TY - GEN A1 - Levermann, Anders A1 - Winkelmann, Ricarda T1 - A simple equation for the melt elevation feedback of ice sheets T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - In recent decades, the Greenland Ice Sheet has been losing mass and has thereby contributed to global sea-level rise. The rate of ice loss is highly relevant for coastal protection worldwide. The ice loss is likely to increase under future warming. Beyond a critical temperature threshold, a meltdown of the Greenland Ice Sheet is induced by the self-enforcing feedback between its lowering surface elevation and its increasing surface mass loss: the more ice that is lost, the lower the ice surface and the warmer the surface air temperature, which fosters further melting and ice loss. The computation of this rate so far relies on complex numerical models which are the appropriate tools for capturing the complexity of the problem. By contrast we aim here at gaining a conceptual understanding by deriving a purposefully simple equation for the self-enforcing feedback which is then used to estimate the melt time for different levels of warming using three observable characteristics of the ice sheet itself and its surroundings. The analysis is purely conceptual in nature. It is missing important processes like ice dynamics for it to be useful for applications to sea-level rise on centennial timescales, but if the volume loss is dominated by the feedback, the resulting logarithmic equation unifies existing numerical simulations and shows that the melt time depends strongly on the level of warming with a critical slow-down near the threshold: the median time to lose 10% of the present-day ice volume varies between about 3500 years for a temperature level of 0.5 degrees C above the threshold and 500 years for 5 degrees C. Unless future observations show a significantly higher melting sensitivity than currently observed, a complete meltdown is unlikely within the next 2000 years without significant ice-dynamical contributions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 529 KW - sea-level rise KW - mass-balance KW - climate-change KW - Greenland KW - model KW - glacier KW - projections KW - dynamics KW - impact KW - 21st-Century Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409834 SN - 1866-8372 IS - 529 ER - TY - GEN A1 - Walther, Sophia A1 - Guanter, Luis A1 - Heim, Birgit A1 - Jung, Martin A1 - Duveiller, Gregory A1 - Wolanin, Aleksandra A1 - Sachs, Torsten T1 - Assessing the dynamics of vegetation productivity in circumpolar regions with different satellite indicators of greenness and photosynthesis T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - High-latitude treeless ecosystems represent spatially highly heterogeneous landscapes with small net carbon fluxes and a short growing season. Reliable observations and process understanding are critical for projections of the carbon balance of the climate-sensitive tundra. Space-borne remote sensing is the only tool to obtain spatially continuous and temporally resolved information on vegetation greenness and activity in remote circumpolar areas. However, confounding effects from persistent clouds, low sun elevation angles, numerous lakes, widespread surface inundation, and the sparseness of the vegetation render it highly challenging. Here, we conduct an extensive analysis of the timing of peak vegetation productivity as shown by satellite observations of complementary indicators of plant greenness and photosynthesis. We choose to focus on productivity during the peak of the growing season, as it importantly affects the total annual carbon uptake. The suite of indicators are as follows: (1) MODIS-based vegetation indices (VIs) as proxies for the fraction of incident photosynthetically active radiation (PAR) that is absorbed (fPAR), (2) VIs combined with estimates of PAR as a proxy of the total absorbed radiation (APAR), (3) sun-induced chlorophyll fluorescence (SIF) serving as a proxy for photosynthesis, (4) vegetation optical depth (VOD), indicative of total water content and (5) empirically upscaled modelled gross primary productivity (GPP). Averaged over the pan-Arctic we find a clear order of the annual peak as APAR ≦ GPP