS - 1071 ER - TY - GEN A1 - Metin, Ayse Duha A1 - Dung, Nguyen Viet A1 - Schröter, Kai A1 - Guse, Björn A1 - Apel, Heiko A1 - Kreibich, Heidi A1 - Vorogushyn, Sergiy A1 - Merz, Bruno T1 - How do changes along the risk chain affect flood risk? T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Flood risk is impacted by a range of physical and socio-economic processes. Hence, the quantification of flood risk ideally considers the complete flood risk chain, from atmospheric processes through catchment and river system processes to damage mechanisms in the affected areas. Although it is generally accepted that a multitude of changes along the risk chain can occur and impact flood risk, there is a lack of knowledge of how and to what extent changes in influencing factors propagate through the chain and finally affect flood risk. To fill this gap, we present a comprehensive sensitivity analysis which considers changes in all risk components, i.e. changes in climate, catchment, river system, land use, assets, and vulnerability. The application of this framework to the mesoscale Mulde catchment in Germany shows that flood risk can vary dramatically as a consequence of plausible change scenarios. It further reveals that components that have not received much attention, such as changes in dike systems or in vulnerability, may outweigh changes in often investigated components, such as climate. Although the specific results are conditional on the case study area and the selected assumptions, they emphasize the need for a broader consideration of potential drivers of change in a comprehensive way. Hence, our approach contributes to a better understanding of how the different risk components influence the overall flood risk. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1067 KW - global sensitivity analysis KW - climate change KW - river floods KW - frequency KW - Europe KW - model KW - vulnerability KW - adaptation KW - strategies KW - catchment Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468790 SN - 1866-8372 IS - 1067 ER - TY - GEN A1 - Epp, Laura Saskia A1 - Kruse, Stefan A1 - Kath, Nadja J. A1 - Stoof-Leichsenring, Kathleen Rosemarie A1 - Tiedemann, Ralph A1 - Pestryakova, Luidmila Agafyevna A1 - Herzschuh, Ulrike T1 - Temporal and spatial patterns of mitochondrial haplotype and species distributions in Siberian larches inferred from ancient environmental DNA and modeling T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Changes in species' distributions are classically projected based on their climate envelopes. For Siberian forests, which have a tremendous significance for vegetation-climate feedbacks, this implies future shifts of each of the forest-forming larch (Larix) species to the north-east. However, in addition to abiotic factors, reliable projections must assess the role of historical biogeography and biotic interactions. Here, we use sedimentary ancient DNA and individual-based modelling to investigate the distribution of larch species and mitochondrial haplotypes through space and time across the treeline ecotone on the southern Taymyr peninsula, which at the same time presents a boundary area of two larch species. We find spatial and temporal patterns, which suggest that forest density is the most influential driver determining the precise distribution of species and mitochondrial haplotypes. This suggests a strong influence of competition on the species' range shifts. These findings imply possible climate change outcomes that are directly opposed to projections based purely on climate envelopes. Investigations of such fine-scale processes of biodiversity change through time are possible using paleoenvironmental DNA, which is available much more readily than visible fossils and can provide information at a level of resolution that is not reached in classical palaeoecology. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1052 KW - ecological genetics KW - ecological modelling KW - palaeoecology KW - plant ecology KW - climate change KW - introgression KW - temperature KW - treeline KW - vegetation KW - mitochondrial haplotypes KW - Siberian larch KW - larch species KW - range shifts KW - vegetation-climate feedbacks KW - ecosystems KW - impacts KW - dynamics Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-468352 SN - 1866-8372 IS - 1052 ER - TY - GEN A1 - Smith, Taylor A1 - Bookhagen, Bodo T1 - Assessing Multi-Temporal Snow-Volume Trends in High Mountain Asia From 1987 to 2016 Using High-Resolution Passive Microwave Data T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - High Mountain Asia (HMA) is dependent upon both the amount and timing of snow and glacier meltwater. Previous model studies and coarse resolution (0.25° × 0.25°, ∼25 km × 25 km) passive microwave assessments of trends in the volume and timing of snowfall, snowmelt, and glacier melt in HMA have identified key spatial and seasonal heterogeneities in the response of snow to changes in regional climate. Here we use recently developed, continuous, internally consistent, and high-resolution passive microwave data (3.125 km × 3.125 km, 1987–2016) from the special sensor microwave imager instrument family to refine and extend previous estimates of changes in the snow regime of HMA. We find an overall decline in snow volume across HMA; however, there exist spatially contiguous regions of increasing snow volume—particularly during the winter season in the Pamir, Karakoram, Hindu Kush, and Kunlun Shan. Detailed analysis of changes in snow-volume trends through time reveal a large step change from negative trends during the period 1987–1997, to much more positive trends across large regions of HMA during the periods 1997–2007 and 2007–2016. We also find that changes in high percentile monthly snow-water volume exhibit steeper trends than changes in low percentile snow-water volume, which suggests a reduction in the frequency of high snow-water volumes in much of HMA. Regions with positive snow-water storage trends generally correspond to regions of positive glacier mass balances. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1020 KW - snow KW - glacier KW - climate change KW - passive microwave KW - special sensor microwave imager KW - special sensor microwave imager/sounder Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-484176 SN - 1866-8372 IS - 1020 ER - TY - GEN A1 - Jongejans, Loeka L. A1 - Strauss, Jens A1 - Lenz, Josefine A1 - Peterse, Francien A1 - Mangelsdorf, Kai A1 - Fuchs, Matthias A1 - Grosse, Guido T1 - Organic matter characteristics in yedoma and thermokarst deposits on Baldwin Peninsula, west Alaska T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - As Arctic warming continues and permafrost thaws, more soil and sedimentary organic matter (OM) will be decomposed in northern high latitudes. Still, uncertainties remain in the quality of the OM and the size of the organic carbon (OC) pools stored in different deposit types of permafrost landscapes. This study presents OM data from deep permafrost and lake deposits on the Baldwin Peninsula which is located in the southern portion of the continuous permafrost zone in west Alaska. Sediment samples from yedoma and drained thermokarst lake basin (DTLB) deposits as well as thermokarst lake sediments were analyzed for cryostratigraphical and biogeochemical parameters and their lipid biomarker composition to identify the below-ground OC pool size and OM quality of ice-rich permafrost on the Baldwin Peninsula. We provide the first detailed characterization of yedoma deposits on Baldwin Peninsula. We show that three-quarters of soil OC in the frozen deposits of the study region (total of 68 Mt) is stored in DTLB deposits (52 Mt) and one-quarter in the frozen yedoma deposits (16 Mt). The lake sediments contain a relatively small OC pool (4 Mt), but have the highest volumetric OC content (93 kgm(-3)) compared to the DTLB (35 kgm(-3)) and yedoma deposits (8 kgm(-3)), largely due to differences in the ground ice content. The biomarker analysis indicates that the OM in both yedoma and DTLB deposits is mainly of terrestrial origin. Nevertheless, the relatively high carbon preference index of plant leaf waxes in combination with a lack of a degradation trend with depth in the yedoma deposits indi-cates that OM stored in yedoma is less degraded than that stored in DTLB deposits. This suggests that OM in yedoma has a higher potential for decomposition upon thaw, despite the relatively small size of this pool. These findings show that the use of lipid biomarker analysis is valuable in the assessment of the potential future greenhouse gas emissions from thawing permafrost, especially because this area, close to the discontinuous permafrost boundary, is projected to thaw substantially within the 21st century. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 985 KW - northern seward peninsula KW - deep permafrost carbon KW - Laptev Sea region KW - Arctic Siberia KW - climate change KW - gas production KW - Lena delta KW - soils KW - release KW - tundra Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446250 SN - 1866-8372 IS - 20 SP - 6033 EP - 6048 ER - TY - GEN A1 - Alter, S. Elizabeth A1 - Meyer, Matthias A1 - Post, Klaas A1 - Czechowski, Paul A1 - Gravlund, Peter A1 - Gaines, Cork A1 - Rosenbaum, Howard C. A1 - Kaschner, Kristin A1 - Turvey, Samuel T. A1 - van der Plicht, Johannes A1 - Shapiro, Beth A1 - Hofreiter, Michael T1 - Climate impacts on transocean dispersal and habitat in gray whales from the Pleistocene to 2100 T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Arctic animals face dramatic habitat alteration due to ongoing climate change. Understanding how such species have responded to past glacial cycles can help us forecast their response to today's changing climate. Gray whales are among those marine species likely to be strongly affected by Arctic climate change, but a thorough analysis of past climate impacts on this species has been complicated by lack of information about an extinct population in the Atlantic. While little is known about the history of Atlantic gray whales or their relationship to the extant Pacific population, the extirpation of the Atlantic population during historical times has been attributed to whaling. We used a combination of ancient and modern DNA, radiocarbon dating and predictive habitat modelling to better understand the distribution of gray whales during the Pleistocene and Holocene. Our results reveal that dispersal between the Pacific and Atlantic was climate dependent and occurred both during the Pleistocene prior to the last glacial period and the early Holocene immediately following the opening of the Bering Strait. Genetic diversity in the Atlantic declined over an extended interval that predates the period of intensive commercial whaling, indicating this decline may have been precipitated by Holocene climate or other ecological causes. These first genetic data for Atlantic gray whales, particularly when combined with predictive habitat models for the year 2100, suggest that two recent sightings of gray whales in the Atlantic may represent the beginning of the expansion of this species' habitat beyond its currently realized range. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 965 KW - ancient DNA KW - climate change KW - last glacial maximum KW - marine mammal Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-438920 SN - 1866-8372 IS - 965 SP - 1510 EP - 1522 ER - TY - GEN A1 - Triet, Nguyen Van Khanh A1 - Dung, Nguyen Viet A1 - Merz, Bruno A1 - Apel, Heiko T1 - Towards risk-based flood management in highly productive paddy rice cultivation BT - concept development and application to the Mekong Delta T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Flooding is an imminent natural hazard threatening most river deltas, e.g. the Mekong Delta. An appropriate flood management is thus required for a sustainable development of the often densely populated regions. Recently, the traditional event-based hazard control shifted towards a risk management approach in many regions, driven by intensive research leading to new legal regulation on flood management. However, a large-scale flood risk assessment does not exist for the Mekong Delta. Particularly, flood risk to paddy rice cultivation, the most important economic activity in the delta, has not been performed yet. Therefore, the present study was developed to provide the very first insight into delta-scale flood damages and risks to rice cultivation. The flood hazard was quantified by probabilistic flood hazard maps of the whole delta using a bivariate extreme value statistics, synthetic flood hydrographs, and a large-scale hydraulic model. The flood risk to paddy rice was then quantified considering cropping calendars, rice phenology, and harvest times based on a time series of enhanced vegetation index (EVI) derived from MODIS satellite data, and a published rice flood damage function. The proposed concept provided flood risk maps to paddy rice for the Mekong Delta in terms of expected annual damage. The presented concept can be used as a blueprint for regions facing similar problems due to its generic approach. Furthermore, the changes in flood risk to paddy rice caused by changes in land use currently under discussion in the Mekong Delta were estimated. Two land-use scenarios either intensifying or reducing rice cropping were considered, and the changes in risk were presented in spatially explicit flood risk maps. The basic risk maps could serve as guidance for the authorities to develop spatially explicit flood management and mitigation plans for the delta. The land-use change risk maps could further be used for adaptive risk management plans and as a basis for a cost-benefit of the discussed land-use change scenarios. Additionally, the damage and risks maps may support the recently initiated agricultural insurance programme in Vietnam. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 931 KW - climate change KW - hazard analysis KW - sea level KW - Tho city KW - Vietnam KW - damage KW - uncertainty KW - models KW - floodplains KW - hydrology Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446032 SN - 1866-8372 IS - 931 SP - 2859 EP - 2876 ER - TY - GEN A1 - Bansard, Jennifer S. A1 - Pattberg, Philipp H. A1 - Widerberg, Oscar T1 - Cities to the rescue? BT - Assessing the performance of transnational municipal networks in global climate governance T2 - Postprints der Universität Potsdam Wirtschafts- und Sozialwissenschaftliche Reihe N2 - Despite the proliferation and promise of subnational climate initiatives, the institutional architecture of transnational municipal networks (TMNs) is not well understood. With a view to close this research gap, the article empirically assesses the assumption that TMNs are a viable substitute for ambitious international action under the United Nations Framework Convention on Climate Change (UNFCCC). It addresses the aggregate phenomenon in terms of geographical distribution, central players, mitigation ambition and monitoring provisions. Examining thirteen networks, it finds that membership in TMNs is skewed toward Europe and North America while countries from the Global South are underrepresented; that only a minority of networks commit to quantified emission reductions and that these are not more ambitious than Parties to the UNFCCC; and finally that the monitoring provisions are fairly limited. In sum, the article shows that transnational municipal networks are not (yet) the representative, ambitious and transparent player they are thought to be. T3 - Zweitveröffentlichungen der Universität Potsdam : Wirtschafts- und Sozialwissenschaftliche Reihe - 105 KW - climate change KW - cities and regions KW - urban politics KW - transnational networks Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429806 SN - 1867-5808 IS - 105 SP - 229 EP - 246 ER - TY - GEN A1 - Unterberger, Christian A1 - Hudson, Paul A1 - Botzen, W. J. Wouter A1 - Schroeer, Katharina A1 - Steininger, Karl W. T1 - Future public sector flood risk and risk sharing arrangements BT - an assessment for Austria T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Climate change, along with socio-economic development, will increase the economic impacts of floods. While the factors that influence flood risk to private property have been extensively studied, the risk that natural disasters pose to public infrastructure and the resulting implications on public sector budgets, have received less attention. We address this gap by developing a two-staged model framework, which first assesses the flood risk to public infrastructure in Austria. Combining exposure and vulnerability information at the building level with inundation maps, we project an increase in riverine flood damage, which progressively burdens public budgets. Second, the risk estimates are integrated into an insurance model, which analyzes three different compensation arrangements in terms of the monetary burden they place on future governments' budgets and the respective volatility of payments. Formalized insurance compensation arrangements offer incentives for risk reduction measures, which lower the burden on public budgets by reducing the vulnerability of buildings that are exposed to flooding. They also significantly reduce the volatility of payments and thereby improve the predictability of flood damage expenditures. These features indicate that more formalized insurance arrangements are an improvement over the purely public compensation arrangement currently in place in Austria. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 634 KW - climate change KW - adaptation KW - flood risk KW - insurance KW - public sector KW - risk reduction Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424629 SN - 1866-8372 IS - 634 ER - TY - GEN A1 - Schneider, Birgit A1 - Walsh, Lynda T1 - The politics of zoom BT - Problems with downscaling climate visualizations T2 - Postprints der Universität Potsdam Philosophische Reihe N2 - Following the mandate in the Paris Agreement for signatories to provide “climate services” to their constituents, “downscaled” climate visualizations are proliferating. But the process of downscaling climate visualizations does not neutralize the political problems with their synoptic global sources—namely, their failure to empower communities to take action and their replication of neoliberal paradigms of globalization. In this study we examine these problems as they apply to interactive climate‐visualization platforms, which allow their users to localize global climate information to support local political action. By scrutinizing the political implications of the “zoom” tool from the perspective of media studies and rhetoric, we add to perspectives of cultural cartography on the issue of scaling from our fields. Namely, we break down the cinematic trope of “zooming” to reveal how it imports the political problems of synopticism to the level of individual communities. As a potential antidote to the politics of zoom, we recommend a downscaling strategy of connectivity, which associates rather than reduces situated views of climate to global ones. T3 - Zweitveröffentlichungen der Universität Potsdam : Philosophische Reihe - 159 KW - climate change KW - climate services KW - climate visualization KW - connectivity KW - downscaling KW - spherical KW - synopticism KW - zoom Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-424819 SN - 1866-8380 IS - 159 ER - TY - GEN A1 - Battarbee, Richard W. A1 - Lamb, Henry F. A1 - Bennett, Keith A1 - Edwards, Mary A1 - Bjune, Anne E. A1 - Kaland, Peter E. A1 - Berglund, Björn E. A1 - Lotter, André F. A1 - Seppä, Heikki A1 - Willis, Kathy J. A1 - Herzschuh, Ulrike A1 - Birks, Hilary H. T1 - John Birks BT - pioneer in quantitative palaeoecology T2 - The Holocene N2 - We describe the career of John Birks as a pioneering scientist who has, over a career spanning five decades, transformed palaeoecology from a largely descriptive to a rigorous quantitative science relevant to contemporary questions in ecology and environmental change. We review his influence on students and colleagues not only at Cambridge and Bergen Universities, his places of primary employment, but also on individuals and research groups in Europe and North America. We also introduce the collection of papers that we have assembled in his honour. The papers are written by his former students and close colleagues and span many of the areas of palaeoecology to which John himself has made major contributions. These include the relationship between ecology and palaeoecology, late-glacial and Holocene palaeoecology, ecological succession, climate change and vegetation history, the role of palaeoecological techniques in reconstructing and understanding the impact of human activity on terrestrial and freshwater ecosystems and numerical analysis of multivariate palaeoecological data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 420 KW - climate change KW - ecosystem history KW - Holocene KW - late-glacial KW - numerical data analysis KW - palaeoecology KW - palaeolimnology Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-404544 ER - TY - GEN A1 - Kormann, Christoph A1 - Bronstert, Axel A1 - Francke, Till A1 - Recknagel, Thomas A1 - Gräff, Thomas T1 - Model-Based attribution of high-resolution streamflow trends in two alpine basins of Western Austria N2 - Several trend studies have shown that hydrological conditions are changing considerably in the Alpine region. However, the reasons for these changes are only partially understood and trend analyses alone are not able to shed much light. Hydrological modelling is one possible way to identify the trend drivers, i.e., to attribute the detected streamflow trends, given that the model captures all important processes causing the trends. We modelled the hydrological conditions for two alpine catchments in western Austria (a large, mostly lower-altitude catchment with wide valley plains and a nested high-altitude, glaciated headwater catchment) with the distributed, physically-oriented WaSiM-ETH model, which includes a dynamical glacier module. The model was calibrated in a transient mode, i.e., not only on several standard goodness measures and glacier extents, but also in such a way that the simulated streamflow trends fit with the observed ones during the investigation period 1980 to 2007. With this approach, it was possible to separate streamflow components, identify the trends of flow components, and study their relation to trends in atmospheric variables. In addition to trends in annual averages, highly resolved trends for each Julian day were derived, since they proved powerful in an earlier, data-based attribution study. We were able to show that annual and highly resolved trends can be modelled sufficiently well. The results provide a holistic, year-round picture of the drivers of alpine streamflow changes: Higher-altitude catchments are strongly affected by earlier firn melt and snowmelt in spring and increased ice melt throughout the ablation season. Changes in lower-altitude areas are mostly caused by earlier and lower snowmelt volumes. All highly resolved trends in streamflow and its components show an explicit similarity to the local temperature trends. Finally, results indicate that evapotranspiration has been increasing in the lower altitudes during the study period. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 364 KW - trend attribution KW - trend detection KW - climate change KW - trend drivers KW - hydrological modelling KW - alpine catchments KW - streamflow KW - hydroclimatology Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400641 ER - TY - GEN A1 - Kellermann, Patric A1 - Bubeck, Philip A1 - Kundela, Günther A1 - Dosio, Alessandro A1 - Thieken, Annegret T1 - Frequency analysis of critical meteorological conditions in a changing climate BT - assessing future implications for railway transportation in Austria N2 - Meteorological extreme events have great potential for damaging railway infrastructure and posing risks to the safety of train passengers. In the future, climate change will presumably have serious implications on meteorological hazards in the Alpine region. Hence, attaining insights on future frequencies of meteorological extremes with relevance for the railway operation in Austria is required in the context of a comprehensive and sustainable natural hazard management plan of the railway operator. In this study, possible impacts of climate change on the frequencies of so-called critical meteorological conditions (CMCs) between the periods 1961-1990 and 2011-2040 are analyzed. Thresholds for such CMCs have been defined by the railway operator and used in its weather monitoring and early warning system. First, the seasonal climate change signals for air temperature and precipitation in Austria are described on the basis of an ensemble of high-resolution Regional Climate Model (RCM) simulations for Europe. Subsequently, the RCM-ensemble was used to investigate changes in the frequency of CMCs. Finally, the sensitivity of results is analyzed with varying threshold values for the CMCs. Results give robust indications for an all-season air temperature rise, but show no clear tendency in average precipitation. The frequency analyses reveal an increase in intense rainfall events and heat waves, whereas heavy snowfall and cold days are likely to decrease. Furthermore, results indicate that frequencies of CMCs are rather sensitive to changes of thresholds. It thus emphasizes the importance to carefully define, validate, andif neededto adapt the thresholds that are used in the weather monitoring and warning system of the railway operator. For this, continuous and standardized documentation of damaging events and near-misses is a pre-requisite. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 358 KW - climate change KW - critical meteorological condition KW - frequency analysis KW - natural hazard management KW - railway transportation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-400505 ER - TY - GEN A1 - Köchy, Martin A1 - Mathaj, Martin A1 - Jeltsch, Florian A1 - Malkinson, Dan T1 - Resilience of stocking capacity to changing climate in arid to Mediterranean landscapes N2 - Small livestock is an important resource for rural human populations in dry climates. How strongly will climate change affect the capacity of the rangeland? We used hierarchical modelling to scale quantitatively the growth of shrubs and annual plants, the main food of sheep and goats, to the landscape extent in the eastern Mediterranean region. Without grazing, productivity increased in a sigmoid way with mean annual precipitation. Grazing reduced productivity more strongly the drier the landscape. At a point just under the stocking capacity of the vegetation, productivity declined precipitously with more intense grazing due to a lack of seed production of annuals. We repeated simulations with precipitation patterns projected by two contrasting IPCC scenarios. Compared to results based on historic patterns, productivity and stocking capacity did not differ in most cases. Thus, grazing intensity remains the stronger impact on landscape productivity in this dry region even in the future. N2 - Kleinvieh ist eine wichtige Lebensgrundlage für die Landbevölkerung in trockenen Regionen. Wie stark wird sich der Klimawandel auf die Tragfähigkeit der Weideflächen auswirken? Wir benutzten hierarchische Modellierung, um das Wachstum von Sträuchern und einjährigen Kräutern, das wichtigste Futter für Ziegen und Schafe, quantitativ auf die Fläche von Landschaften in der östlichen Mittelmeerregion zu dimensionieren. Die Produktivität ohne Beweidung stieg sigmoidal mit dem mittleren Jahresniederschlag. Je trockener die Landschaft, desto stärker verminderte Beweidung die Produktion. An einem Punkt knapp unter der Tragfähigkeit der Vegetation, sank die Produktion stark mit zunehmender Beweidung, weil die Samenproduktion der Kräuter zu gering war. Wir wiederholten die Simulationen mit Niederschlagsverteilungsmustern gemäß zweier gegensätzlicher IPCC-Szenarien. Zukünftige Produktivität und Tragfähigkeit unterschieden sich in den meisten Fällen nicht von Ergebnissen auf Grund von historischer Niederschlagsverteilung. Allerdings war die zukünftige Produktivität in trockenen Habitaten der semiariden und trocken-mediterranen Regionen niedriger. Somit hat auch in Zukunft die Besatzdichte die größere Auswirkung auf die Produktivität dieser trockenen Landschaft als das Klima. "This abstract is provided by the authors, and is for convenience of the users only. The author certifies that the translation faithfully represents the official version in the language of the journal, which is the published Abstract of record and is the only Abstract to be used for reference and citation." T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 066 KW - topography KW - spatially explicit model KW - climate change KW - Middle East KW - stocking capacity Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-18720 ER - TY - GEN A1 - Köchy, Martin T1 - Opposite trends in life stages of annual plants caused by daily rainfall variability BT - interaction with climate change N2 - Global Circulation Models of climate predict not only a change of annual precipitation amounts but also a shift in the daily distribution. To improve the understanding of the importance of daily rain pattern for annual plant communities, which represent a large portion of semi-natural vegetation in the Middle East, I used a detailed, spatially explicit model. The model explicitly considers water storage in the soil and has been parameterized and validated with data collected in field experiments in Israel and data from the literature. I manipulated daily rainfall variability by increasing the mean daily rain intensity on rainy days (MDI, rain volume/day) and decreasing intervals between rainy days while keeping the mean annual amount constant. In factorial combination, I also increased mean annual precipitation (MAP). I considered five climatic regions characterized by 100, 300, 450, 600, and 800 mm MAP. Increasing MDI decreased establishment when MAP was >250 mm but increased establishment at more arid sites. The negative effect of increasing MDI was compensated by increasing mortality with increasing MDI in dry and typical Mediterranean regions (c. 360–720 mm MAP). These effects were strongly tied to water availability in upper and lower soil layers and modified by competition among seedlings and adults. Increasing MAP generally increased water availability, establishment, and density. The order of magnitudes of MDI and MAP effects overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation. The effect size of MAP and MDI followed a sigmoid curve along the MAP gradient indicating that the semi-arid region (≈300 mm MAP) is the most sensitive to precipitation change with regard to annual communitie KW - Klimaänderung KW - Klimawandel KW - Einjahrespflanzen KW - Schwankung KW - tägliche Regenmenge KW - Israel KW - climate change KW - daily rainfall variability KW - annual plant KW - Israel Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-14699 SP - 347 EP - 357 ER - TY - GEN A1 - Köchy, Martin T1 - Stochastic time series of daily precipitation for the interior of Israel N2 - This contribution describes a generator of stochastic time series of daily precipitation for the interior of Israel from c. 90 to 900 mm mean annual precipitation (MAP) as a tool for studies of daily rain variability. The probability of rainfall on a given day of the year is described by a regular Gaussian peak curve function. The amount of rain is drawn randomly from an exponential distribution whose mean is the daily mean rain amount (averaged across years for each day of the year) described by a flattened Gaussian peak curve. Parameters for the curves have been calculated from monthly aggregated, long-term rain records from seven meteorological stations. Parameters for arbitrary points on the MAP gradient are calculated from a regression equation with MAP as the only independent variable. The simple structure of the generator allows it to produce time series with daily rain patterns that are projected under climate change scenarios and simultaneously control MAP. Increasing within-year variability of daily precipitation amounts also increases among-year variability of MAP as predicted by global circulation models. Thus, the time series incorporate important characteristics for climate change research and represent a flexible tool for simulations of daily vegetation or surface hydrology dynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - paper 029 KW - stochastische Zeitreihen KW - täglicher Niederschlag KW - Israel KW - Klimawandel KW - stochastic time series KW - daily precipitation KW - Israel KW - climate change Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-13155 ER -