TY - JOUR A1 - Bozzo, Enrico A1 - Romano, Patrizia A1 - Ferrigno, Carlo A1 - Oskinova, Lida T1 - The symbiotic X-ray binaries Sct X-1, 4U 1700+24, and IGR J17329-2731 JF - Monthly notices of the Royal Astronomical Society N2 - Symbiotic X-ray binaries are systems hosting a neutron star accreting form the wind of a late-type companion. These are rare objects and so far only a handful of them are known. One of the most puzzling aspects of the symbiotic X-ray binaries is the possibility that they contain strongly magnetized neutron stars. These are expected to be evolutionary much younger compared to their evolved companions and could thus be formed through the (yet poorly known) accretion induced collapse of a white dwarf. In this paper, we perform a broad-band X-ray and soft gamma-ray spectroscopy of two known symbiotic binaries, Sct X-1 and 4U 1700+24, looking for the presence of cyclotron scattering features that could confirm the presence of strongly magnetized NSs. We exploited available Chandra, Swift, and NuSTAR data. We find no evidence of cyclotron resonant scattering features (CRSFs) in the case of Sct X-1 but in the case of 4U 1700+24 we suggest the presence of a possible CRSF at similar to 16 keV and its first harmonic at similar to 31 keV, although we could not exclude alternative spectral models for the broad-band fit. If confirmed by future observations, 4U 1700+24 could be the second symbiotic X-ray binary with a highly magnetized accretor. We also report about our long-term monitoring of the last discovered symbiotic X-ray binary IGR J17329-2731 performed with Swift/XRT. The monitoring revealed that, as predicted, in 2017 this object became a persistent and variable source, showing X-ray flares lasting for a few days and intriguing obscuration events that are interpreted in the context of clumpy wind accretion. KW - accretion KW - accretion discs KW - stars: massive KW - stars: neutron KW - X-rays: binaries KW - X-rays: individual: SctX-1 KW - X-rays: individual: 4U1700+24; KW - X-rays: stars KW - X-rays: individual: IGRJ17329-2731 Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac907 SN - 0035-8711 SN - 1365-2966 VL - 513 IS - 1 SP - 42 EP - 54 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Perdigón-Toro, Lorena A1 - Le Quang Phuong, A1 - Zeiske, Stefan A1 - Vandewal, Koen A1 - Armin, Ardalan A1 - Shoaee, Safa A1 - Neher, Dieter T1 - Excitons dominate the emission from PM6 BT - Y6 solar cells, but this does not help the open-circuit voltage of the device JF - ACS energy letters / American Chemical Society N2 - Non-fullerene acceptors (NFAs) are far more emissive than their fullerene-based counterparts. Here, we study the spectral properties of photocurrent generation and recombination of the blend of the donor polymer PM6 with the NFA Y6. We find that the radiative recombination of free charges is almost entirely due to the re-occupation and decay of Y6 singlet excitons, but that this pathway contributes less than 1% to the total recombination. As such, the open-circuit voltage of the PM6:Y6 blend is determined by the energetics and kinetics of the charge-transfer (CT) state. Moreover, we find that no information on the energetics of the CT state manifold can be gained from the low-energy tail of the photovoltaic external quantum efficiency spectrum, which is dominated by the excitation spectrum of the Y6 exciton. We, finally, estimate the charge-separated state to lie only 120 meV below the Y6 singlet exciton energy, meaning that this blend indeed represents a high-efficiency system with a low energetic offset. Y1 - 2021 U6 - https://doi.org/10.1021/acsenergylett.0c02572 SN - 2380-8195 VL - 6 IS - 2 SP - 557 EP - 564 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Chaurasia, Swami Vivekanandji A1 - Dietrich, Tim A1 - Rosswog, Stephan T1 - Black hole-neutron star simulations with the BAM code BT - first tests and simulations JF - Physical review : D, Particles, fields, gravitation, and cosmology N2 - The first detections of black hole-neutron star mergers (GW200105 and GW200115) by the LIGO-Virgo-Kagra Collaboration mark a significant scientific breakthrough. The physical interpretation of pre- and postmerger signals requires careful cross-examination between observational and theoretical modelling results. Here we present the first set of black hole-neutron star simulations that were obtained with the numerical-relativity code BAM. Our initial data are constructed using the public LORENE spectral library, which employs an excision of the black hole interior. BAM, in contrast, uses the moving-puncture gauge for the evolution. Therefore, we need to "stuff" the black hole interior with smooth initial data to evolve the binary system in time. This procedure introduces constraint violations such that the constraint damping properties of the evolution system are essential to increase the accuracy of the simulation and in particular to reduce spurious center-of-mass drifts. Within BAM we evolve the Z4c equations and we compare our gravitational-wave results with those of the SXS collaboration and results obtained with the SACRA code. While we find generally good agreement with the reference solutions and phase differences less than or similar to 0.5 rad at the moment of merger, the absence of a clean convergence order in our simulations does not allow for a proper error quantification. We finally present a set of different initial conditions to explore how the merger of black hole neutron star systems depends on the involved masses, spins, and equations of state. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevD.104.084010 SN - 2470-0010 SN - 2470-0029 VL - 104 IS - 8 PB - American Physical Society CY - Ridge, NY ER - TY - JOUR A1 - Oskinova, Lida A1 - Schaerer, Daniel T1 - Ionization of He II in star-forming galaxies by X-rays from cluster winds and superbubbles JF - Astronomy and astrophysics : an international weekly journal N2 - The nature of the sources powering nebular He II emission in star-forming galaxies remains debated, and various types of objects have been considered, including Wolf-Rayet stars, X-ray binaries, and Population III stars. Modern X-ray observations show the ubiquitous presence of hot gas filling star-forming galaxies. We use a collisional ionization plasma code to compute the specific He II ionizing flux produced by hot gas and show that if its temperature is not too high (less than or similar to 2.5 MK), then the observed levels of soft diffuse X-ray radiation could explain He II ionization in galaxies. To gain a physical understanding of this result, we propose a model that combines the hydrodynamics of cluster winds and hot superbubbles with observed populations of young massive clusters in galaxies. We find that in low-metallicity galaxies, the temperature of hot gas is lower and the production rate of He II ionizing photons is higher compared to high-metallicity galaxies. The reason is that the slower stellar winds of massive stars in lower-metallicity galaxies input less mechanical energy in the ambient medium. Furthermore, we show that ensembles of star clusters up to similar to 10-20 Myr old in galaxies can produce enough soft X-rays to induce nebular He II emission. We discuss observations of the template low-metallicity galaxy I Zw 18 and suggest that the He II nebula in this galaxy is powered by a hot superbubble. Finally, appreciating the complex nature of stellar feedback, we suggest that soft X-rays from hot superbubbles are among the dominant sources of He II ionizing flux in low-metallicity star-forming galaxies. KW - galaxies KW - ISM KW - high-redshift KW - bubbles KW - X-rays Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202142520 SN - 0004-6361 SN - 1432-0746 VL - 661 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Barra, Felipe A1 - Hovhannisyan, Karen A1 - Imparato, Alberto T1 - Quantum batteries at the verge of a phase transition JF - New journal of physics : the open-access journal for physics N2 - Starting from the observation that the reduced state of a system strongly coupled to a bath is, in general, an athermal state, we introduce and study a cyclic battery-charger quantum device that is in thermal equilibrium, or in a ground state, during the charge storing stage. The cycle has four stages: the equilibrium storage stage is interrupted by disconnecting the battery from the charger, then work is extracted from the battery, and then the battery is reconnected with the charger; finally, the system is brought back to equilibrium. At no point during the cycle are the battery-charger correlations artificially erased. We study the case where the battery and charger together comprise a spin-1/2 Ising chain, and show that the main characteristics-the extracted energy and the thermodynamic efficiency-can be enhanced by operating the cycle close to the quantum phase transition point. When the battery is just a single spin, we find that the output work and efficiency show a scaling behavior at criticality and derive the corresponding critical exponents. Due to always present correlations between the battery and the charger, operations that are equivalent from the perspective of the battery can entail different energetic costs for switching the battery-charger coupling. This happens only when the coupling term does not commute with the battery's bare Hamiltonian, and we use this purely quantum leverage to further optimize the performance of the device. KW - quantum batteries KW - quantum thermodynamics KW - quantum phase transition Y1 - 2022 U6 - https://doi.org/10.1088/1367-2630/ac43ed SN - 1367-2630 VL - 24 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Pauzon, Camille A1 - Mishurova, Tatiana A1 - Evsevleev, Sergei A1 - Dubiez-Le Goff, Sophie A1 - Murugesan, Saravanakumar A1 - Bruno, Giovanni A1 - Hryha, Eduard T1 - Residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion as a function of process atmosphere and component design JF - Additive manufacturing N2 - The influence of the process gas, laser scan speed, and sample thickness on the build-up of residual stresses and porosity in Ti-6Al-4V produced by laser powder bed fusion was studied. Pure argon and helium, as well as a mixture of those (30% helium), were employed to establish process atmospheres with a low residual oxygen content of 100 ppm O-2. The results highlight that the subsurface residual stresses measured by X-ray diffraction were significantly lower in the thin samples (220 MPa) than in the cuboid samples (645 MPa). This difference was attributed to the shorter laser vector length, resulting in heat accumulation and thus in-situ stress relief. The addition of helium to the process gas did not introduce additional subsurface residual stresses in the simple geometries, even for the increased scanning speed. Finally, larger deflection was found in the cantilever built under helium (after removal from the baseplate), than in those produced under argon and an argon-helium mixture. This result demonstrates that complex designs involving large scanned areas could be subjected to higher residual stress when manufactured under helium due to the gas's high thermal conductivity, heat capacity, and thermal diffusivity. KW - Residual stresses KW - Laser powder bed fusion KW - Process atmosphere KW - Helium KW - Ti-6Al-4V Y1 - 2021 U6 - https://doi.org/10.1016/j.addma.2021.102340 SN - 2214-8604 VL - 47 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Pranav, Manasi A1 - Benduhn, Johannes A1 - Nyman, Mathias A1 - Hosseini, Seyed Mehrdad A1 - Kublitski, Jonas A1 - Shoaee, Safa A1 - Neher, Dieter A1 - Leo, Karl A1 - Spoltore, Donato T1 - Enhanced charge selectivity via anodic-C60 layer reduces nonradiative losses in organic solar cells JF - ACS applied materials & interfaces N2 - Interfacial layers in conjunction with suitable charge-transport layers can significantly improve the performance of optoelectronic devices by facilitating efficient charge carrier injection and extraction. This work uses a neat C-60 interlayer on the anode to experimentally reveal that surface recombination is a significant contributor to nonradiative recombination losses in organic solar cells. These losses are shown to proportionally increase with the extent of contact between donor molecules in the photoactive layer and a molybdenum oxide (MoO3) hole extraction layer, proven by calculating voltage losses in low- and high-donor-content bulk heterojunction device architectures. Using a novel in-device determination of the built-in voltage, the suppression of surface recombination, due to the insertion of a thin anodic-C-60 interlayer on MoO3, is attributed to an enhanced built-in potential. The increased built-in voltage reduces the presence of minority charge carriers at the electrodes-a new perspective on the principle of selective charge extraction layers. The benefit to device efficiency is limited by a critical interlayer thickness, which depends on the donor material in bilayer devices. Given the high popularity of MoO3 as an efficient hole extraction and injection layer and the increasingly popular discussion on interfacial phenomena in organic optoelectronic devices, these findings are relevant to and address different branches of organic electronics, providing insights for future device design. KW - nonradiative losses KW - molybdenum oxide KW - organic solar cells KW - interfacial layers KW - charge selectivity Y1 - 2021 U6 - https://doi.org/10.1021/acsami.1c00049 SN - 1944-8244 SN - 1944-8252 VL - 13 IS - 10 SP - 12603 EP - 12609 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - He, Yushuang A1 - Wang, Feipeng A1 - He, Li A1 - Wang, Qiang A1 - Li, Jian A1 - Qian, Yihua A1 - Gerhard, Reimund A1 - Plath, Ronald T1 - An insight Into the role of Nano-Alumina on DC Flashover-Resistance and surface charge variation of Epoxy Nanocomposites JF - IEEE transactions on dielectrics and electrical insulation N2 - The addition of nano-Al2O3 has been shown to enhance the breakdown voltage of epoxy resin, but its flashover results appeared with disputation. This work concentrates on the surface charge variation and dc flashover performance of epoxy resin with nano-Al2O3 doping. The dispersion of nano-Al2O3 in epoxy is characterized by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The dc flashover voltages of samples under either positive or negative polarity are measured with a finger-electrode system, and the surface charge variations before and after flashovers were identified from the surface potential mapping. The results evidence that nano-Al2O3 would lead to a 16.9% voltage drop for the negative flashovers and a 6.8% drop for positive cases. It is found that one-time flashover clears most of the accumulated surface charges, regardless of positive or negative. As a result, the ground electrode is neighbored by an equipotential zone enclosed with low-density heterocharges. The equipotential zone tends to be broadened after 20 flashovers. The nano-Al2O3 is noticed as beneficial to downsize the equipotential zone due to its capability on charge migration, which is reasonable to maintain flashover voltage at a high level after multiple flashovers. Hence, nano-Al2O3 plays a significant role in improving epoxy with high resistance to multiple flashovers. KW - surface morphology KW - Epoxy resins KW - Electric potential KW - Surface treatment KW - Doping KW - Epoxy resin KW - multiple KW - flashover KW - nanocomposite KW - surface charge Y1 - 2022 U6 - https://doi.org/10.1109/TDEI.2022.3173510 SN - 1070-9878 SN - 1558-4135 VL - 29 IS - 3 SP - 1022 EP - 1029 PB - Inst. of Electr. and Electronics Engineers CY - Piscataway ER - TY - JOUR A1 - Ochmann, Miguel A1 - Vaz da Cruz, Vinicius A1 - Eckert, Sebastian A1 - Huse, Nils A1 - Föhlisch, Alexander T1 - R-Group stabilization in methylated formamides observed by resonant inelastic X-ray scattering JF - Chemical communications: ChemComm N2 - The inherent stability of methylated formamides is traced to a stabilization of the deep-lying sigma-framework by resonant inelastic X-ray scattering at the nitrogen K-edge. Charge transfer from the amide nitrogen to the methyl groups underlie this stabilization mechanism that leaves the aldehyde group essentially unaltered and explains the stability of secondary and tertiary amides. Y1 - 2022 U6 - https://doi.org/10.1039/d2cc00053a SN - 1359-7345 SN - 1364-548X VL - 58 IS - 63 SP - 8834 EP - 8837 PB - The Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Culpan, Richard A1 - Geier, Stephan A1 - Reindl, Nicole A1 - Pelisoli, Ingrid A1 - Gentile Fusillo, Nicola Pietro A1 - Vorontseva, Alina T1 - The population of hot subdwarf stars studied with Gaia BT - IV. catalogues of hot subluminous stars based on Gaia EDR3 JF - Astronomy and astrophysics : an international weekly journal N2 - In light of substantial new discoveries of hot subdwarfs by ongoing spectroscopic surveys and the availability of the Gaia mission Early Data Release 3 (EDR3), we compiled new releases of two catalogues of hot subluminous stars: the data release 3 (DR3) catalogue of the known hot subdwarf stars contains 6616 unique sources and provides multi-band photometry, and astrometry from Gaia EDR3 as well as classifications based on spectroscopy and colours. This is an increase of 742 objects over the DR2 catalogue. This new catalogue provides atmospheric parameters for 3087 stars and radial velocities for 2791 stars from the literature. In addition, we have updated the Gaia Data Release 2 (DR2) catalogue of hot subluminous stars using the improved accuracy of the Gaia EDR3 data set together with updated quality and selection criteria to produce the Gaia EDR3 catalogue of 61 585 hot subluminous stars, representing an increase of 21 785 objects. The improvements in Gaia EDR3 astrometry and photometry compared to Gaia DR2 have enabled us to define more sophisticated selection functions. In particular, we improved hot subluminous star detection in the crowded regions of the Galactic plane as well as in the direction of the Magellanic Clouds by including sources with close apparent neighbours but with flux levels that dominate the neighbourhood. KW - subdwarfs KW - Hertzsprung-Russell and C-M diagrams KW - binaries: general KW - stars: horizontal-branch KW - catalogs Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202243337 SN - 1432-0746 VL - 662 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Rüdiger, Günther A1 - Schultz, Manfred A1 - Hollerbach, Rainer T1 - Destabilization of super-rotating Taylor-Couette flows by current-free helical magnetic fields JF - Journal of plasma physics N2 - In an earlier paper we showed that the combination of azimuthal magnetic fields and super-rotation in Taylor-Couette flows of conducting fluids can be unstable against non-axisymmetric perturbations if the magnetic Prandtl number of the fluid is Pm not equal 1. Here we demonstrate that the addition of a weak axial field component allows axisymmetric perturbation patterns for Pm of order unity depending on the boundary conditions. The axisymmetric modes only occur for magnetic Mach numbers (of the azimuthal field) of order unity, while higher values are necessary for the non-axisymmetric modes. The typical growth time of the instability and the characteristic time scale of the axial migration of the axisymmetric mode are long compared with the rotation period, but short compared with the magnetic diffusion time. The modes travel in the positive or negative z direction along the rotation axis depending on the sign of B phi Bz. We also demonstrate that the azimuthal components of flow and field perturbations travel in phase if vertical bar B phi vertical bar >> vertical bar B-z vertical bar, independent of the form of the rotation law. Within a short-wave approximation for thin gaps it is also shown (in an appendix) that for ideal fluids the considered helical magnetorotational instability only exists for rotation laws with negative shear. KW - plasma instabilities KW - astrophysical plasmas Y1 - 2021 U6 - https://doi.org/10.1017/S0022377821000295 SN - 1469-7807 VL - 87 IS - 2 PB - Cambridge University Press CY - London ER - TY - JOUR A1 - Feldmann, Johannes A1 - Reese, Ronja A1 - Winkelmann, Ricarda A1 - Levermann, Anders T1 - Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Basal ice-shelf melting is the key driver of Antarctica's increasing sea-level contribution. In diminishing the buttressing force of the ice shelves that fringe the ice sheet, the melting increases the ice discharge into the ocean. Here we contrast the influence of basal melting in two different ice-shelf regions on the time-dependent response of an isothermal, inherently buttressed ice-sheet-shelf system. In the idealized numerical simulations, the basal-melt perturbations are applied close to the grounding line in the ice-shelf's (1) ice-stream region, where the ice shelf is fed by the fastest ice masses that stream through the upstream bed trough and (2) shear margins, where the ice flow is slower. The results show that melting below one or both of the shear margins can cause a decadal to centennial increase in ice discharge that is more than twice as large compared to a similar perturbation in the ice-stream region. We attribute this to the fact that melt-induced ice-shelf thinning in the central grounding-line region is attenuated very effectively by the fast flow of the central ice stream. In contrast, the much slower ice dynamics in the lateral shear margins of the ice shelf facilitate sustained ice-shelf thinning and thereby foster buttressing reduction. Regardless of the melt location, a higher melt concentration toward the grounding line generally goes along with a stronger response. Our results highlight the vulnerability of outlet glaciers to basal melting in stagnant, buttressing-relevant ice-shelf regions, a mechanism that may gain importance under future global warming. Y1 - 2022 U6 - https://doi.org/10.5194/tc-16-1927-2022 SN - 1994-0416 SN - 1994-0424 VL - 16 IS - 5 SP - 1927 EP - 1940 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Mientus, Lukas A1 - Nowak, Anna A1 - Wulff, Peter A1 - Borowski, Andreas ED - Mientus, Lukas ED - Klempin, Christiane ED - Nowak, Anna T1 - Unterrichtsanalyse und Reflexion BT - Ableitung eines Workshopangebots für die zweite und dritte Phase der Lehrkräftebildung JF - Reflexion in der Lehrkräftebildung: Empirisch – Phasenübergreifend – Interdisziplinär (Potsdamer Beiträge zur Lehrerbildung und Bildungsforschung ; 4) N2 - Schulpraktische Phasen stellen eine bedeutende praxisnahe Lerngelegenheit im Lehramtsstudium dar, da sie Raum für umfangreiche Reflexionen der eigenen Lernerfahrung bieten. Das im Studium erworbene theoretisch-formale Wissen steht hierbei dem praktischen Wissen und Können gegenüber. Mit der professionellen Entwicklung im Referendariat, besonders im Kompetenzbereich des Unterrichtens, kann geschlussfolgert werden, dass sich eine Reflexion über eher fachliche Aspekte unter den Studierenden im Referendariat auf eine Reflexion über eher überfachliche und pädagogische Aspekte weitet. Infolge der Analyse von N = 55 schriftlichen Fremdreflexionen von angehenden Physiklehrkräften aus Studium und Referendariat konnte diese Hypothese für den Bereich der Unterrichtsanalyse und -reflexion unterstützt werden. Weiter wurde aus der Videovignette ein Workshopangebot für Lehrkräfte der zweiten und dritten Phase der Lehrkräftebildung entwickelt, erprobt und evaluiert. KW - Reflexion KW - Unterrichtsanalyse KW - Referendariat KW - Fortbildung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-632005 SN - 978-3-86956-566-8 SN - 2626-3556 SN - 2626-4722 IS - 4 SP - 445 EP - 452 PB - Universitätsverlag Potsdam CY - Potsdam ER - TY - JOUR A1 - Petreska, Irina A1 - Pejov, Ljupco A1 - Sandev, Trifce A1 - Kocarev, Ljupčo A1 - Metzler, Ralf T1 - Tuning of the dielectric relaxation and complex susceptibility in a system of polar molecules: a generalised model based on rotational diffusion with resetting JF - Fractal and fractional N2 - The application of the fractional calculus in the mathematical modelling of relaxation processes in complex heterogeneous media has attracted a considerable amount of interest lately. The reason for this is the successful implementation of fractional stochastic and kinetic equations in the studies of non-Debye relaxation. In this work, we consider the rotational diffusion equation with a generalised memory kernel in the context of dielectric relaxation processes in a medium composed of polar molecules. We give an overview of existing models on non-exponential relaxation and introduce an exponential resetting dynamic in the corresponding process. The autocorrelation function and complex susceptibility are analysed in detail. We show that stochastic resetting leads to a saturation of the autocorrelation function to a constant value, in contrast to the case without resetting, for which it decays to zero. The behaviour of the autocorrelation function, as well as the complex susceptibility in the presence of resetting, confirms that the dielectric relaxation dynamics can be tuned by an appropriate choice of the resetting rate. The presented results are general and flexible, and they will be of interest for the theoretical description of non-trivial relaxation dynamics in heterogeneous systems composed of polar molecules. KW - rotational diffusion KW - memory kernel KW - Fokker-Planck equation KW - non-exponential relaxation KW - autocorrelation function KW - complex KW - susceptibility Y1 - 2022 U6 - https://doi.org/10.3390/fractalfract6020088 SN - 2504-3110 VL - 6 IS - 2 PB - MDPI AG, Fractal Fract Editorial Office CY - Basel ER - TY - JOUR A1 - Zhao, Yuhang A1 - Sarhan, Radwan Mohamed A1 - Eljarrat, Alberto A1 - Kochovski, Zdravko A1 - Koch, Christoph A1 - Schmidt, Bernd A1 - Koopman, Wouter-Willem Adriaan A1 - Lu, Yan T1 - Surface-functionalized Au-Pd nanorods with enhanced photothermal conversion and catalytic performance JF - ACS applied materials & interfaces N2 - Bimetallic nanostructures comprising plasmonic and catalytic components have recently emerged as a promising approach to generate a new type of photo-enhanced nanoreactors. Most designs however concentrate on plasmon-induced charge separation, leaving photo-generated heat as a side product. This work presents a photoreactor based on Au-Pd nanorods with an optimized photothermal conversion, which aims to effectively utilize the photo-generated heat to increase the rate of Pd-catalyzed reactions. Dumbbell-shaped Au nanorods were fabricated via a seed-mediated growth method using binary surfactants. Pd clusters were selectively grown at the tips of the Au nanorods, using the zeta potential as a new synthetic parameter to indicate the surfactant remaining on the nanorod surface. The photothermal conversion of the Au-Pd nanorods was improved with a thin layer of polydopamine (PDA) or TiO2. As a result, a 60% higher temperature increment of the dispersion compared to that for bare Au rods at the same light intensity and particle density could be achieved. The catalytic performance of the coated particles was then tested using the reduction of 4-nitrophenol as the model reaction. Under light, the PDA-coated Au-Pd nanorods exhibited an improved catalytic activity, increasing the reaction rate by a factor 3. An analysis of the activation energy confirmed the photoheating effect to be the dominant mechanism accelerating the reaction. Thus, the increased photothermal heating is responsible for the reaction acceleration. Interestingly, the same analysis shows a roughly 10% higher reaction rate for particles under illumination compared to under dark heating, possibly implying a crucial role of localized heat gradients at the particle surface. Finally, the coating thickness was identified as an essential parameter determining the photothermal conversion efficiency and the reaction acceleration. KW - Au-Pd nanorods KW - PDA KW - photothermal conversion KW - surface plasmon KW - 4-nitrophenol Y1 - 2022 U6 - https://doi.org/10.1021/acsami.2c00221 SN - 1944-8244 SN - 1944-8252 VL - 14 IS - 15 SP - 17259 EP - 17272 PB - American Chemical Society CY - Washington, DC ER - TY - JOUR A1 - Hillwig, Todd C. A1 - Reindl, Nicole A1 - Rotter, Hannah M. A1 - Rengstorf, Adam W. A1 - Heber, Ulrich A1 - Irrgang, Andreas T1 - Two evolved close binary stars: GALEX J015054.4+310745 and the central star of the planetary nebula Hen 2-84 JF - Monthly notices of the Royal Astronomical Society N2 - As part of a survey to find close binary systems among central stars of planetary nebula, we present two newly discovered binary systems. GALEX J015054.4+310745 is identified as the central star of the possible planetary nebula Fr 2-22. We find it to be a single-lined spectroscopic binary with an orbital period of 0.2554435(10) d. We support the previous identification of GALEX J015054.4+310745 as an sdB star and provide physical parameters for the star from spectral modelling. We identify its undetected companion as a likely He white dwarf. Based on this information, we find it unlikely that Fr 2-22 is a true planetary nebula. In addition, the central star of the true planetary nebula Hen 2-84 is found to be a photometric variable, likely due to the irradiation of a cool companion. The system has an orbital period of 0.485645(30) d. We discuss limits on binary parameters based on the available light-curve data. Hen 2-84 is a strongly shaped bipolar planetary nebula, which we now add to the growing list of axially or point-symmetric planetary nebulae with a close binary central star. KW - binaries: close KW - stars: individual: GALEX J015054.4+310745 KW - subdwarfs KW - planetary nebulae: individual: Hen 2-84 Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac226 SN - 0035-8711 SN - 1365-2966 VL - 511 IS - 2 SP - 2033 EP - 2039 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Zeitz, Maria A1 - Haacker, Jan M. A1 - Donges, Jonathan A1 - Albrecht, Torsten A1 - Winkelmann, Ricarda T1 - Dynamic regimes of the Greenland Ice Sheet emerging from interacting melt-elevation and glacial isostatic adjustment feedbacks JF - Earth system dynamics N2 - The stability of the Greenland Ice Sheet under global warming is governed by a number of dynamic processes and interacting feedback mechanisms in the ice sheet, atmosphere and solid Earth. Here we study the long-term effects due to the interplay of the competing melt-elevation and glacial isostatic adjustment (GIA) feedbacks for different temperature step forcing experiments with a coupled ice-sheet and solid-Earth model. Our model results show that for warming levels above 2 degrees C, Greenland could become essentially ice-free within several millennia, mainly as a result of surface melting and acceleration of ice flow. These ice losses are mitigated, however, in some cases with strong GIA feedback even promoting an incomplete recovery of the Greenland ice volume. We further explore the full-factorial parameter space determining the relative strengths of the two feedbacks: our findings suggest distinct dynamic regimes of the Greenland Ice Sheets on the route to destabilization under global warming - from incomplete recovery, via quasi-periodic oscillations in ice volume to ice-sheet collapse. In the incomplete recovery regime, the initial ice loss due to warming is essentially reversed within 50 000 years, and the ice volume stabilizes at 61 %-93 % of the present-day volume. For certain combinations of temperature increase, atmospheric lapse rate and mantle viscosity, the interaction of the GIA feedback and the melt-elevation feedback leads to self-sustained, long-term oscillations in ice-sheet volume with oscillation periods between 74 000 and over 300 000 years and oscillation amplitudes between 15 %-70 % of present-day ice volume. This oscillatory regime reveals a possible mode of internal climatic variability in the Earth system on timescales on the order of 100 000 years that may be excited by or synchronized with orbital forcing or interact with glacial cycles and other slow modes of variability. Our findings are not meant as scenario-based near-term projections of ice losses but rather providing insight into of the feedback loops governing the "deep future" and, thus, long-term resilience of the Greenland Ice Sheet. Y1 - 2022 U6 - https://doi.org/10.5194/esd-13-1077-2022 SN - 2190-4979 SN - 2190-4987 VL - 13 IS - 3 SP - 1077 EP - 1096 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Thapa, Samudrajit A1 - Park, Seongyu A1 - Kim, Yeongjin A1 - Jeon, Jae-Hyung A1 - Metzler, Ralf A1 - Lomholt, Michael A. T1 - Bayesian inference of scaled versus fractional Brownian motion JF - Journal of physics : A, mathematical and theoretical N2 - We present a Bayesian inference scheme for scaled Brownian motion, and investigate its performance on synthetic data for parameter estimation and model selection in a combined inference with fractional Brownian motion. We include the possibility of measurement noise in both models. We find that for trajectories of a few hundred time points the procedure is able to resolve well the true model and parameters. Using the prior of the synthetic data generation process also for the inference, the approach is optimal based on decision theory. We include a comparison with inference using a prior different from the data generating one. KW - Bayesian inference KW - scaled Brownian motion KW - single particle tracking Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac60e7 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Varykhalov, Andrei A1 - Freyse, Friedrich A1 - Aguilera, Irene A1 - Battiato, Marco A1 - Krivenkov, Maxim A1 - Marchenko, Dmitry A1 - Bihlmayer, Gustav A1 - Blugel, Stefan A1 - Rader, Oliver A1 - Sanchez-Barriga, Jaime T1 - Effective mass enhancement and ultrafast electron dynamics of Au(111) surface state coupled to a quantum well JF - Physical Review Research N2 - We show that, although the equilibrium band dispersion of the Shockley-type surface state of two-dimensional Au(111) quantum films grown on W(110) does not deviate from the expected free-electron-like behavior, its nonequilibrium energy-momentum dispersion probed by time- and angle-resolved photoemission exhibits a remarkable kink above the Fermi level due to a significant enhancement of the effective mass. The kink is pronounced for certain thicknesses of the Au quantum well and vanishes in the very thin limit. We identify the kink as induced by the coupling between the Au(111) surface state and emergent quantum-well states which probe directly the buried gold-tungsten interface. The signatures of the coupling are further revealed by our time-resolved measurements which show that surface state and quantum-well states thermalize together behaving as dynamically locked electron populations. In particular, relaxation of hot carriers following laser excitation is similar for both surface state and quantum-well states and much slower than expected for a bulk metallic system. The influence of quantum confinement on the interplay between elementary scattering processes of the electrons at the surface and ultrafast carrier transport in the direction perpendicular to the surface is shown to be the reason for the slow electron dynamics. KW - AG KW - Flims Y1 - 2020 U6 - https://doi.org/10.1103/PhysRevResearch.2.013343 SN - 0031-9007 VL - 2 IS - 1 SP - 1 EP - 9 PB - American Physical Society CY - Ridge, NY ER - TY - JOUR A1 - Gengel, Erik A1 - Pikovskij, Arkadij T1 - Phase reconstruction from oscillatory data with iterated Hilbert transform embeddings BT - benefits and limitations JF - Physica : D, Nonlinear phenomena N2 - In the data analysis of oscillatory systems, methods based on phase reconstruction are widely used to characterize phase-locking properties and inferring the phase dynamics. The main component in these studies is an extraction of the phase from a time series of an oscillating scalar observable. We discuss a practical procedure of phase reconstruction by virtue of a recently proposed method termed iterated Hilbert transform embeddings. We exemplify the potential benefits and limitations of the approach by applying it to a generic observable of a forced Stuart-Landau oscillator. Although in many cases, unavoidable amplitude modulation of the observed signal does not allow for perfect phase reconstruction, in cases of strong stability of oscillations and a high frequency of the forcing, iterated Hilbert transform embeddings significantly improve the quality of the reconstructed phase. We also demonstrate that for significant amplitude modulation, iterated embeddings do not provide any improvement. KW - Data analysis KW - Phase reconstruction KW - Hilbert transform Y1 - 2021 U6 - https://doi.org/10.1016/j.physd.2021.133070 SN - 0167-2789 SN - 1872-8022 VL - 429 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Agarwal, Ankit A1 - Guntu, Ravikumar A1 - Banerjee, Abhirup A1 - Gadhawe, Mayuri Ashokrao A1 - Marwan, Norbert T1 - A complex network approach to study the extreme precipitation patterns in a river basin JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The quantification of spatial propagation of extreme precipitation events is vital in water resources planning and disaster mitigation. However, quantifying these extreme events has always been challenging as many traditional methods are insufficient to capture the nonlinear interrelationships between extreme event time series. Therefore, it is crucial to develop suitable methods for analyzing the dynamics of extreme events over a river basin with a diverse climate and complicated topography. Over the last decade, complex network analysis emerged as a powerful tool to study the intricate spatiotemporal relationship between many variables in a compact way. In this study, we employ two nonlinear concepts of event synchronization and edit distance to investigate the extreme precipitation pattern in the Ganga river basin. We use the network degree to understand the spatial synchronization pattern of extreme rainfall and identify essential sites in the river basin with respect to potential prediction skills. The study also attempts to quantify the influence of precipitation seasonality and topography on extreme events. The findings of the study reveal that (1) the network degree is decreased in the southwest to northwest direction, (2) the timing of 50th percentile precipitation within a year influences the spatial distribution of degree, (3) the timing is inversely related to elevation, and (4) the lower elevation greatly influences connectivity of the sites. The study highlights that edit distance could be a promising alternative to analyze event-like data by incorporating event time and amplitude and constructing complex networks of climate extremes. Y1 - 2022 U6 - https://doi.org/10.1063/5.0072520 SN - 1054-1500 SN - 1089-7682 VL - 32 IS - 1 PB - American Institute of Physics CY - Woodbury, NY ER - TY - JOUR A1 - Mayer, Dennis A1 - Picconi, David A1 - Robinson, Matthew S. A1 - Gühr, Markus T1 - Experimental and theoretical gas-phase absorption spectra of thionated uracils JF - Chemical physics : a journal devoted to experimental and theoretical research involving problems of both a chemical and physical nature N2 - We present a comparative study of the gas-phase UV spectra of uracil and its thionated counterparts (2-thiouracil, 4-thiouracil and 2,4-dithiouracil), closely supported by time-dependent density functional theory calculations to assign the transitions observed. We systematically discuss pure gas-phase spectra for the (thio)uracils in the range of 200-400 nm (similar to 3.2-6.4 eV), and examine the spectra of all four species with a single theoretical approach. We note that specific vibrational modelling is needed to accurately determine the spectra across the examined wavelength range, and systematically model the transitions that appear at wavelengths shorter than 250 nm. Additionally, we find in the cases of 2-thiouracil and 2,4-dithiouracil, that the gas-phase spectra deviate significantly from some previously published solution-phase spectra, especially those collected in basic environments. KW - Thiouracil KW - Uracil KW - UV-VIS Spectroscopy KW - Excited-state calculations; KW - TD-DFT KW - Gas phase Y1 - 2022 U6 - https://doi.org/10.1016/j.chemphys.2022.111500 SN - 0301-0104 VL - 558 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Serrano-Munoz, Itziar A1 - Fernández Serrano, Ricardo A1 - Saliwan-Neumann, Romeo A1 - Gonzalez-Doncel, Gaspar A1 - Bruno, Giovanni T1 - Dislocation substructures in pure aluminium after creep deformation as studied by electron backscatter diffraction JF - Journal of applied crystallography / International Union of Crystallography N2 - In the present work, electron backscatter diffraction was used to determine the microscopic dislocation structures generated during creep (with tests interrupted at the steady state) in pure 99.8% aluminium. This material was investigated at two different stress levels, corresponding to the power-law and power-law breakdown regimes. The results show that the formation of subgrain cellular structures occurs independently of the crystallographic orientation. However, the density of these cellular structures strongly depends on the grain crystallographic orientation with respect to the tensile axis direction, with (111) grains exhibiting the highest densities at both stress levels. It is proposed that this behaviour is due to the influence of intergranular stresses, which is different in (111) and (001) grains. KW - creep KW - pure aluminium KW - electron backscatter diffraction (EBSD) KW - cellular KW - structures KW - power law and power-law breakdown Y1 - 2022 U6 - https://doi.org/10.1107/S1600576722005209 SN - 1600-5767 VL - 55 SP - 860 EP - 869 PB - Munksgaard CY - Copenhagen ER - TY - JOUR A1 - Poch, Olivier A1 - Istiqomah, Istiqomah A1 - Quirico, Eric A1 - Beck, Pierre A1 - Schmitt, Bernard A1 - Theulé, Patrice A1 - Faure, Alexandre A1 - Hily-Blant, Pierre A1 - Bonal, Lydie A1 - Kappel, David T1 - Ammonium salts are a reservoir of nitrogen on a cometary nucleus and possibly on some asteroids JF - Science N2 - The measured nitrogen-to-carbon ratio in comets is lower than for the Sun, a discrepancy which could be alleviated if there is an unknown reservoir of nitrogen in comets. The nucleus of comet 67P/Churyumov-Gerasimenko exhibits an unidentified broad spectral reflectance feature around 3.2 micrometers, which is ubiquitous across its surface. On the basis of laboratory experiments, we attribute this absorption band to ammonium salts mixed with dust on the surface. The depth of the band indicates that semivolatile ammonium salts are a substantial reservoir of nitrogen in the comet, potentially dominating over refractory organic matter and more volatile species. Similar absorption features appear in the spectra of some asteroids, implying a compositional link between asteroids, comets, and the parent interstellar cloud. KW - resolution infrared-spectroscopy KW - ice absorption features KW - young stellar objects KW - exposed water ice KW - MU-M KW - bidirectional reflectance KW - murchison meteorite KW - interstellar ice KW - spectra KW - surface Y1 - 2020 U6 - https://doi.org/10.1126/science.aaw7462 SN - 1095-9203 SN - 0036-8075 VL - 367 IS - 6483 SP - 1 EP - 8 PB - AAAS, American Association for the Advancement of Science CY - Washington, DC ER - TY - JOUR A1 - Gupta, Banshi D. A1 - Pathak, Anisha A1 - Shrivastav, Anand T1 - Optical Biomedical Diagnostics Using Lab-on-Fiber Technology BT - a review JF - Photonics : open access journal N2 - Point-of-care and in-vivo bio-diagnostic tools are the current need for the present critical scenarios in the healthcare industry. The past few decades have seen a surge in research activities related to solving the challenges associated with precise on-site bio-sensing. Cutting-edge fiber optic technology enables the interaction of light with functionalized fiber surfaces at remote locations to develop a novel, miniaturized and cost-effective lab on fiber technology for bio-sensing applications. The recent remarkable developments in the field of nanotechnology provide innumerable functionalization methodologies to develop selective bio-recognition elements for label free biosensors. These exceptional methods may be easily integrated with fiber surfaces to provide highly selective light-matter interaction depending on various transduction mechanisms. In the present review, an overview of optical fiber-based biosensors has been provided with focus on physical principles used, along with the functionalization protocols for the detection of various biological analytes to diagnose the disease. The design and performance of these biosensors in terms of operating range, selectivity, response time and limit of detection have been discussed. In the concluding remarks, the challenges associated with these biosensors and the improvement required to develop handheld devices to enable direct target detection have been highlighted. KW - fiber optic sensors KW - synthesis KW - interferometry KW - fluorescence KW - SERS KW - SPR KW - immunosensors KW - enzymatic sensors KW - molecular imprinted polymers Y1 - 2022 U6 - https://doi.org/10.3390/photonics9020086 SN - 2304-6732 VL - 9 IS - 2 PB - MDPI CY - Basel ER - TY - JOUR A1 - Kotz, Maximilian A1 - Levermann, Anders A1 - Wenz, Leonie T1 - The effect of rainfall changes on economic production JF - Nature : the international journal of science N2 - Macro-economic assessments of climate impacts lack an analysis of the distribution of daily rainfall, which can resolve both complex societal impact channels and anthropogenically forced changes(1-6). Here, using a global panel of subnational economic output for 1,554 regions worldwide over the past 40 years, we show that economic growth rates are reduced by increases in the number of wet days and in extreme daily rainfall, in addition to responding nonlinearly to the total annual and to the standardized monthly deviations of rainfall. Furthermore, high-income nations and the services and manufacturing sectors are most strongly hindered by both measures of daily rainfall, complementing previous work that emphasized the beneficial effects of additional total annual rainfall in low-income, agriculturally dependent economies(4,7). By assessing the distribution of rainfall at multiple timescales and the effects on different sectors, we uncover channels through which climatic conditions can affect the economy. These results suggest that anthropogenic intensification of daily rainfall extremes(8-10) will have negative global economic consequences that require further assessment by those who wish to evaluate the costs of anthropogenic climate change. Y1 - 2022 U6 - https://doi.org/10.1038/s41586-021-04283-8 SN - 0028-0836 SN - 1476-4687 VL - 601 IS - 7892 SP - 223 EP - 227 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Schué, Emmanuelle A1 - Kopyshev, Alexey A1 - Lutz, Jean-François A1 - Börner, Hans G. T1 - Molecular bottle brushes with positioned selenols BT - Extending the toolbox of oxidative single polymer chain folding with conformation analysis by atomic force microscopy JF - Journal of Polymer Science N2 - A synthesis route to controlled and dynamic single polymer chain folding is reported. Sequence-controlled macromolecules containing precisely located selenol moieties within a polymer chain are synthesized. Oxidation of selenol functionalities lead to diselenide bridges and induces controlled intramolecular crosslinking to generate single chain collapse. The cyclization process is successfully characterized by SEC as well as by H-1 NMR and 2D HSQC NMR spectroscopies. In order to gain insight on the molecular level to reveal the degree of structural control, the folded polymers are transformed into folded molecular brushes that are known to be visualizable as single molecule structures by AFM. The "grafting onto" approach is performed by using triazolinedione-diene reaction to graft the side chain polymers. A series of folded molecular brushes as well as the corresponding linear controls are synthesized. AFM visualization is proving the cyclization of the folded backbone by showing globular objects, where non-folded brushes show typical worm-like structures. (C) 2019 The Authors. Journal of Polymer Science published by Wiley Periodicals, Inc. KW - atomic force microscopy (AFM) KW - diselenide KW - grafted polymers KW - molecular bottle brushes KW - sequence-controlled polymers KW - single chain folding Y1 - 2020 U6 - https://doi.org/10.1002/pola.29496 SN - 2642-4169 VL - 58 IS - 1 SP - 154 EP - 162 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Kirchartz, Thomas A1 - Márquez, José A. A1 - Stolterfoht, Martin A1 - Unold, Thomas T1 - Photoluminescence-based characterization of halide perovskites for photovoltaics JF - Advanced Energy Materials N2 - Photoluminescence spectroscopy is a widely applied characterization technique for semiconductor materials in general and halide perovskite solar cell materials in particular. It can give direct information on the recombination kinetics and processes as well as the internal electrochemical potential of free charge carriers in single semiconductor layers, layer stacks with transport layers, and complete solar cells. The correct evaluation and interpretation of photoluminescence requires the consideration of proper excitation conditions, calibration and application of the appropriate approximations to the rather complex theory, which includes radiative recombination, non-radiative recombination, interface recombination, charge transfer, and photon recycling. In this article, an overview is given of the theory and application to specific halide perovskite compositions, illustrating the variables that should be considered when applying photoluminescence analysis in these materials. KW - metal halide perovskites KW - numerical simulations KW - photoluminescence KW - photon recycling Y1 - 2020 U6 - https://doi.org/10.1002/aenm.201904134 SN - 1614-6832 SN - 1614-6840 VL - 10 IS - 26 SP - 1 EP - 21 PB - Wiley CY - Weinheim ER - TY - JOUR A1 - Steigert, Alexander A1 - Kojda, Sandrino Danny A1 - Ibaceta-Jaña, Josefa Fernanda A1 - Abou-Ras, Daniel A1 - Gunder, René A1 - Alktash, Nivin A1 - Habicht, Klaus A1 - Wagner, Markus Raphael A1 - Klenk, Reiner A1 - Raoux, Simone A1 - Szyszka, Bernd A1 - Lauermann, Iver A1 - Muydinov, Ruslan T1 - Water-assisted crystallization of amorphous indium zinc oxide films JF - Materials today. Communications N2 - Transparent conductive materials based on indium oxide remain yet irreplaceable in various optoelectronic applications. Amorphous oxides appear especially attractive for technology as they are isotropic, demonstrate relatively high electron mobility and can be processed at low temperatures. Among them is indium zinc oxide (IZO) with a large zinc content that is crucial for keeping the amorphous state but redundant for the doping. In this work we investigated water-free and water containing IZO films obtained by radio frequency sputtering. The correlation between temperature driven changes of the chemical state, the optical and electrical properties as well as the progression of crystallization was in focus. Such characterization methods as: scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, temperature dependent Hall-effect measurements and others were applied. Temperature dependent electrical properties of amorphous IZO and IZO:H2O films were found to evolve similarly. Based on our experience in In2O3:H2O (In2O3:H or IOH) we proposed an explanation for the changes observed. Water admixture was found to decrease crystallization temperature of IZO significantly from similar to 550 degrees C to similar to 280 degrees C. Herewith, the presence and concentration of water and/or hydroxyls was found to determine Zn distribution in the film. In particular, Zn enrichment was detected at the film's surface respective to the high water and/or hydroxyl amount. Raman spectra revealed a two-dimensional crystallization of w-ZnO which precedes regardless water presence an extensive In2O3 crystallization. An abrupt loss of electron mobility as a result of crystallization was attributed to the formation of ZnO interlayer on grain boundaries. KW - IZO KW - Thin films KW - TCOs KW - Crystallization KW - Water-assisted crystallization Y1 - 2022 U6 - https://doi.org/10.1016/j.mtcomm.2022.103213 SN - 2352-4928 VL - 31 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Cheng, Xin A1 - Zhang, Jie A1 - Kliem, Bernhard A1 - Török, Tibor A1 - Xing, Chen A1 - Zhou, Zhenjun A1 - Inhester, Bernd A1 - Ding, Mingde T1 - Initiation and early kinematic evolution of solar eruptions JF - The Astrophysical Journal N2 - We investigate the initiation and early evolution of 12 solar eruptions, including six active-region hot channel and six quiescent filament eruptions, which were well observed by the Solar Dynamics Observatory, as well as by the Solar Terrestrial Relations Observatory for the latter. The sample includes one failed eruption and 11 coronal mass ejections, with velocities ranging from 493 to 2140 km s(-1). A detailed analysis of the eruption kinematics yields the following main results. (1) The early evolution of all events consists of a slow-rise phase followed by a main-acceleration phase, the height-time profiles of which differ markedly and can be best fit, respectively, by a linear and an exponential function. This indicates that different physical processes dominate in these phases, which is at variance with models that involve a single process. (2) The kinematic evolution of the eruptions tends to be synchronized with the flare light curve in both phases. The synchronization is often but not always close. A delayed onset of the impulsive flare phase is found in the majority of the filament eruptions (five out of six). This delay and its trend to be larger for slower eruptions favor ideal MHD instability models. (3) The average decay index at the onset heights of the main acceleration is close to the threshold of the torus instability for both groups of events (although, it is based on a tentative coronal field model for the hot channels), suggesting that this instability initiates and possibly drives the main acceleration. KW - solar coronal mass ejections KW - stellar coronal mass ejections KW - solar storm Y1 - 2020 U6 - https://doi.org/10.3847/1538-4357/ab886a SN - 1055-6796 SN - 1476-3540 VL - 894 IS - 2 SP - 1 EP - 20 PB - Cambridge Scientific Publishers CY - Cambridge ER - TY - JOUR A1 - García-Benito, Inés A1 - Quarti, Claudio A1 - Queloz, Valentin I. E. A1 - Hofstetter, Yvonne J. A1 - Becker-Koch, David A1 - Caprioglio, Pietro A1 - Neher, Dieter A1 - Orlandi, Simonetta A1 - Cavazzini, Marco A1 - Pozzi, Gianluca A1 - Even, Jacky A1 - Nazeeruddin, Mohammad Khaja A1 - Vaynzof, Yana A1 - Grancini, Giulia T1 - Fluorination of organic spacer impacts on the structural and optical response of 2D perovskites JF - Frontiers in Chemistry N2 - Low-dimensional hybrid perovskites have triggered significant research interest due to their intrinsically tunable optoelectronic properties and technologically relevant material stability. In particular, the role of the organic spacer on the inherent structural and optical features in two-dimensional (2D) perovskites is paramount for material optimization. To obtain a deeper understanding of the relationship between spacers and the corresponding 2D perovskite film properties, we explore the influence of the partial substitution of hydrogen atoms by fluorine in an alkylammonium organic cation, resulting in (Lc)(2)PbI4 and (Lf)(2)PbI4 2D perovskites, respectively. Consequently, optical analysis reveals a clear 0.2 eV blue-shift in the excitonic position at room temperature. This result can be mainly attributed to a band gap opening, with negligible effects on the exciton binding energy. According to Density Functional Theory (DFT) calculations, the band gap increases due to a larger distortion of the structure that decreases the atomic overlap of the wavefunctions and correspondingly bandwidth of the valence and conduction bands. In addition, fluorination impacts the structural rigidity of the 2D perovskite, resulting in a stable structure at room temperature and the absence of phase transitions at a low temperature, in contrast to the widely reported polymorphism in some non-fluorinated materials that exhibit such a phase transition. This indicates that a small perturbation in the material structure can strongly influence the overall structural stability and related phase transition of 2D perovskites, making them more robust to any phase change. This work provides key information on how the fluorine content in organic spacer influence the structural distortion of 2D perovskites and their optical properties which possess remarkable importance for future optoelectronic applications, for instance in the field of light-emitting devices or sensors. KW - fluorinated organic spacer KW - 2D perovskites KW - phase transition KW - temperature dependence KW - excitonic materials Y1 - 2020 U6 - https://doi.org/10.3389/fchem.2019.00946 SN - 2296-2646 VL - 7 SP - 1 EP - 11 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Zhong, Yufei A1 - Causa, Martina A1 - Moore, Gareth John A1 - Krauspe, Philipp A1 - Xiao, Bo A1 - Günther, Florian A1 - Kublitski, Jonas A1 - BarOr, Eyal A1 - Zhou, Erjun A1 - Banerji, Natalie T1 - Sub-picosecond charge-transfer at near-zero driving force in polymer:non-fullerene acceptor blends and bilayers JF - Nature Communications N2 - Organic photovoltaics based on non-fullerene acceptors (NFAs) show record efficiency of 16 to 17% and increased photovoltage owing to the low driving force for interfacial charge-transfer. However, the low driving force potentially slows down charge generation, leading to a tradeoff between voltage and current. Here, we disentangle the intrinsic charge-transfer rates from morphology-dependent exciton diffusion for a series of polymer:NFA systems. Moreover, we establish the influence of the interfacial energetics on the electron and hole transfer rates separately. We demonstrate that charge-transfer timescales remain at a few hundred femtoseconds even at near-zero driving force, which is consistent with the rates predicted by Marcus theory in the normal region, at moderate electronic coupling and at low re-organization energy. Thus, in the design of highly efficient devices, the energy offset at the donor:acceptor interface can be minimized without jeopardizing the charge-transfer rate and without concerns about a current-voltage tradeoff. KW - organic solar cell KW - electron-transfer KW - Donor-Acceptor (DA) interface KW - transfer dynamics KW - donor KW - seperation KW - efficiency KW - impact KW - energy KW - photovoltaics Y1 - 2020 U6 - https://doi.org/10.1038/s41467-020-14549-w SN - 2041-1723 VL - 11 IS - 1 SP - 1 EP - 10 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Raman Venkatesan, Thulasinath A1 - Smykalla, David A1 - Ploss, Bernd A1 - Wübbenhorst, Michael A1 - Gerhard, Reimund T1 - Non-linear dielectric spectroscopy for detecting and evaluating structure-property relations in a P(VDF-TrFE-CFE) relaxor-ferroelectric terpolymer JF - Applied physics : A, Materials science & processing N2 - Non-linear dielectric spectroscopy (NLDS) is employed as an effective tool to study relaxation processes and phase transitions of a poly(vinylidenefluoride-trifluoroethylene-chlorofluoroethylene) (P(VDF-TrFE-CFE)) relaxor-ferroelectric (R-F) terpolymer in detail. Measurements of the non-linear dielectric permittivity epsilon 2 ' reveal peaks at 30 and 80 degrees C that cannot be identified in conventional dielectric spectroscopy. By combining the results from NLDS experiments with those from other techniques such as thermally stimulated depolarization and dielectric-hysteresis studies, it is possible to explain the processes behind the additional peaks. The former peak, which is associated with the mid-temperature transition, is found in all other vinylidene fluoride-based polymers and may help to understand the non-zero epsilon 2 ' values that are detected on the paraelectric phase of the terpolymer. The latter peak can also be observed during cooling of P(VDF-TrFE) copolymer samples at 100 degrees C and is due to conduction and space-charge polarization as a result of the accumulation of real charges at the electrode-sample interface. KW - Non-linear dielectric spectroscopy KW - P(VDF-TrFE-CFE) KW - Relaxor-ferroelectric polymer KW - Dielectric hysteresis KW - Curie-transition KW - Mid-temperature transition Y1 - 2021 U6 - https://doi.org/10.1007/s00339-021-04876-0 SN - 0947-8396 SN - 1432-0630 VL - 127 IS - 10 PB - Springer CY - Berlin ; Heidelberg ; New York ER - TY - JOUR A1 - Tokmoldin, Nurlan A1 - Vollbrecht, Joachim A1 - Hosseini, Seyed Mehrdad A1 - Sun, Bowen A1 - Perdigón-Toro, Lorena A1 - Woo, Han Young A1 - Zou, Yingping A1 - Neher, Dieter A1 - Shoaee, Safa T1 - Explaining the fill-factor and photocurrent losses of nonfullerene acceptor-based solar cells by probing the long-range charge carrier diffusion and drift lengths JF - Advanced energy materials N2 - Organic solar cells (OSC) nowadays match their inorganic competitors in terms of current production but lag behind with regards to their open-circuit voltage loss and fill-factor, with state-of-the-art OSCs rarely displaying fill-factor of 80% and above. The fill-factor of transport-limited solar cells, including organic photovoltaic devices, is affected by material and device-specific parameters, whose combination is represented in terms of the established figures of merit, such as theta and alpha. Herein, it is demonstrated that these figures of merit are closely related to the long-range carrier drift and diffusion lengths. Further, a simple approach is presented to devise these characteristic lengths using steady-state photoconductance measurements. This yields a straightforward way of determining theta and alpha in complete cells and under operating conditions. This approach is applied to a variety of photovoltaic devices-including the high efficiency nonfullerene acceptor blends-and show that the diffusion length of the free carriers provides a good correlation with the fill-factor. It is, finally, concluded that most state-of-the-art organic solar cells exhibit a sufficiently large drift length to guarantee efficient charge extraction at short circuit, but that they still suffer from too small diffusion lengths of photogenerated carriers limiting their fill factor. KW - diffusion length KW - drift length KW - figure of merit KW - lifetime‐ mobility product KW - steady‐ state photoconductance Y1 - 2021 U6 - https://doi.org/10.1002/aenm.202100804 SN - 1614-6840 VL - 11 IS - 22 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schlemm, Tanja A1 - Levermann, Anders T1 - A simple parametrization of mélange buttressing for calving glaciers JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Both ice sheets in Greenland and Antarctica are discharging ice into the ocean. In many regions along the coast of the ice sheets, the icebergs calve into a bay. If the addition of icebergs through calving is faster than their transport out of the embayment, the icebergs will be frozen into a melange with surrounding sea ice in winter. In this case, the buttressing effect of the ice melange can be considerably stronger than any buttressing by mere sea ice would be. This in turn stabilizes the glacier terminus and leads to a reduction in calving rates. Here we propose a simple parametrization of ice melange buttressing which leads to an upper bound on calving rates and can be used in numerical and analytical modelling. Y1 - 2021 U6 - https://doi.org/10.5194/tc-15-531-2021 SN - 1994-0416 SN - 1994-0424 VL - 15 IS - 2 SP - 531 EP - 545 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Stolterfoht, Martin A1 - Grischek, Max A1 - Caprioglio, Pietro A1 - Wolff, Christian Michael A1 - Gutierrez-Partida, Emilio A1 - Peña-Camargo, Francisco A1 - Rothhardt, Daniel A1 - Zhang, Shanshan A1 - Raoufi, Meysam A1 - Wolansky, Jakob A1 - Abdi-Jalebi, Mojtaba A1 - Stranks, Samuel D. A1 - Albrecht, Steve A1 - Kirchartz, Thomas A1 - Neher, Dieter T1 - How to quantify the efficiency potential of neat perovskite films BT - Perovskite semiconductors with an implied efficiency exceeding 28% JF - Advanced Materials N2 - Perovskite photovoltaic (PV) cells have demonstrated power conversion efficiencies (PCE) that are close to those of monocrystalline silicon cells; however, in contrast to silicon PV, perovskites are not limited by Auger recombination under 1-sun illumination. Nevertheless, compared to GaAs and monocrystalline silicon PV, perovskite cells have significantly lower fill factors due to a combination of resistive and non-radiative recombination losses. This necessitates a deeper understanding of the underlying loss mechanisms and in particular the ideality factor of the cell. By measuring the intensity dependence of the external open-circuit voltage and the internal quasi-Fermi level splitting (QFLS), the transport resistance-free efficiency of the complete cell as well as the efficiency potential of any neat perovskite film with or without attached transport layers are quantified. Moreover, intensity-dependent QFLS measurements on different perovskite compositions allows for disentangling of the impact of the interfaces and the perovskite surface on the non-radiative fill factor and open-circuit voltage loss. It is found that potassium-passivated triple cation perovskite films stand out by their exceptionally high implied PCEs > 28%, which could be achieved with ideal transport layers. Finally, strategies are presented to reduce both the ideality factor and transport losses to push the efficiency to the thermodynamic limit. KW - non-radiative interface recombination KW - perovskite solar cells KW - photoluminescence Y1 - 2020 U6 - https://doi.org/10.1002/adma.202000080 SN - 0935-9648 SN - 1521-4095 VL - 32 IS - 17 SP - 1 EP - 10 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Mohammady, M. Hamed A1 - Auffèves, Alexia A1 - Anders, Janet T1 - Energetic footprints of irreversibility in the quantum regime JF - Communications Physics N2 - In classical thermodynamic processes the unavoidable presence of irreversibility, quantified by the entropy production, carries two energetic footprints: the reduction of extractable work from the optimal, reversible case, and the generation of a surplus of heat that is irreversibly dissipated to the environment. Recently it has been shown that in the quantum regime an additional quantum irreversibility occurs that is linked to decoherence into the energy basis. Here we employ quantum trajectories to construct distributions for classical heat and quantum heat exchanges, and show that the heat footprint of quantum irreversibility differs markedly from the classical case. We also quantify how quantum irreversibility reduces the amount of work that can be extracted from a state with coherences. Our results show that decoherence leads to both entropic and energetic footprints which both play an important role in the optimization of controlled quantum operations at low temperature. In classical thermodynamics irreversibility occurs whenever a non-thermal system is brought into contact with a thermal environment. Using quantum trajectories the authors here establish two energetic footprints of quantum irreversible processes, and find that while quantum irreversibility leads to the occurrence of a quantum heat and a reduction of work production, the two are not linked in the same manner as the classical laws of thermodynamics would dictate. KW - entropy production KW - quantum mechanics KW - thermodynamics Y1 - 2020 U6 - https://doi.org/10.1038/s42005-020-0356-9 SN - 2399-3650 VL - 3 IS - 1 SP - 1 EP - 14 PB - Springer Nature CY - London ER - TY - JOUR A1 - Horton, Benjamin P. A1 - Khan, Nicole S. A1 - Cahill, Niamh A1 - Lee, Janice S. H. A1 - Shaw, Timothy A. A1 - Garner, Andra J. A1 - Kemp, Andrew C. A1 - Engelhart, Simon E. A1 - Rahmstorf, Stefan T1 - Estimating global mean sea-level rise and its uncertainties by 2100 and 2300 from an expert survey JF - npj Climate and Atmospheric Science N2 - Sea-level rise projections and knowledge of their uncertainties are vital to make informed mitigation and adaptation decisions. To elicit projections from members of the scientific community regarding future global mean sea-level (GMSL) rise, we repeated a survey originally conducted five years ago. Under Representative Concentration Pathway (RCP) 2.6, 106 experts projected a likely (central 66% probability) GMSL rise of 0.30-0.65 m by 2100, and 0.54-2.15 m by 2300, relative to 1986-2005. Under RCP 8.5, the same experts projected a likely GMSL rise of 0.63-1.32 m by 2100, and 1.67-5.61 m by 2300. Expert projections for 2100 are similar to those from the original survey, although the projection for 2300 has extended tails and is higher than the original survey. Experts give a likelihood of 42% (original survey) and 45% (current survey) that under the high-emissions scenario GMSL rise will exceed the upper bound (0.98 m) of the likely range estimated by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, which is considered to have an exceedance likelihood of 17%. Responses to open-ended questions suggest that the increases in upper-end estimates and uncertainties arose from recent influential studies about the impact of marine ice cliff instability on the meltwater contribution to GMSL rise from the Antarctic Ice Sheet. KW - projections KW - Greenland KW - consequences KW - climate Y1 - 2020 U6 - https://doi.org/10.1038/s41612-020-0121-5 SN - 2397-3722 VL - 3 IS - 1 SP - 1 EP - 8 PB - Springer Nature CY - London ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Safdari, Hadiseh A1 - Metzler, Ralf T1 - Anomalous diffusion, nonergodicity, and ageing for exponentially and logarithmically time-dependent diffusivity BT - striking differences for massive versus massless particles JF - Journal of physics. D, Applied physics N2 - We investigate a diffusion process with a time-dependent diffusion coefficient, both exponentially increasing and decreasing in time, D(t)=D-0(e +/- 2 alpha t). For this (hypothetical) nonstationary diffusion process we compute-both analytically and from extensive stochastic simulations-the behavior of the ensemble- and time-averaged mean-squared displacements (MSDs) of the particles, both in the over- and underdamped limits. Simple asymptotic relations derived for the short- and long-time behaviors are shown to be in excellent agreement with the results of simulations. The diffusive characteristics in the presence of ageing are also considered, with dramatic differences of the over- versus underdamped regime. Our results for D(t)=D-0(e +/- 2 alpha t) extend and generalize the class of diffusive systems obeying scaled Brownian motion featuring a power-law-like variation of the diffusivity with time, D(t) similar to t(alpha-1). We also examine the logarithmically increasing diffusivity, D(t)=D(0)log[t/tau(0)], as another fundamental functional dependence (in addition to the power-law and exponential) and as an example of diffusivity slowly varying in time. One of the main conclusions is that the behavior of the massive particles is predominantly ergodic, while weak ergodicity breaking is repeatedly found for the time-dependent diffusion of the massless particles at short times. The latter manifests itself in the nonequivalence of the (both nonaged and aged) MSD and the mean time-averaged MSD. The current findings are potentially applicable to a class of physical systems out of thermal equilibrium where a rapid increase or decrease of the particles' diffusivity is inherently realized. One biological system potentially featuring all three types of time-dependent diffusion (power-law-like, exponential, and logarithmic) is water diffusion in the brain tissues, as we thoroughly discuss in the end. KW - anomalous diffusion KW - scaled Brownian motion KW - stochastic processes KW - nonstationary diffusivity KW - water diffusion in the brain KW - nonergodicity Y1 - 2021 U6 - https://doi.org/10.1088/1361-6463/abdff0 SN - 0022-3727 SN - 1361-6463 VL - 54 IS - 19 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Gieg, Henrique A1 - Schianchi, Federico A1 - Dietrich, Tim A1 - Ujevic, Maximiliano T1 - Incorporating a Radiative Hydrodynamics Scheme in the Numerical-Relativity Code BAM JF - Universe : open access journal N2 - To study binary neutron star systems and to interpret observational data such as gravitational-wave and kilonova signals, one needs an accurate description of the processes that take place during the final stages of the coalescence, for example, through numerical-relativity simulations. In this work, we present an updated version of the numerical-relativity code BAM in order to incorporate nuclear-theory-based equations of state and a simple description of neutrino interactions through a neutrino leakage scheme. Different test simulations, for stars undergoing a neutrino-induced gravitational collapse and for binary neutron stars systems, validate our new implementation. For the binary neutron stars systems, we show that we can evolve stably and accurately distinct microphysical models employing the different equations of state: SFHo, DD2, and the hyperonic BHB Lambda phi. Overall, our test simulations have good agreement with those reported in the literature. KW - numerical relativity KW - binary neutron stars KW - neutrinos KW - leakage scheme Y1 - 2022 U6 - https://doi.org/10.3390/universe8070370 SN - 2218-1997 VL - 8 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Letellier, Christophe A1 - Abraham, Ralph A1 - Shepelyansky, Dima L. A1 - Rossler, Otto E. A1 - Holmes, Philip A1 - Lozi, Rene A1 - Glass, Leon A1 - Pikovsky, Arkady A1 - Olsen, Lars F. A1 - Tsuda, Ichiro A1 - Grebogi, Celso A1 - Parlitz, Ulrich A1 - Gilmore, Robert A1 - Pecora, Louis M. A1 - Carroll, Thomas L. T1 - Some elements for a history of the dynamical systems theory JF - Chaos : an interdisciplinary journal of nonlinear science N2 - Writing a history of a scientific theory is always difficult because it requires to focus on some key contributors and to "reconstruct" some supposed influences. In the 1970s, a new way of performing science under the name "chaos" emerged, combining the mathematics from the nonlinear dynamical systems theory and numerical simulations. To provide a direct testimony of how contributors can be influenced by other scientists or works, we here collected some writings about the early times of a few contributors to chaos theory. The purpose is to exhibit the diversity in the paths and to bring some elements-which were never published-illustrating the atmosphere of this period. Some peculiarities of chaos theory are also discussed. Y1 - 2021 U6 - https://doi.org/10.1063/5.0047851 SN - 1054-1500 SN - 1089-7682 VL - 31 IS - 5 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Mani, Deepak A1 - Kupsch, Andreas A1 - Müller, Bernd R. A1 - Bruno, Giovanni T1 - Diffraction Enhanced Imaging Analysis with Pseudo-Voigt Fit Function JF - Journal of imaging : open access journal N2 - Diffraction enhanced imaging (DEI) is an advanced digital radiographic imaging technique employing the refraction of X-rays to contrast internal interfaces. This study aims to qualitatively and quantitatively evaluate images acquired using this technique and to assess how different fitting functions to the typical rocking curves (RCs) influence the quality of the images. RCs are obtained for every image pixel. This allows the separate determination of the absorption and the refraction properties of the material in a position-sensitive manner. Comparison of various types of fitting functions reveals that the Pseudo-Voigt (PsdV) function is best suited to fit typical RCs. A robust algorithm was developed in the Python programming language, which reliably extracts the physically meaningful information from each pixel of the image. We demonstrate the potential of the algorithm with two specimens: a silicone gel specimen that has well-defined interfaces, and an additively manufactured polycarbonate specimen. KW - diffraction enhanced imaging KW - analyzer-based imaging KW - X-ray refraction; KW - non-destructive evaluation KW - Pseudo-Voigt fit function KW - Python Y1 - 2022 U6 - https://doi.org/10.3390/jimaging8080206 SN - 2313-433X VL - 8 IS - 8 PB - MDPI CY - Basel ER - TY - JOUR A1 - Meyer, Dominique M.-A. A1 - Velazquez, Pablo F. A1 - Petruk, Oleh A1 - Chiotellis, Alexandros A1 - Pohl, Martin A1 - Camps-Farina, Artemi A1 - Petrov, Miroslav A1 - Reynoso, Estela M. A1 - Toledo-Roy, Juan C. A1 - Schneiter, E. Matias A1 - Castellanos-Ramirez, Antonio A1 - Esquivel, Alejandro T1 - Rectangular core-collapse supernova remnants BT - application to Puppis A JF - Monthly notices of the Royal Astronomical Society N2 - Core-collapse supernova remnants are the gaseous nebulae of galactic interstellar media (ISM) formed after the explosive death of massive stars. Their morphology and emission properties depend both on the surrounding circumstellar structure shaped by the stellar wind-ISM interaction of the progenitor star and on the local conditions of the ambient medium. In the warm phase of the Galactic plane (n approximate to 1 cm(-3), T approximate to 8000 K), an organized magnetic field of strength 7 mu G has profound consequences on the morphology of the wind bubble of massive stars at rest. In this paper, we show through 2.5D magnetohydrodynamical simulations, in the context of a Wolf-Rayet-evolving 35 M 0 star, that it affects the development of its supernova remnant. When the supernova remnant reaches its middle age (15-20 kyr), it adopts a tubular shape that results from the interaction between the isotropic supernova ejecta and the anisotropic, magnetized, shocked stellar progenitor bubble into which the supernova blast wave expands. Our calculations for non-thermal emission, i.e. radio synchrotron and inverse-Compton radiation, reveal that such supernova remnants can, due to projection effects, appear as rectangular objects in certain cases. This mechanism for shaping a supernova remnant is similar to the bipolar and elliptical planetary nebula production by wind-wind interaction in the low-mass regime of stellar evolution. If such a rectangular core-collapse supernova remnant is created, the progenitor star must not have been a runaway star. We propose that such a mechanism is at work in the shaping of the asymmetric core-collapse supernova remnant Puppis A. KW - stars: evolution KW - stars: massive KW - ISM: supernova remnants KW - methods: MHD Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1832 SN - 0035-8711 SN - 1365-2966 VL - 515 IS - 1 SP - 594 EP - 605 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Nedora, Vsevolod A1 - Radice, David A1 - Bernuzzi, Sebastiano A1 - Perego, Albino A1 - Daszuta, Boris A1 - Endrizzi, Andrea A1 - Prakash, Aviral A1 - Schianchi, Federico T1 - Dynamical ejecta synchrotron emission as a possible contributor to the changing behaviour of GRB170817A afterglow JF - Monthly notices of the Royal Astronomical Society N2 - Over the past 3 yr, the fading non-thermal emission from the GW170817 remained generally consistent with the afterglow powered by synchrotron radiation produced by the interaction of the structured jet with the ambient medium. Recent observations by Hajela et al. indicate the change in temporal and spectral behaviour in the X-ray band. We show that the new observations are compatible with the emergence of a new component due to non-thermal emission from the fast tail of the dynamical ejecta of ab-initio binary neutron star merger simulations. This provides a new avenue to constrain binary parameters. Specifically, we find that equal mass models with soft equations of state (EOSs) and high-mass ratio models with stiff EOSs are disfavoured as they typically predict afterglows that peak too early to explain the recent observations. Moderate stiffness and mass ratio models, instead, tend to be in good overall agreement with the data. KW - equation of state KW - gravitational waves KW - neutron star mergers Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab2004 SN - 0035-8711 SN - 1365-2966 VL - 506 IS - 4 SP - 5908 EP - 5915 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Hornemann, Andrea A1 - Eichert, Diane Madeleine A1 - Hoehl, Arne A1 - Tiersch, Brigitte A1 - Ulm, Gerhard A1 - Ryadnov, Maxim G. A1 - Beckhoff, Burkhard T1 - Investigating Membrane-Mediated Antimicrobial Peptide Interactions with Synchrotron Radiation Far-Infrared Spectroscopy JF - ChemPhysChem : a European journal of chemical physics and physical chemistry N2 - Synchrotron radiation-based Fourier transform infrared spectroscopy enables access to vibrational information from mid over far infrared to even terahertz domains. This information may prove critical for the elucidation of fundamental bio-molecular phenomena including folding-mediated innate host defence mechanisms. Antimicrobial peptides (AMPs) represent one of such phenomena. These are major effector molecules of the innate immune system, which favour attack on microbial membranes. AMPs recognise and bind to the membranes whereupon they assemble into pores or channels destabilising the membranes leading to cell death. However, specific molecular interactions responsible for antimicrobial activities have yet to be fully understood. Herein we probe such interactions by assessing molecular specific variations in the near-THz 400-40 cm(-1) range for defined helical AMP templates in reconstituted phospholipid membranes. In particular, we show that a temperature-dependent spectroscopic analysis, supported by 2D correlative tools, provides direct evidence for the membrane-induced and folding-mediated activity of AMPs. The far-FTIR study offers a direct and information-rich probe of membrane-related antimicrobial interactions. KW - antimicrobial peptides KW - electrostatic interactions KW - IR spectroscopy KW - phospholipid membranes KW - protein folding Y1 - 2022 U6 - https://doi.org/10.1002/cphc.202100815 SN - 1439-4235 SN - 1439-7641 VL - 23 IS - 4 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Toalá, Jesús Alberto A1 - Bowman, Dominic A1 - Van Reeth, Timothy A1 - Todt, Helge Tobias A1 - Dsilva, Karan A1 - Shenar, Tomer A1 - Koenigsberger, Gloria Suzanne A1 - Estrada-Dorado, Sandino A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer T1 - Multiple variability time-scales of the early nitrogen-rich Wolf-Rayet star WR 7 JF - Monthly notices of the Royal Astronomical Society N2 - We present the analysis of the optical variability of the early, nitrogen-rich Wolf-Rayet (WR) star WR 7. The analysis of multisector Transiting Exoplanet Survey Satellite (TESS) light curves and high-resolution spectroscopic observations confirm multiperiodic variability that is modulated on time-scales of years. We detect a dominant period of 2.6433 +/- 0.0005 d in the TESS sectors 33 and 34 light curves in addition to the previously reported high-frequency features from sector 7. We discuss the plausible mechanisms that may be responsible for such variability in WR 7, including pulsations, binarity, co-rotating interaction regions (CIRs), and clumpy winds. Given the lack of strong evidence for the presence of a stellar or compact companion, we suggest that WR 7 may pulsate in quasi-coherent modes in addition to wind variability likely caused by CIRs on top of stochastic low-frequency variability. WR 7 is certainly a worthy target for future monitoring in both spectroscopy and photometry to sample both the short (less than or similar to 1 d) and long (greater than or similar to 1000 d) variability time-scales. KW - stars: atmospheres KW - stars: evolution KW - stars: individual: WR 7 KW - stars: winds KW - outflows KW - stars: Wolft-Rayet Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1455 SN - 0035-8711 SN - 1365-2966 VL - 514 IS - 2 SP - 2269 EP - 2277 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Zaragoza-Cardiel, Javier A1 - Gómez-González, Víctor Mauricio Alfonso A1 - Mayya, Yalia Divakara A1 - Ramos-Larios, Gerardo T1 - Nebular abundance gradient in the Cartwheel galaxy using MUSE data JF - Monthly notices of the Royal Astronomical Society N2 - We here present the results from a detailed analysis of nebular abundances of commonly observed ions in the collisional ring galaxy Cartwheel using the Very Large Telescope (VLT) Multi-Unit Spectroscopic Explorer (MUSE) data set. The analysis includes 221 H II regions in the star-forming ring, in addition to 40 relatively fainter H a-emitting regions in the spokes, disc, and the inner ring. The ionic abundances of He, N, O, and Fe are obtained using the direct method (DM) for 9, 20, 20, and 17 ring H II regions, respectively, where the S++ temperature-sensitive line is detected. For the rest of the regions, including all the nebulae between the inner and the outer ring, we obtained O abundances using the strong-line method (SLM). The ring regions have a median 12 + log O/H = 8.19 +/- 0.15, log N/O = -1.57 +/- 0.09 and log Fe/O = -2.24 +/- 0.09 using the DM. Within the range of O abundances seen in the Cartwheel, the N/O and Fe/O values decrease proportionately with increasing O, suggesting local enrichment of O without corresponding enrichment of primary N and Fe. The O abundances of the disc H II regions obtained using the SLM show a well-defined radial gradient. The mean O abundance of the ring H II regions is lower by similar to 0.1 dex as compared to the extrapolation of the radial gradient. The observed trends suggest the preservation of the pre-collisional abundance gradient, displacement of most of the processed elements to the ring, as predicted by the recent simulation by Renaud et al., and post-collisional infall of metal-poor gas in the ring. KW - galaxies: star clusters KW - galaxies: individual KW - galaxies: abundances Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1423 SN - 0035-8711 SN - 1365-2966 VL - 514 IS - 2 SP - 1689 EP - 1705 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Meyer, Philipp A1 - Aghion, Erez A1 - Kantz, Holger T1 - Decomposing the effect of anomalous diffusion enables direct calculation of the Hurst exponent and model classification for single random paths JF - Journal of physics / Institute of Physics. A, Mathematical, nuclear and general N2 - Recently, a large number of research teams from around the world collaborated in the so-called 'anomalous diffusion challenge'. Its aim: to develop and compare new techniques for inferring stochastic models from given unknown time series, and estimate the anomalous diffusion exponent in data. We use various numerical methods to directly obtain this exponent using the path increments, and develop a questionnaire for model selection based on feature analysis of a set of known stochastic processes given as candidates. Here, we present the theoretical background of the automated algorithm which we put for these tasks in the diffusion challenge, as a counter to other pure data-driven approaches. KW - time-series analysis KW - decomposing anomalous diffusion KW - anomalous KW - diffusion exponent KW - process inference Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac72d4 SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 27 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bolotov, Dmitry A1 - Bolotov, Maxim I. A1 - Smirnov, Lev A. A1 - Osipov, Grigory V. A1 - Pikovsky, Arkady T1 - Synchronization regimes in an ensemble of phase oscillators coupled through a diffusion field JF - Radiophysics and quantum electronics N2 - We consider an ensemble of identical phase oscillators coupled through a common diffusion field. Using the Ott-Antonsen reduction, we develop dynamical equations for the complex local order parameter and the mean field. The regions of the existence and stability are determined for the totally synchronous, partially synchronous, and asynchronous spatially homogeneous states. A procedure of searching for inhomogeneous states as periodic trajectories of an auxiliary system of the ordinary differential equations is demonstrated. A scenario of emergence of chimera structures from homogeneous synchronous solutions is described. Y1 - 2022 U6 - https://doi.org/10.1007/s11141-022-10173-4 SN - 0033-8443 SN - 1573-9120 VL - 64 IS - 10 SP - 709 EP - 725 PB - Springer CY - New York ER - TY - JOUR A1 - Schaffenroth, Veronika A1 - Casewell, Sarah L. A1 - Schneider, D. A1 - Kilkenny, David A1 - Geier, Stephan A1 - Heber, Ulrich A1 - Irrgang, Andreas A1 - Przybilla, Norbert A1 - Marsh, Thomas R. A1 - Littlefair, Stuart P. A1 - Dhillon, Vik S. T1 - A quantitative in-depth analysis of the prototype sdB plus BD system SDSS J08205+0008 revisited in the Gaia era JF - Monthly notices of the Royal Astronomical Society N2 - Subdwarf B stars are core-helium-burning stars located on the extreme horizontal branch (EHB). Extensive mass loss on the red giant branch is necessary to form them. It has been proposed that substellar companions could lead to the required mass loss when they are engulfed in the envelope of the red giant star. J08205+0008 was the first example of a hot subdwarf star with a close, substellar companion candidate to be found. Here, we perform an in-depth re-analysis of this important system with much higher quality data allowing additional analysis methods. From the higher resolution spectra obtained with ESO-VLT/XSHOOTER, we derive the chemical abundances of the hot subdwarf as well as its rotational velocity. Using the Gaia parallax and a fit to the spectral energy distribution in the secondary eclipse, tight constraints to the radius of the hot subdwarf are derived. From a long-term photometric campaign, we detected a significant period decrease of -3.2(8) x 10(-12) dd(-1). This can be explained by the non-synchronized hot subdwarf star being spun up by tidal interactions forcing it to become synchronized. From the rate of period decrease we could derive the synchronization time-scale to be 4 Myr, much smaller than the lifetime on EHB. By combining all different methods, we could constrain the hot subdwarf to a mass of 0.39-0.50 M-circle dot and a radius of R-sdB = 0.194 +/- 0.008 R-circle dot, and the companion to 0.061-0.071 M-circle dot with a radius of R-comp = 0.092 +/- 0.005 R-circle dot, below the hydrogen-burning limit. We therefore confirm that the companion is most likely a massive brown dwarf. KW - stars: abundances KW - stars: atmospheres KW - stars: fundamental parameters KW - stars: horizontal branch KW - stars: low-mass KW - subdwarfs Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa3661 SN - 0035-8711 SN - 1365-2966 VL - 501 IS - 3 SP - 3847 EP - 3870 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Thomas, Timon A1 - Pfrommer, Christoph A1 - Pakmor, Rüdiger T1 - A finite volume method for two-moment cosmic ray hydrodynamics on a moving mesh JF - Monthly notices of the Royal Astronomical Society N2 - We present a new numerical algorithm to solve the recently derived equations of two-moment cosmic ray hydrodynamics (CRHD). The algorithm is implemented as a module in the moving mesh AREPO code. Therein, the anisotropic transport of cosmic rays (CRs) along magnetic field lines is discretized using a path-conservative finite volume method on the unstructured time-dependent Voronoi mesh of AREPO. The interaction of CRs and gyroresonant Alfven waves is described by short time-scale source terms in the CRHD equations. We employ a custom-made semi-implicit adaptive time stepping source term integrator to accurately integrate this interaction on the small light-crossing time of the anisotropic transport step. Both the transport and the source term integration step are separated from the evolution of the magnetohydrodynamical equations using an operator split approach. The new algorithm is tested with a variety of test problems, including shock tubes, a perpendicular magnetized discontinuity, the hydrodynamic response to a CR overpressure, CR acceleration of a warm cloud, and a CR blast wave, which demonstrate that the coupling between CR and magnetohydrodynamics is robust and accurate. We demonstrate the numerical convergence of the presented scheme using new linear and non-linear analytic solutions. KW - hydrodynamics KW - MHD KW - methods: numerical KW - cosmic rays Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab397 SN - 0035-8711 SN - 1365-2966 VL - 503 IS - 2 SP - 2242 EP - 2264 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Pikovskij, Arkadij T1 - Synchronization of oscillators with hyperbolic chaotic phases JF - Izvestija vysšich učebnych zavedenij : naučno-techničeskij žurnal = Izvestiya VUZ. Prikladnaja nelinejnaja dinamika = Applied nonlinear dynamics N2 - Topic and aim. Synchronization in populations of coupled oscillators can be characterized with order parameters that describe collective order in ensembles. A dependence of the order parameter on the coupling constants is well-known for coupled periodic oscillators. The goal of the study is to extend this analysis to ensembles of oscillators with chaotic phases, moreover with phases possessing hyperbolic chaos. Models and methods. Two models are studied in the paper. One is an abstract discrete-time map, composed with a hyperbolic Bernoulli transformation and with Kuramoto dynamics. Another model is a system of coupled continuous-time chaotic oscillators, where each individual oscillator has a hyperbolic attractor of Smale-Williams type. Results. The discrete-time model is studied with the Ott-Antonsen ansatz, which is shown to be invariant under the application of the Bernoulli map. The analysis of the resulting map for the order parameter shows, that the asynchronouis state is always stable, but the synchronous one becomes stable above a certain coupling strength. Numerical analysis of the continuous-time model reveals a complex sequence of transitions from an asynchronous state to a completely synchronous hyperbolic chaos, with intermediate stages that include regimes with periodic in time mean field, as well as with weakly and strongly irregular mean field variations. Discussion. Results demonstrate that synchronization of systems with hyperbolic chaos of phases is possible, although a rather strong coupling is required. The approach can be applied to other systems of interacting units with hyperbolic chaotic dynamics. N2 - Тема и цель. Синхронизация в популяциях связанных осцилляторов может быть охарактеризована параметрами порядка, описывающими коллективный порядок в ансамблях. Зависимость параметра порядка от коэффициентов связи хорошо известна для связанных периодических осцилляторов. Целью данного исследования является обобщение этого анализа на ансамбли осцилляторов с хаотическими фазами, а именно, с фазами, распределёнными на гиперболическом аттракторе. Модели и методы. В работе исследуются две модели. Первая – абстрактное отображение в дискретном времени, составленное из гиперболического преобразования Бернулли и динамики Курамото. Вторая – это система связанных хаотических осцилляторов в непрерывном времени, где каждый отдельный осциллятор имеет гиперболический аттрактор типа Смейла–Вильямса. Результаты. Модель в дискретном времени изучается с помощью подхода Отта–Антонсена, который, как показано, инвариантен при применении отображения Бернулли. Анализ полученного отображения по параметрам порядка показывает, что асинхронное состояние всегда устойчиво, а синхронное состояние становится устойчивым выше определенной силы связи. Численный анализ модели в непрерывном времени показывает сложную последовательность переходов из асинхронного состояния в полностью синхронный гиперболический хаос с промежуточными стадиями, которые включают режимы с периодическим во времени средним полем, а также со слабо и сильно нерегулярными вариациями среднего поля. Обсуждение. Результаты показывают, что синхронизация систем с гиперболическим фазовым хаосом возможна, хотя требуется довольно сильная связь. Данный подход может быть применен и к другим системам взаимодействующих звеньев с гиперболической хаотической динамикой. T2 - Синхронизация осцилляторов с гиперболическими хаотическими фазами KW - hyperbolic attractor KW - synchronization KW - collective dynamics KW - иперболический аттрактор KW - синхронизация KW - оллективная динамика Y1 - 2021 U6 - https://doi.org/10.18500/0869-6632-2021-29-1-78-87 SN - 0869-6632 SN - 2542-1905 VL - 29 IS - 1 SP - 78 EP - 87 PB - Saratov State University CY - Saratov ER - TY - JOUR A1 - Rosenau, Philip A1 - Pikovskij, Arkadij T1 - Waves in strongly nonlinear Gardner-like equations on a lattice JF - Nonlinearity / the Institute of Physics and the London Mathematical Society N2 - We introduce and study a family of lattice equations which may be viewed either as a strongly nonlinear discrete extension of the Gardner equation, or a non-convex variant of the Lotka-Volterra chain. Their deceptively simple form supports a very rich family of complex solitary patterns. Some of these patterns are also found in the quasi-continuum rendition, but the more intriguing ones, like interlaced pairs of solitary waves, or waves which may reverse their direction either spontaneously or due a collision, are an intrinsic feature of the discrete realm. KW - nonlinear lattice KW - solitary wave KW - Gardner equation KW - compacton Y1 - 2021 U6 - https://doi.org/10.1088/1361-6544/ac0f51 SN - 0951-7715 SN - 1361-6544 VL - 34 IS - 8 SP - 5872 EP - 5896 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Bekir, Marek A1 - Jelken, Joachim A1 - Jung, Se-Hyeong A1 - Pich, Andrij A1 - Pacholski, Claudia A1 - Kopyshev, Alexey A1 - Santer, Svetlana T1 - Dual responsiveness of microgels induced by single light stimulus JF - Applied physics letters N2 - We report on the multiple response of microgels triggered by a single optical stimulus. Under irradiation, the volume of the microgels is reversibly switched by more than 20 times. The irradiation initiates two different processes: photo-isomerization of the photo-sensitive surfactant, which forms a complex with the anionic microgel, rendering it photo-responsive; and local heating due to a thermo-plasmonic effect within the structured gold layer on which the microgel is deposited. The photo-responsivity is related to the reversible accommodation/release of the photo-sensitive surfactant depending on its photo-isomerization state, while the thermo-sensitivity is intrinsically built in. We show that under exposure to green light, the thermo-plasmonic effect generates a local hot spot in the gold layer, resulting in the shrinkage of the microgel. This process competes with the simultaneous photo-induced swelling. Depending on the position of the laser spot, the spatiotemporal control of reversible particle shrinking/swelling with a predefined extent on a per-second base can be implemented. Y1 - 2021 U6 - https://doi.org/10.1063/5.0036376 SN - 0003-6951 SN - 1077-3118 VL - 118 IS - 9 PB - American Institute of Physics CY - Melville ER - TY - JOUR A1 - Morris, Paul J. A1 - Bohdan, Artem A1 - Weidl, Martin S. A1 - Pohl, Martin T1 - Preacceleration in the Electron Foreshock. I. Electron Acoustic Waves JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - To undergo diffusive shock acceleration, electrons need to be preaccelerated to increase their energies by several orders of magnitude, else their gyroradii will be smaller than the finite width of the shock. In oblique shocks, where the upstream magnetic field orientation is neither parallel nor perpendicular to the shock normal, electrons can escape to the shock upstream, modifying the shock foot to a region called the electron foreshock. To determine the preacceleration in this region, we undertake particle-in-cell simulations of oblique shocks while varying the obliquity and in-plane angles. We show that while the proportion of reflected electrons is negligible for theta (Bn) = 74.degrees 3, it increases to R similar to 5% for theta (Bn) = 30 degrees, and that, via the electron acoustic instability, these electrons power electrostatic waves upstream with energy density proportional to R (0.6) and a wavelength approximate to 2 lambda (se), where lambda (se) is the electron skin length. While the initial reflection mechanism is typically a combination of shock-surfing acceleration and magnetic mirroring, we show that once the electrostatic waves have been generated upstream, they themselves can increase the momenta of upstream electrons parallel to the magnetic field. In less than or similar to 1% of cases, upstream electrons are prematurely turned away from the shock and never injected downstream. In contrast, a similar fraction is rescattered back toward the shock after reflection, reinteracts with the shock with energies much greater than thermal, and crosses into the downstream. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac69c7 SN - 0004-637X SN - 1538-4357 VL - 931 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Dineva, Ekaterina Ivanova A1 - Pearson, Jeniveve A1 - Ilyin, Ilya A1 - Verma, Meetu A1 - Diercke, Andrea A1 - Strassmeier, Klaus A1 - Denker, Carsten T1 - Characterization of chromospheric activity based on Sun-as-a-star spectral and disk-resolved activity indices JF - Astronomische Nachrichten = Astronomical notes N2 - The strong chromospheric absorption lines Ca ii H & K are tightly connected to stellar surface magnetic fields. Only for the Sun, spectral activity indices can be related to evolving magnetic features on the solar disk. The Solar Disk-Integrated (SDI) telescope feeds the Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) of the Large Binocular Telescope (LBT) at Mt. Graham International Observatory, Arizona, U.S.A. We present high-resolution, high-fidelity spectra that were recorded on 184 & 82 days in 2018 & 2019 and derive the Ca ii H & K emission ratio, that is, the S-index. In addition, we compile excess brightness and area indices based on full-disk Ca ii K-line-core filtergrams of the Chromospheric Telescope (ChroTel) at Observatorio del Teide, Tenerife, Spain and full-disk ultraviolet (UV) 1600 angstrom images of the Atmospheric Imaging Assembly (AIA) onboard the Solar Dynamics Observatory (SDO). Thus, Sun-as-a-star spectral indices are related to their counterparts derived from resolved images of the solar chromosphere. All indices display signatures of rotational modulation, even during the very low magnetic activity in the minimum of Solar Cycle 24. Bringing together different types of activity indices has the potential to join disparate chromospheric datasets yielding a comprehensive description of chromospheric activity across many solar cycles. KW - astronomical databases KW - miscellaneous KW - methods KW - data analysis KW - activity KW - Sun KW - atmosphere KW - chromosphere KW - techniques KW - spectroscopic Y1 - 2022 U6 - https://doi.org/10.1002/asna.20223996 SN - 0004-6337 SN - 1521-3994 VL - 343 IS - 5 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Willner, Sven N. A1 - Glanemann, Nicole A1 - Levermann, Anders T1 - Investment incentive reduced by climate damages can be restored by optimal policy JF - Nature Communications N2 - Increasing greenhouse gas emissions are likely to impact not only natural systems but economies worldwide. If these impacts alter future economic development, the financial losses will be significantly higher than the mere direct damages. So far, potentially aggravating investment responses were considered negligible. Here we consistently incorporate an empirically derived temperature-growth relation into the simple integrated assessment model DICE. In this framework we show that, if in the next eight decades varying temperatures impact economic growth as has been observed in the past three decades, income is reduced by similar to 20% compared to an economy unaffected by climate change. Hereof similar to 40% are losses due to growth effects of which similar to 50% result from reduced incentive to invest. This additional income loss arises from a reduced incentive for future investment in anticipation of a reduced return and not from an explicit climate protection policy. Under economically optimal climate-change mitigation, however, optimal investment would only be reduced marginally as mitigation efforts keep returns high. Y1 - 2021 U6 - https://doi.org/10.1038/s41467-021-23547-5 SN - 2041-1723 VL - 12 IS - 1 PB - Nature Publishing Group UK CY - London ER - TY - JOUR A1 - Pasemann, Gregor A1 - Flemming, Sven A1 - Alonso, Sergio A1 - Beta, Carsten A1 - Stannat, Wilhelm T1 - Diffusivity estimation for activator-inhibitor models BT - theory and application to intracellular dynamics of the actin cytoskeleton JF - Journal of nonlinear science N2 - A theory for diffusivity estimation for spatially extended activator-inhibitor dynamics modeling the evolution of intracellular signaling networks is developed in the mathematical framework of stochastic reaction-diffusion systems. In order to account for model uncertainties, we extend the results for parameter estimation for semilinear stochastic partial differential equations, as developed in Pasemann and Stannat (Electron J Stat 14(1):547-579, 2020), to the problem of joint estimation of diffusivity and parametrized reaction terms. Our theoretical findings are applied to the estimation of effective diffusivity of signaling components contributing to intracellular dynamics of the actin cytoskeleton in the model organism Dictyostelium discoideum. KW - Parametric drift estimation KW - Stochastic reaction– diffusion KW - systems KW - Maximum likelihood estimation KW - Actin cytoskeleton dynamics Y1 - 2021 U6 - https://doi.org/10.1007/s00332-021-09714-4 SN - 0938-8974 SN - 1432-1467 VL - 31 IS - 3 PB - Springer CY - New York ER - TY - JOUR A1 - Deb, Marwan A1 - Molho, Pierre A1 - Barbara, Bernard T1 - Magnetic damping of ferromagnetic and exchange resonance modes in a ferrimagnetic insulator JF - Physical review : B, Condensed matter and materials physics N2 - Understanding the damping is an important fundamental problem with widespread implications in magnetic technology. Ferrimagnetic materials offer a rich platform to explore not only the damping of the ferromagnetic mode, but also the damping of the high-frequency exchange mode very promising for ultrafast devices. Here we use time-resolved magneto-optical Kerr effect to investigate the ferromagnetic and exchange resonance modes and their damping in the bismuth-doped gadolinium iron garnet over a broad range of magnetic fields (0-10 T) and temperatures (50-300 K) including the magnetization and angular compensation points. These two resonance modes are excited via the inverse Faraday effect and unambiguously identified by their distinct frequency dependence on temperature and magnetic field. The temperature-dependent measurements in the external magnetic field H-ext = 2 T revealed that the intrinsic damping of the ferromagnetic mode is always smaller than the one of the exchange modes and both have a maximum near the angular compensation point. These results are fully consistent with recent predictions of atomistic simulations and a theory based on two-sublattice Landau-Lifshitz-Bloch equation. We also demonstrate that the damping of these modes varies differently as a function of H-ext. We explain the observed behaviors by considering the different features of the effective fields defining the precession frequencies of the ferromagnetic and exchange modes. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.105.014432 SN - 2469-9950 SN - 2469-9969 VL - 105 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Ulbricht, Alexander A1 - Sprengel, Maximilian A1 - Serrano-Munoz, Itziar A1 - Fritsch, Tobias A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Bruno, Giovanni T1 - Diffraction-based residual stress characterization in laser additive manufacturing of metals JF - Metals : open access journal N2 - Laser-based additive manufacturing methods allow the production of complex metal structures within a single manufacturing step. However, the localized heat input and the layer-wise manufacturing manner give rise to large thermal gradients. Therefore, large internal stress (IS) during the process (and consequently residual stress (RS) at the end of production) is generated within the parts. This IS or RS can either lead to distortion or cracking during fabrication or in-service part failure, respectively. With this in view, the knowledge on the magnitude and spatial distribution of RS is important to develop strategies for its mitigation. Specifically, diffraction-based methods allow the spatial resolved determination of RS in a non-destructive fashion. In this review, common diffraction-based methods to determine RS in laser-based additive manufactured parts are presented. In fact, the unique microstructures and textures associated to laser-based additive manufacturing processes pose metrological challenges. Based on the literature review, it is recommended to (a) use mechanically relaxed samples measured in several orientations as appropriate strain-free lattice spacing, instead of powder, (b) consider that an appropriate grain-interaction model to calculate diffraction-elastic constants is both material- and texture-dependent and may differ from the conventionally manufactured variant. Further metrological challenges are critically reviewed and future demands in this research field are discussed. KW - laser-based additive manufacturing KW - residual stress analysis KW - X-ray and KW - neutron diffraction KW - diffraction-elastic constants KW - strain-free lattice KW - spacing Y1 - 2021 U6 - https://doi.org/10.3390/met11111830 SN - 2075-4701 VL - 11 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Wendt, Martin A1 - Bouche, Nicolas F. A1 - Zabl, Johannes A1 - Schroetter, Ilane A1 - Muzahid, Sowgat T1 - MusE GAs FLOw and Wind V. The dust/metallicity-anisotropy of the circum-galactic medium JF - Monthly notices of the Royal Astronomical Society N2 - We investigate whether the dust content of the circum-galactic medium (CGM) depends on the location of the quasar sightline with respect to the galaxy major-axis using 13 galaxy-Mg II absorber pairs (9-81 kpc distance) from the MusE GAs FLOw and Wind (MEGAFLOW) survey at 0.4 < z < 1.4. The dust content of the CGM is obtained from [Zn/Fe] using ultraviolet and visual echelle spectrograph data. When a direct measurement of [Zn/Fe] is unavailable, we estimate the dust depletion from a method that consists in solving for the depletion from multiple singly ionized ions (e.g. Mn II, Cr II, and Zn II) since each ion depletes on dust grains at different rates. We find a positive correlation between the azimuthal angle and [Zn/Fe] with a Pearson's gamma = 0.70 +/- 0.14. The sightlines along the major axis show [Zn/Fe] < 0.5, whereas the [Zn/Fe] is > 0.8 along the minor axis. These results suggest that the CGM along the minor axis is on average more metal enriched (by approximate to 1 dex) than the gas located along the major axis of galaxies provided that dust depletion is a proxy for metallicity. This anisotropic distribution is consistent with recent results on outflow and accretion in hydro-dynamical simulations. KW - galaxies: evolution KW - galaxies: formation KW - intergalactic medium KW - quasars: KW - absorption lines Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab049 SN - 0035-8711 SN - 1365-2966 VL - 502 IS - 3 SP - 3733 EP - 3745 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Xu, Pengbo A1 - Metzler, Ralf A1 - Wang, Wanli T1 - Infinite density and relaxation for Levy walks in an external potential BT - Hermite polynomial approach JF - Physical review N2 - Levy walks are continuous-time random-walk processes with a spatiotemporal coupling of jump lengths and waiting times. We here apply the Hermite polynomial method to study the behavior of LWs with power-law walking time density for four different cases. First we show that the known result for the infinite density of an unconfined, unbiased LW is consistently recovered. We then derive the asymptotic behavior of the probability density function (PDF) for LWs in a constant force field, and we obtain the corresponding qth-order moments. In a harmonic external potential we derive the relaxation dynamic of the LW. For the case of a Poissonian walking time an exponential relaxation behavior is shown to emerge. Conversely, a power-law decay is obtained when the mean walking time diverges. Finally, we consider the case of an unconfined, unbiased LW with decaying speed v(r ) = v0/./r. When the mean walking time is finite, a universal Gaussian law for the position-PDF of the walker is obtained explicitly. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.105.044118 SN - 2470-0045 SN - 2470-0053 VL - 105 IS - 4 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Cherstvy, Andrey G. A1 - Vinod, Deepak A1 - Aghion, Erez A1 - Sokolov, Igor M. A1 - Metzler, Ralf T1 - Scaled geometric Brownian motion features sub- or superexponential ensemble-averaged, but linear time-averaged mean-squared displacements JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Various mathematical Black-Scholes-Merton-like models of option pricing employ the paradigmatic stochastic process of geometric Brownian motion (GBM). The innate property of such models and of real stock-market prices is the roughly exponential growth of prices with time [on average, in crisis-free times]. We here explore the ensemble- and time averages of a multiplicative-noise stochastic process with power-law-like time-dependent volatility, sigma(t) similar to t(alpha), named scaled GBM (SGBM). For SGBM, the mean-squared displacement (MSD) computed for an ensemble of statistically equivalent trajectories can grow faster than exponentially in time, while the time-averaged MSD (TAMSD)-based on a sliding-window averaging along a single trajectory-is always linear at short lag times Delta. The proportionality factor between these the two averages of the time series is Delta/T at short lag times, where T is the trajectory length, similarly to GBM. This discrepancy of the scaling relations and pronounced nonequivalence of the MSD and TAMSD at Delta/T << 1 is a manifestation of weak ergodicity breaking for standard GBM and for SGBM with s (t)-modulation, the main focus of our analysis. The analytical predictions for the MSD and mean TAMSD for SGBM are in quantitative agreement with the results of stochastic computer simulations. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.103.062127 SN - 2470-0045 SN - 2470-0053 VL - 103 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Sparre, Martin A1 - Whittingham, Joseph A1 - Damle, Mitali A1 - Hani, Maan H. A1 - Richter, Philipp A1 - Ellison, Sara L. A1 - Pfrommer, Christoph A1 - Vogelsberger, Mark T1 - Gas flows in galaxy mergers BT - supersonic turbulence in bridges, accretion from the circumgalactic medium, and metallicity dilution JF - Monthly notices of the Royal Astronomical Society N2 - In major galaxy mergers, the orbits of stars are violently perturbed, and gas is torqued to the centre, diluting the gas metallicity and igniting a starburst. In this paper, we study the gas dynamics in and around merging galaxies using a series of cosmological magnetohydrodynamical zoom-in simulations. We find that the gas bridge connecting the merging galaxies pre-coalescence is dominated by turbulent pressure, with turbulent Mach numbers peaking at values of 1.6-3.3. This implies that bridges are dominated by supersonic turbulence, and are thus ideal candidates for studying the impact of extreme environments on star formation. We also find that gas accreted from the circumgalactic medium (CGM) during the merger significantly contributes (27-51 percent) to the star formation rate (SFR) at the time of coalescence and drives the subsequent reignition of star formation in the merger remnant. Indeed, 19-53 percent of the SFR at z = 0 originates from gas belonging to the CGM prior the merger. Finally, we investigate the origin of the metallicity-diluted gas at the centre of merging galaxies. We show that this gas is rapidly accreted on to the Galactic Centre with a time-scale much shorter than that of normal star-forming galaxies. This explains why coalescing galaxies are not well-captured by the fundamental metallicity relation. KW - MHD KW - methods: numerical KW - galaxies: interactions KW - galaxies: starburst Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab3171 SN - 1365-2966 VL - 509 IS - 2 SP - 2720 EP - 2735 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Worseck, Gábor A1 - Khrykin, Ilya Sergeevich A1 - Hennawi, Joseph F. A1 - Prochaska, J. Xavier A1 - Farina, Emanuele Paolo T1 - Dating individual quasars with the He II proximity effect JF - Monthly notices of the Royal Astronomical Society N2 - Constraints on the time-scales of quasar activity are key to understanding the formation and growth of supermassive black holes (SMBHs), quasar triggering mechanisms, and possible feedback effects on their host galaxies. However, observational estimates of this so-called quasar lifetime are highly uncertain (t(Q) similar to 10(4)-10(9) yr), because most methods are indirect and involve many model-dependent assumptions. Direct evidence of earlier activity is gained from the higher ionization state of the intergalactic medium (IGM) in the quasar environs, observable as enhanced Ly alpha transmission in the so-called proximity zone. Due to the similar to 30 Myr equilibration time-scale of He II in the z similar to 3 IGM, the size of the He II proximity zone depends on the time the quasar had been active before our observation t(on) <= t(Q), enabling up to +/- 0.2 dex precise measurements of individual quasar on-times that are comparable to the e-folding time-scale t(S) <= 44 Myr of SMBH growth. Here we present the first statistical sample of 13 quasars whose accurate and precise systemic redshifts allow for measurements of sufficiently precise He II quasar proximity zone sizes between similar or equal to 2 and similar or equal to 15 proper Mpc from science-grade Hubble Space Telescope (HST) spectra. Comparing these sizes to predictions from cosmological hydrodynamical simulations post-processed with 1D radiative transfer, we infer a broad range of quasar on-times from t(on) less than or similar to 1Myr to t(on) > 30 Myr that does not depend on quasar luminosity, black hole mass, or Eddington ratio. These results point to episodic quasar activity over a long duty cycle, but do not rule out substantial SMBH growth during phases of radiative inefficiency or obscuration. KW - intergalactic medium KW - quasars: absorption lines KW - quasars: general KW - quasars: supermassive black holes KW - dark ages, reionization, first stars Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab1685 SN - 0035-8711 SN - 1365-2966 VL - 505 IS - 4 SP - 5084 EP - 5103 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Franović, Igor A1 - Omel'chenko, Oleh A1 - Wolfrum, Matthias T1 - Bumps, chimera states, and Turing patterns in systems of coupled active rotators JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - Self-organized coherence-incoherence patterns, called chimera states, have first been reported in systems of Kuramoto oscillators. For coupled excitable units, similar patterns where coherent units are at rest are called bump states. Here, we study bumps in an array of active rotators coupled by nonlocal attraction and global repulsion. We demonstrate how they can emerge in a supercritical scenario from completely coherent Turing patterns: a single incoherent unit appears in a homoclinic bifurcation, undergoing subsequent transitions to quasiperiodic and chaotic behavior, which eventually transforms into extensive chaos with many incoherent units. We present different types of transitions and explain the formation of coherence-incoherence patterns according to the classical paradigm of short-range activation and long-range inhibition. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevE.104.L052201 SN - 2470-0045 SN - 2470-0053 VL - 104 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Vinod, Deepak A1 - Cherstvy, Andrey G. A1 - Wang, Wei A1 - Metzler, Ralf A1 - Sokolov, Igor M. T1 - Nonergodicity of reset geometric Brownian motion JF - Physical review : E, Statistical, nonlinear and soft matter physics N2 - We derive. the ensemble-and time-averaged mean-squared displacements (MSD, TAMSD) for Poisson-reset geometric Brownian motion (GBM), in agreement with simulations. We find MSD and TAMSD saturation for frequent resetting, quantify the spread of TAMSDs via the ergodicity-breaking parameter and compute distributions of prices. General MSD-TAMSD nonequivalence proves reset GBM nonergodic. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevE.105.L012106 SN - 2470-0045 SN - 2470-0053 VL - 105 IS - 1 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Deb, Marwan A1 - Molho, Pierre A1 - Barbara, Bernard T1 - Tunable exchange-bias-like effect in bi-substituted Gadolinium iron garnet film JF - Physical review applied N2 - Using magneto-optical Faraday and Kerr measurements, we investigate the magnetic and magnetooptical properties of a thick Bi-substituted gadolinium iron garnet film over a broad range of wavelengths (250-850 nm) and temperatures (150-300 K), including the magnetization compensation point, TM. We observe an exchange-bias-like effect in the vicinity of TM. By slightly changing the sample temperature, we can precisely tune the bias field, which reaches a magnitude 6 times higher than the coercive field. We explain this phenomenon by considering the short-range superexchange interaction and a change in the magnetic behavior when moving from the surface to the bulk of the film. This finding may lead to the development of single-film magneto-optical devices based on the exchange-bias effect. Y1 - 2021 U6 - https://doi.org/10.1103/PhysRevApplied.15.054064 SN - 2331-7019 VL - 15 IS - 5 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Dörries, Timo A1 - Loos, Sarah Anna Marie A1 - Klapp, Sabine H. L. T1 - Correlation functions of non-Markovian systems out of equilibrium BT - analytical expressions beyond single-exponential memory JF - Journal of statistical mechanics: theory and experiment : JSTAT N2 - This paper is concerned with correlation functions of stochastic systems with memory, a prominent example being a molecule or colloid moving through a complex (e.g. viscoelastic) fluid environment. Analytical investigations of such systems based on non-Markovian stochastic equations are notoriously difficult. A common approximation is that of a single-exponential memory, corresponding to the introduction of one auxiliary variable coupled to the Markovian dynamics of the main variable. As a generalization, we here investigate a class of 'toy' models with altogether three degrees of freedom, giving rise to more complex forms of memory. Specifically, we consider, mainly on an analytical basis, the under- and overdamped motion of a colloidal particle coupled linearly to two auxiliary variables, where the coupling between variables can be either reciprocal or non-reciprocal. Projecting out the auxiliary variables, we obtain non-Markovian Langevin equations with friction kernels and colored noise, whose structure is similar to that of a generalized Langevin equation. For the present systems, however, the non-Markovian equations may violate the fluctuation-dissipation relation as well as detailed balance, indicating that the systems are out of equilibrium. We then study systematically the connection between the coupling topology of the underlying Markovian system and various autocorrelation functions. We demonstrate that already two auxiliary variables can generate surprisingly complex (e.g. non-monotonic or oscillatory) memory and correlation functions. Finally, we show that a minimal overdamped model with two auxiliary variables and suitable non-reciprocal coupling yields correlation functions resembling those describing hydrodynamic backflow in an optical trap. KW - correlation functions KW - memory effects KW - friction Y1 - 2021 U6 - https://doi.org/10.1088/1742-5468/abdead SN - 1742-5468 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Schlemm, Tanja A1 - Feldmann, Johannes A1 - Winkelmann, Ricarda A1 - Levermann, Anders T1 - Stabilizing effect of melange buttressing on the marine ice-cliff instability of the West Antarctic Ice Sheet JF - The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union N2 - Owing to global warming and particularly high regional ocean warming, both Thwaites and Pine Island Glaciers in the Amundsen region of the Antarctic Ice Sheet could lose their buttressing ice shelves over time. We analyse the possible consequences using the parallel ice sheet model (PISM), applying a simple cliff-calving parameterization and an ice melange-buttressing model. We find that the instantaneous loss of ice-shelf buttressing, due to enforced ice-shelf melting, initiates grounding-line retreat and triggers marine ice sheet instability (MISI). As a consequence, the grounding line progresses into the interior of the West Antarctic Ice Sheet and leads to a sea level contribution of 0.6 m within 100 a. By subjecting the exposed ice cliffs to cliff calving using our simplified parameterization, we also analyse marine ice cliff instability (MICI). In our simulations it can double or even triple the sea level contribution depending on the only loosely constrained parameter that determines the maximum cliff-calving rate. The speed of MICI depends on this upper bound of the calving rate, which is given by the ice melange buttressing the glacier. However, stabilization of MICI may occur for geometric reasons. Because the embayment geometry changes as MICI advances into the interior of the ice sheet, the upper bound on calving rates is reduced and the progress of MICI is slowed down. Although we cannot claim that our simulations bear relevant quantitative estimates of the effect of ice-melange buttressing on MICI, the mechanism has the potential to stop the instability. Further research is needed to evaluate its role for the past and future evolution of the Antarctic Ice Sheet. Y1 - 2022 U6 - https://doi.org/10.5194/tc-16-1979-2022 SN - 1994-0416 SN - 1994-0424 VL - 16 IS - 5 SP - 1979 EP - 1996 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Wang, Suhao A1 - Zuo, Guangzheng A1 - Kim, Jongho A1 - Sirringhaus, Henning T1 - Progress of Conjugated Polymers as Emerging Thermoelectric Materials JF - Progress in polymer science N2 - Thanks to the combined effort s of scientist s in several research fields, the preceding decade has witnessed considerable progress in the use of conjugated polymers as emerging thermoelectric materials leading to significant improvements in performance and demonstration of a number of diverse applications. Despite these recent advances, systematic assessments of the impact of molecular design on thermoelectric properties are scarce. Although several reviews marginally highlight the role of chemical structure, the understanding of structure-performance relationships is still fragmented. An in-depth understanding of the relationship between molecular structure and thermoelectric properties will enable the rational design of next-generation thermoelectric polymers. To this end, this review showcases the state-of-the-art thermoelectric polymers, discusses structure-performance relationships, suggests strategies for improving thermoelectric performance that go beyond molecular design, and highlights some of the most impressive applications of thermoelectric polymers. KW - Organic thermoelectrics KW - Seebeck coefficient KW - Doping KW - Polaron KW - Conducting polymers KW - Structure-performance relationship Y1 - 2022 U6 - https://doi.org/10.1016/j.progpolymsci.2022.101548 SN - 0079-6700 SN - 1873-1619 VL - 129 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Ulbricht, Alexander A1 - Mohr, Gunther A1 - Altenburg, Simon J. A1 - Oster, Simon A1 - Maierhofer, Christiane A1 - Bruno, Giovanni T1 - Can potential defects in LPBF be healed from the laser exposure of subsequent layers? BT - A quantitative study JF - Metals : open access journal N2 - Additive manufacturing (AM) of metals and in particular laser powder bed fusion (LPBF) enables a degree of freedom in design unparalleled by conventional subtractive methods. To ensure that the designed precision is matched by the produced LPBF parts, a full understanding of the interaction between the laser and the feedstock powder is needed. It has been shown that the laser also melts subjacent layers of material underneath. This effect plays a key role when designing small cavities or overhanging structures, because, in these cases, the material underneath is feed-stock powder. In this study, we quantify the extension of the melt pool during laser illumination of powder layers and the defect spatial distribution in a cylindrical specimen. During the LPBF process, several layers were intentionally not exposed to the laser beam at various locations, while the build process was monitored by thermography and optical tomography. The cylinder was finally scanned by X-ray computed tomography (XCT). To correlate the positions of the unmolten layers in the part, a staircase was manufactured around the cylinder for easier registration. The results show that healing among layers occurs if a scan strategy is applied, where the orientation of the hatches is changed for each subsequent layer. They also show that small pores and surface roughness of solidified material below a thick layer of unmolten material (>200 mu m) serve as seeding points for larger voids. The orientation of the first two layers fully exposed after a thick layer of unmolten powder shapes the orientation of these voids, created by a lack of fusion. KW - selective laser melting (SLM) KW - additive manufacturing (AM) KW - process KW - monitoring KW - infrared thermography KW - optical tomography KW - X-ray computed KW - tomography (XCT) KW - healing KW - in situ monitoring Y1 - 2021 U6 - https://doi.org/10.3390/met11071012 SN - 2075-4701 VL - 11 IS - 7 PB - MDPI CY - Basel ER - TY - JOUR A1 - Vilk, Ohad A1 - Campos, Daniel A1 - Méndez, Vicenç A1 - Lourie, Emmanuel A1 - Nathan, Ran A1 - Assaf, Michael T1 - Phase transition in a non-Markovian animal exploration model with preferential returns JF - Physical review letters N2 - We study a non-Markovian and nonstationary model of animal mobility incorporating both exploration and memory in the form of preferential returns. Exact results for the probability of visiting a given number of sites are derived and a practical WKB approximation to treat the nonstationary problem is developed. A mean-field version of this model, first suggested by Song et al., [Modelling the scaling properties of human mobility, Nat. Phys. 6, 818 (2010)] was shown to well describe human movement data. We show that our generalized model adequately describes empirical movement data of Egyptian fruit bats (Rousettus aegyptiacus) when accounting for interindividual variation in the population. We also study the probability of visiting any site a given number of times and derive a mean-field equation. Our analysis yields a remarkable phase transition occurring at preferential returns which scale linearly with past visits. Following empirical evidence, we suggest that this phase transition reflects a trade-off between extensive and intensive foraging modes. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevLett.128.148301 SN - 0031-9007 SN - 1079-7114 VL - 128 IS - 14 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Mattern, Maximilian A1 - von Reppert, Alexander A1 - Zeuschner, Steffen Peer A1 - Pudell, Jan-Etienne A1 - Kühne, F. A1 - Diesing, Detlef A1 - Herzog, Marc A1 - Bargheer, Matias T1 - Electronic energy transport in nanoscale Au/Fe hetero-structures in the perspective of ultrafast lattice dynamics JF - Applied physics letters N2 - We study the ultrafast electronic transport of energy in a photoexcited nanoscale Au/Fe hetero-structure by modeling the spatiotemporal profile of energy densities that drives transient strain, which we quantify by femtosecond x-ray diffraction. This flow of energy is relevant for intrinsic demagnetization and ultrafast spin transport. We measured lattice strain for different Fe layer thicknesses ranging from few atomic layers to several nanometers and modeled the spatiotemporal flow of energy densities. The combination of a high electron-phonon coupling coefficient and a large Sommerfeld constant in Fe is found to yield electronic transfer of nearly all energy from Au to Fe within the first hundreds of femtoseconds. Y1 - 2022 U6 - https://doi.org/10.1063/5.0080378 SN - 0003-6951 SN - 1077-3118 VL - 120 IS - 9 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Ilin, Ekaterina A1 - Poppenhäger, Katja T1 - Searching for flaring star-planet interactions in AU Mic TESS observations JF - Monthly notices of the Royal Astronomical Society N2 - Planets that closely orbit magnetically active stars are thought to be able to interact with their magnetic fields in a way that modulates stellar activity. This modulation in phase with the planetary orbit, such as enhanced X-ray activity, chromospheric spots, radio emission, or flares, is considered the clearest sign of magnetic star-planet interaction (SPI). However, the magnitude of this interaction is poorly constrained, and the intermittent nature of the interaction is a challenge for observers. AU Mic is an early M dwarf, and the most actively flaring planet host detected to date. Its innermost companion, AU Mic b, is a promising target for magnetic SPI observations. We used optical light curves of AU Mic obtained by the Transiting Exoplanet Survey Satellite to search for signs of flaring SPI with AU Mic b using a customized Anderson-Darling test. In the about 50 d of observations, the flare distributions with orbital, rotational, and synodic periods were generally consistent with intrinsic stellar flaring. We found the strongest deviation (p = 0.07, n = 71) from intrinsic flaring with the orbital period of AU Mic b, in the high-energy half of our sample (ED > 1 s). If it reflects the true SPI signal from AU Mic b, extending the observing time by a factor of 2-3 will yield a >3 sigma detection. Continued monitoring of AU Mic may therefore reveal flaring SPI with orbital phase, while rotational modulation will smear out due to the star's strong differential rotation. KW - planets and satellites: individual: AU Mic b KW - planet-star interactions KW - stars: flare KW - stars: individual: AU Mic Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac1232 SN - 0035-8711 SN - 1365-2966 VL - 513 IS - 3 SP - 4579 EP - 4586 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Geier, Stephan A1 - Dorsch, Matti A1 - Pelisoli, Ingrid A1 - Reindl, Nicole A1 - Heber, Ulrich A1 - Irrgang, Andreas T1 - Radial velocity variability and the evolution of hot subdwarf stars JF - Astronomy and astrophysics : an international weekly journal N2 - Hot subdwarf stars represent a late and peculiar stage in the evolution of low-mass stars, since they are likely formed by close binary interactions. In this work, we perform a radial velocity (RV) variability study of a sample of 646 hot subdwarfs with multi-epoch radial velocities based on spectra from Sloan Digital Sky Survey (SDSS) and Large Sky Area Multi-Object Fibre Spectroscopic Telescope (LAMOST). The atmospheric parameters and RVs were taken from the literature. For stars with archival spectra but without literature values, we determined the parameters by fitting model atmospheres. In addition, we redetermined the atmospheric parameters and RVs for all the He-enriched sdO/Bs. This broad sample allowed us to study RV-variability as a function of the location in the T-eff - log g- and T-eff - log n(He)/n(H) diagrams in a statistically significant way. We used the fraction of RV-variable stars and the distribution of the maximum RV variations Delta RVmax as diagnostics. Both indicators turned out to be quite inhomogeneous across the studied parameter ranges. A striking feature is the completely dissimilar behaviour of He-poor and He-rich hot subdwarfs. While the former have a high fraction of close binaries, almost no significant RV variations could be detected for the latter. This has led us to the conclusion that there is likely no evolutionary connection between these subtypes. On the other hand, intermediate He-rich- and extreme He-rich sdOB/Os are more likely to be related. Furthermore, we conclude that the vast majority of this population is formed via one or several binary merger channels. Hot subdwarfs with temperatures cooler than similar to 24 000 K tend to show fewer and smaller RV-variations. These objects might constitute a new subpopulation of binaries with longer periods and late-type or compact companions. The RV-variability properties of the extreme horizontal branch (EHB) and corresponding post-EHB populations of the He-poor hot subdwarfs match and confirm the predicted evolutionary connection between them. Stars found below the canonical EHB at somewhat higher surface gravities show large RV variations and a high RV variability fraction. These properties are consistent with most of them being low-mass EHB stars or progenitors of low-mass helium white dwarfs in close binaries. KW - subdwarfs KW - binaries: spectroscopic KW - stars: horizontal-branch Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202143022 SN - 0004-6361 SN - 1432-0746 VL - 661 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Bapolisi, Alain Murhimalika A1 - Kielb, Patrycja A1 - Bekir, Marek A1 - Lehnen, Anne-Catherine A1 - Radon, Christin A1 - Laroque, Sophie A1 - Wendler, Petra A1 - Müller-Werkmeister, Henrike A1 - Hartlieb, Matthias T1 - Antimicrobial polymers of linear and bottlebrush architecture BT - Probing the membrane interaction and physicochemical properties JF - Macromolecular rapid communications : publishing the newsletters of the European Polymer Federation N2 - Polymeric antimicrobial peptide mimics are a promising alternative for the future management of the daunting problems associated with antimicrobial resistance. However, the development of successful antimicrobial polymers (APs) requires careful control of factors such as amphiphilic balance, molecular weight, dispersity, sequence, and architecture. While most of the earlier developed APs focus on random linear copolymers, the development of APs with advanced architectures proves to be more potent. It is recently developed multivalent bottlebrush APs with improved antibacterial and hemocompatibility profiles, outperforming their linear counterparts. Understanding the rationale behind the outstanding biological activity of these newly developed antimicrobials is vital to further improving their performance. This work investigates the physicochemical properties governing the differences in activity between linear and bottlebrush architectures using various spectroscopic and microscopic techniques. Linear copolymers are more solvated, thermo-responsive, and possess facial amphiphilicity resulting in random aggregations when interacting with liposomes mimicking Escheria coli membranes. The bottlebrush copolymers adopt a more stable secondary conformation in aqueous solution in comparison to linear copolymers, conferring rapid and more specific binding mechanism to membranes. The advantageous physicochemical properties of the bottlebrush topology seem to be a determinant factor in the activity of these promising APs. KW - antimicrobial polymers KW - bottlebrush copolymers KW - liposomes KW - membrane KW - interactions KW - quartz crystal microbalance Y1 - 2022 U6 - https://doi.org/10.1002/marc.202200288 SN - 1521-3927 SN - 1022-1336 VL - 43 IS - 19 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Hassanin, Alshaimaa A1 - Kliem, Bernhard A1 - Seehafer, Norbert A1 - Török, Tibor T1 - A model of homologous confined and ejective eruptions involving kink instability and flux cancellation JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - In this study, we model a sequence of a confined and a full eruption, employing the relaxed end state of the confined eruption of a kink-unstable flux rope as the initial condition for the ejective one. The full eruption, a model of a coronal mass ejection, develops as a result of converging motions imposed at the photospheric boundary, which drive flux cancellation. In this process, parts of the positive and negative external flux converge toward the polarity inversion line, reconnect, and cancel each other. Flux of the same amount as the canceled flux transfers to a flux rope, increasing the free magnetic energy of the coronal field. With sustained flux cancellation and the associated progressive weakening of the magnetic tension of the overlying flux, we find that a flux reduction of approximate to 11% initiates the torus instability of the flux rope, which leads to a full eruption. These results demonstrate that a homologous full eruption, following a confined one, can be driven by flux cancellation. Y1 - 2022 U6 - https://doi.org/10.3847/2041-8213/ac64a9 SN - 2041-8205 SN - 2041-8213 VL - 929 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Reindl, Nicole A1 - Schaffenroth, Veronika A1 - Filiz, Semih A1 - Geier, Stephan A1 - Pelisoli, Ingrid A1 - Kepler, Souza Oliveira T1 - Mysterious, variable, and extremely hot BT - White dwarfs showing ultra-high excitation lines: I. Photometric variability JF - Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO) N2 - Context. About 10% of all stars exhibit absorption lines of ultra-highly excited (UHE) metals (e.g., O VIII) in their optical spectra when entering the white dwarf cooling sequence. This is something that has never been observed in any other astrophysical object, and poses a decades-long mystery in our understanding of the late stages of stellar evolution. The recent discovery of a UHE white dwarf that is both spectroscopically and photometrically variable led to the speculation that the UHE lines might be created in a shock-heated circumstellar magnetosphere. Aims. We aim to gain a better understanding of these mysterious objects by studying the photometric variability of the whole population of UHE white dwarfs, and white dwarfs showing only the He II line problem, as both phenomena are believed to be connected. Methods. We investigate (multi-band) light curves from several ground- and space-based surveys of all 16 currently known UHE white dwarfs (including one newly discovered) and eight white dwarfs that show only the He II line problem. Results. We find that 75(-13)(+8) % of the UHE white dwarfs, and 75(-19)(+9)% of the He II line problem white dwarfs are significantly photometrically variable, with periods ranging from 0.22 d to 2.93 d and amplitudes from a few tenths to a few hundredths of a magnitude. The high variability rate is in stark contrast to the variability rate amongst normal hot white dwarfs (we find 9(2)(+4)%), marking UHE and He II line problem white dwarfs as a new class of variable stars. The period distribution of our sample agrees with both the orbital period distribution of post-common-envelope binaries and the rotational period distribution of magnetic white dwarfs if we assume that the objects in our sample will spin-up as a consequence of further contraction. Conclusions. We find further evidence that UHE and He II line problem white dwarfs are indeed related, as concluded from their overlap in the Gaia HRD, similar photometric variability rates, light-curve shapes and amplitudes, and period distributions. The lack of increasing photometric amplitudes towards longer wavelengths, as well as the nondetection of optical emission lines arising from the highly irradiated face of a hypothetical secondary in the optical spectra of our stars, makes it seem unlikely that an irradiated late-type companion is the origin of the photometric variability. Instead, we believe that spots on the surfaces of these stars and/or geometrical effects of circumstellar material might be responsible. KW - white dwarfs KW - stars: variables: general KW - starspots KW - binaries: close Y1 - 2021 U6 - https://doi.org/10.1051/0004-6361/202140289 SN - 1432-0746 VL - 647 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Tomovski, Živorad A1 - Metzler, Ralf A1 - Gerhold, Stefan T1 - Fractional characteristic functions, and a fractional calculus approach for moments of random variables JF - Fractional calculus and applied analysis : an international journal for theory and applications N2 - In this paper we introduce a fractional variant of the characteristic function of a random variable. It exists on the whole real line, and is uniformly continuous. We show that fractional moments can be expressed in terms of Riemann-Liouville integrals and derivatives of the fractional characteristic function. The fractional moments are of interest in particular for distributions whose integer moments do not exist. Some illustrative examples for particular distributions are also presented. KW - Fractional calculus (primary) KW - Characteristic function KW - Mittag-Leffler KW - function KW - Fractional moments KW - Mellin transform Y1 - 2022 U6 - https://doi.org/10.1007/s13540-022-00047-x SN - 1314-2224 VL - 25 IS - 4 SP - 1307 EP - 1323 PB - De Gruyter CY - Berlin ; Boston ER - TY - JOUR A1 - Gerhard, Reimund A1 - Kacprzyk, Ryszard T1 - Paul Böning - early electret researcher in Shanghai and Wroclaw (1922-1945) JF - IEEE transactions on dielectrics and electrical insulation N2 - The scientific career and the research activities of Paul Boening, especially during his tenures at Tongji University in Shanghai (Woosung Campus, 1922-1936) and the Technical University of Wroclaw (TH Breslau, 1936-1945), are briefly reviewed. In particular, Boening's pioneering investigations in the area of electrets and space charge in dielectrics are emphasized. We attempt to shed some light on the significant achievements of a virtually unknown contributor to the early history of electrets and of space-charge research and high-voltage engineering, during the 1920s and 1930s. It should be noted that dielectrics research was a truly international endeavor already at that time. KW - dielectrics KW - electrets KW - electrostatic KW - experiments KW - (high-)voltage measurements KW - space charge Y1 - 2022 U6 - https://doi.org/10.1109/TDEI.2022.3168372 SN - 1070-9878 SN - 1558-4135 VL - 29 IS - 3 SP - 853 EP - 858 PB - Institute of Electrical and Electronics Engineers CY - New York, NY ER - TY - JOUR A1 - Grebenkov, Denis S. T1 - An encounter-based approach for restricted diffusion with a gradient drift JF - Journal of physics : A, Mathematical and theoretical N2 - We develop an encounter-based approach for describing restricted diffusion with a gradient drift toward a partially reactive boundary. For this purpose, we introduce an extension of the Dirichlet-to-Neumann operator and use its eigenbasis to derive a spectral decomposition for the full propagator, i.e. the joint probability density function for the particle position and its boundary local time. This is the central quantity that determines various characteristics of diffusion-influenced reactions such as conventional propagators, survival probability, first-passage time distribution, boundary local time distribution, and reaction rate. As an illustration, we investigate the impact of a constant drift onto the boundary local time for restricted diffusion on an interval. More generally, this approach accesses how external forces may influence the statistics of encounters of a diffusing particle with the reactive boundary. KW - boundary local time KW - reflected Brownian motion KW - diffusion-influenced KW - reactions KW - surface reactivity KW - Robin boundary condition KW - Heterogeneous KW - catalysis Y1 - 2022 U6 - https://doi.org/10.1088/1751-8121/ac411a SN - 1751-8113 SN - 1751-8121 VL - 55 IS - 4 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Drechsler, Martin A1 - Wätzold, Frank A1 - Grimm, Volker T1 - The hitchhiker's guide to generic ecological-economic modelling of land-use-based biodiversity conservation policies JF - Ecological modelling : international journal on ecological modelling and engineering and systems ecolog N2 - Biodiversity loss is a result of interacting ecological and economic factors, and it must be addressed through an analysis of biodiversity conservation policies. Ecological-economic modelling is a helpful approach to this analysis, but it is also challenging since modellers often have a specific disciplinary background and tend to misrepresent either the ecological or economic aspects. Here, we introduce some of the most important concepts from both disciplines, and since the two modelling cultures also differ between the two disciplines, we present an integrated, consistent guide through all the steps of generic ecological-economic modelling, such as formulation of the research question, development of the conceptual model, model parametrisation and analysis, and interpretation of model results. Although we focus on generic models aimed at a general understanding of causes and remedies for biodiversity loss, the concepts and guidance provided here may also help in the modelling of more specific conservation problems. This guide is aimed at the intersection of three disciplines: ecology, economics and mathematical modelling, and addresses readers who have some knowledge in at least one of these disciplines and want to learn about the others to build and analyse generic ecological-economic models. Compared to textbooks, the guide focuses on the practice of modelling rather than lengthy explanations of theoretical concepts. We attempt to demonstrate that generic ecological-economic modelling does not require magical powers and instead is a manageable exercise. KW - Biodiversity KW - Conservation policy KW - Ecological-economic modelling KW - Generic modelling KW - Land use Y1 - 2022 U6 - https://doi.org/10.1016/j.ecolmodel.2021.109861 SN - 0304-3800 SN - 1872-7026 VL - 465 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Thayumanasundaram, Savitha A1 - Raman Venkatesan, Thulasinath A1 - Ousset, Aymeric A1 - Van Hollebeke, Kim A1 - Aerts, Luc A1 - Wubbenhorst, Michael A1 - Van den Mooter, Guy T1 - Complementarity of mDSC, DMA, and DRS Techniques in the Study of T-g and Sub-T-g Transitions in Amorphous Solids BT - PVPVA, Indomethacin, and Amorphous Solid Dispersions Based on Indomethacin/PVPVA JF - Molecular pharmaceutics N2 - Recently, glasses, a subset of amorphous solids, have gained attention in various fields, such as polymer chemistry, optical fibers, and pharmaceuticals. One of their characteristic features, the glass transition temperature (T-g) which is absent in 100% crystalline materials, influences several material properties, such as free volume, enthalpy, viscosity, thermodynamic transitions, molecular motions, physical stability, mechanical properties, etc. In addition to T-g, there may be several other temperaturedependent transitions known as sub-T-g transitions (or beta-, gamma-, and delta-relaxations) which are identified by specific analytical techniques. The study of T-g and sub-T-g transitions occurring in amorphous solids has gained much attention because of its importance in understanding molecular kinetics, and it requires the combination of conventional and novel characterization techniques. In the present study, three different analytical techniques [modulated differential scanning calorimetry (mDSC), dynamic mechanical analysis (DMA), and dielectric relaxation spectroscopy (DRS)] were used to perform comprehensive qualitative/quantitative characterization of molecular relaxations, miscibility, and molecular interactions present in an amorphous polymer (PVPVA), a model drug (indomethacin, IND), and IND/PVPVA-based amorphous solid dispersions (ASDs). This is the first ever reported DMA study on PVPVA in its powder form, which avoids the contribution of solvent to the mechanical properties when a selfstanding polymer film is used. A good correlation between the techniques in determining the T-g value of PVPVA, IND, and IND/ PVPVA-based ASDs is established, and the negligible difference (within 10 degrees C) is attributed to the different material properties assessed in each technique. However, the overall T-g behavior, the decrease in T-g with increase in drug loading in ASDs, is universally observed in all the above-mentioned techniques, which reveals their complementarity. DMA and DRS techniques are used to study the different sub-T-g transitions present in PVPVA, amorphous IND, and IND/PVPVA-based ASDs because these transitions are normally too weak or too broad for mDSC to detect. For IND/PVPVA-based ASDs, both techniques show a shift of sub-T-g transitions (or secondary relaxation peaks) toward the high-temperature region from -140 to -45 degrees C. Thus, this paper outlines the usage of different solid-state characterization techniques in understanding the different molecular dynamics present in the polymer, drug, and their interactions in ASDs with the integrated information obtained from individual techniques. KW - amorphous solids KW - PVPVA KW - indomethacin KW - ASDs KW - dynamic mechanical KW - analysis KW - dielectric relaxation spectroscopy KW - sub-T-g relaxations KW - relaxation dynamics Y1 - 2022 U6 - https://doi.org/10.1021/acs.molpharmaceut.2c00123 SN - 1543-8384 SN - 1543-8392 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Varghese, Alan J. A1 - Chechkin, Aleksei A1 - Metzler, Ralf A1 - Sujith, Raman I. T1 - Capturing multifractality of pressure fluctuations in thermoacoustic systems using fractional-order derivatives JF - Chaos : an interdisciplinary journal of nonlinear science N2 - The stable operation of a turbulent combustor is not completely silent; instead, there is a background of small amplitude aperiodic acoustic fluctuations known as combustion noise. Pressure fluctuations during this state of combustion noise are multifractal due to the presence of multiple temporal scales that contribute to its dynamics. However, existing models are unable to capture the multifractality in the pressure fluctuations. We conjecture an underlying fractional dynamics for the thermoacoustic system and obtain a fractional-order model for pressure fluctuations. The data from this model has remarkable visual similarity to the experimental data and also has a wide multifractal spectrum during the state of combustion noise. Quantitative similarity with the experimental data in terms of the Hurst exponent and the multifractal spectrum is observed during the state of combustion noise. This model is also able to produce pressure fluctuations that are qualitatively similar to the experimental data acquired during intermittency and thermoacoustic instability. Furthermore, we argue that the fractional dynamics vanish as we approach the state of thermoacoustic instability. Y1 - 2021 U6 - https://doi.org/10.1063/5.0032585 SN - 1054-1500 SN - 1089-7682 VL - 31 IS - 3 PB - American Institute of Physics, AIP CY - Melville ER - TY - JOUR A1 - Rubio, Gabriel A1 - Toalá, Jesús Alberto A1 - Todt, Helge Tobias A1 - Sabin, Laurence A1 - Santamaría, Edgar A1 - Ramos-Larios, Gerardo A1 - Martín Guerrero, José David T1 - Planetary nebulae with Wolf-Rayet-type central stars - IV. NGC 1501 and its mixing layer JF - Monthly notices of the Royal Astronomical Society N2 - Theory predicts that the temperature of the X-ray-emitting gas (similar to 10(6) K) detected from planetary nebulae (PNe) is a consequence of mixing or thermal conduction when in contact with the ionized outer rim (similar to 10(4) K). Gas at intermediate temperatures (similar to 10(5) K) can be used to study the physics of the production of X-ray-emitting gas, via C iv, N v, and O vi ions. Here, we model the stellar atmosphere of the CSPN of NGC 1501 to demonstrate that even this hot H-deficient [WO4]-type star cannot produce these emission lines by photoionization. We use the detection of the C iv lines to assess the physical properties of the mixing region in this PNe in comparison with its X-ray-emitting gas, rendering NGC 1501 only the second PNe with such characterization. We extend our predictions to the hottest [WO1] and cooler [WC5] spectral types and demonstrate that most energetic photons are absorbed in the dense winds of [WR] CSPN and highly ionized species can be used to study the physics behind the production of hot bubbles in PNe. We found that the UV observations of NGC 2452, NGC 6751, and NGC 6905 are consistent with the presence mixing layers and hot bubbles, providing excellent candidates for future X-ray observations. KW - stars: evolution KW - stars: individual: WD0402+607 KW - stars: winds KW - outflows; KW - stars: Wolf-Rayet KW - planetary nebulae: general KW - planetary nebulae KW - individual: NGC1501 Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac3011 SN - 0035-8711 SN - 1365-2966 VL - 517 IS - 4 SP - 5166 EP - 5179 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Smirnov, Artem A1 - Shprits, Yuri Y. A1 - Allison, Hayley A1 - Aseev, Nikita A1 - Drozdov, Alexander A1 - Kollmann, Peter A1 - Wang, Dedong A1 - Saikin, Anthony T1 - Storm-Time evolution of the Equatorial Electron Pitch Angle Distributions in Earth's Outer Radiation Belt JF - Frontiers in astronomy and space sciences N2 - In this study we analyze the storm-time evolution of equatorial electron pitch angle distributions (PADs) in the outer radiation belt region using observations from the Magnetic Electron Ion Spectrometer (MagEIS) instrument aboard the Van Allen Probes in 2012-2019. The PADs are approximated using a sum of the first, third and fifth sine harmonics. Different combinations of the respective coefficients refer to the main PAD shapes within the outer radiation belt, namely the pancake, flat-top, butterfly and cap PADs. We conduct a superposed epoch analysis of 129 geomagnetic storms and analyze the PAD evolution for day and night MLT sectors. PAD shapes exhibit a strong energy-dependent response. At energies of tens of keV, the PADs exhibit little variation throughout geomagnetic storms. Cap PADs are mainly observed at energies < 300 keV, and their extent in L shrinks with increasing energy. The cap distributions transform into the pancake PADs around the main phase of the storm on the nightside, and then come back to their original shapes during the recovery phase. At higher energies on the dayside, the PADs are mainly pancake during pre-storm conditions and become more anisotropic during the main phase. The quiet-time butterfly PADs can be observed on the nightside at L> 5.6. During the main phase, butterfly PADs have stronger 90 degrees-minima and can be observed at lower L-shells (down to L = 5), then transitioning into flat-top PADs at L similar to 4.5 - 5 and pancake PADs at L < 4.5. The resulting PAD coefficients for different energies, locations and storm epochs can be used to test the wave models and physics-based radiation belt codes in terms of pitch angle distributions. KW - pitch angle KW - pitch angle distributions KW - electrons KW - radiation belts KW - magnetosphere KW - van alien probes Y1 - 2022 U6 - https://doi.org/10.3389/fspas.2022.836811 SN - 2296-987X VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Smith, Bryce A. A1 - Barlow, Brad N. A1 - Rosenthal, Benjamin A1 - Hermes, J. J. A1 - Schaffenroth, Veronika T1 - Pulse Timing Discovery of a Three-day Companion to the Hot Subdwarf BPM 36430 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Hot subdwarf B stars are core-helium-burning objects that have undergone envelope stripping, likely by a binary companion. Using high-speed photometry from the Transiting Exoplanet Survey Satellite, we have discovered the hot subdwarf BPM 36430 is a hybrid sdBV(rs) pulsator exhibiting several low-amplitude g-modes and a strong p-mode pulsation. The latter shows a clear, periodic variation in its pulse arrival times. Fits to this phase oscillation imply BPM 36430 orbits a barycenter approximately 10 light-seconds away once every 3.1 days. Using the CHIRON echelle spectrograph on the CTIO 1.5 m telescope, we confirm the reflex motion by detecting a radial-velocity variation with semiamplitude, period, and phase in agreement with the pulse timings. We conclude that a white dwarf companion with minimum mass of approximate to 0.42 M (circle dot) orbits BPM 36430. Our study represents only the second time a companion orbiting a pulsating hot subdwarf or white dwarf has been detected from pulse timings and confirmed with radial velocities. Y1 - 2022 U6 - https://doi.org/10.3847/1538-4357/ac9384 SN - 0004-637X SN - 1538-4357 VL - 939 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Manassen, Yishay A1 - Jbara, Moamen A1 - Averbukh, Michael A1 - Hazan, Zion A1 - Henkel, Carsten A1 - Horovitz, Baruch T1 - Tunnel current noise spectra of spins in individual dimers of molecular radicals JF - Physical review : B, Condensed matter and materials physics N2 - We report the detection of electron spin resonance (ESR) in individual dimers of the stable free radical 2,2,6,6tetramethyl-piperidine-1-oxyl (TEMPO). ESR is measured by the current fluctuations in a scanning tunneling microscope (ESR-STM method). The multipeak power spectra, distinct from macroscopic data, are assigned to dimers having exchange and Dzyaloshinskii-Moriya interactions in the presence of spin-orbit coupling. These interactions are generated in our model by interfering electronic tunneling pathways from tip to sample via the dimer???s two molecules. This is the first demonstration that tunneling via two spins is a valid mechanism of the ESR-STM method. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.105.235438 SN - 2469-9950 SN - 2469-9969 VL - 105 IS - 23 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Mansour, Ahmed E. A1 - Lungwitz, Dominique A1 - Schultz, Thorsten A1 - Arvind, Malavika A1 - Valencia, Ana M. A1 - Cocchi, Caterina A1 - Opitz, Andreas A1 - Neher, Dieter A1 - Koch, Norbert T1 - The optical signatures of molecular-doping induced polarons in poly(3-hexylthiophene-2,5-diyl) BT - individual polymer chains versus aggregates JF - Journal of materials chemistry : C, Materials for optical and electronic devices N2 - Optical absorption spectroscopy is a key method to investigate doped conjugated polymers and to characterize the doping-induced charge carriers, i.e., polarons. For prototypical poly(3-hexylthiophene-2,5-diyl) (P3HT), the absorption intensity of molecular dopant induced polarons is widely used to estimate the carrier density and the doping efficiency, i.e., the number of polarons formed per dopant molecule. However, the dependence of the polaron-related absorption features on the structure of doped P3HT, being either aggregates or separated individual chains, is not comprehensively understood in contrast to the optical absorption features of neutral P3HT. In this work, we unambiguously differentiate the optical signatures of polarons on individual P3HT chains and aggregates in solution, notably the latter exhibiting the same shape as aggregates in solid thin films. This is enabled by employing tris(pentafluorophenyl)borane (BCF) as dopant, as this dopant forms only ion pairs with P3HT and no charge transfer complexes, and BCF and its anion have no absorption in the spectral region of P3HT polarons. Polarons on individual chains exhibit absorption peaks at 1.5 eV and 0.6 eV, whereas in aggregates the high-energy peak is split into a doublet 1.3 eV and 1.65 eV, and the low-energy peak is shifted below 0.5 eV. The dependence of the fraction of solvated individual chains versus aggregates on absolute solution concentration, dopant concentration, and temperature is elucidated, and we find that aggregates predominate in solution under commonly used processing conditions. Aggregates in BCF-doped P3HT solution can be effectively removed upon simple filtering. From varying the filter pore size (down to 200 nm) and thin film morphology characterization with scanning force microscopy we reveal the aggregates' size dependence on solution absolute concentration and dopant concentration. Furthermore, X-ray photoelectron spectroscopy shows that the dopant loading in aggregates is higher than for individual P3HT chains. The results of this study help understanding the impact of solution pre-aggregation on thin film properties of molecularly doped P3HT, and highlight the importance of considering such aggregation for other doped conjugated polymers in general. Y1 - 2020 U6 - https://doi.org/10.1039/c9tc06509a SN - 2050-7526 SN - 2050-7534 VL - 8 IS - 8 SP - 2870 EP - 2879 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Caesar, Levke A1 - Rahmstorf, Stefan A1 - Feulner, Georg T1 - Reply to comment on 'On the relationship between Atlantic meridional overturning circulation slowdown and global surface warming' JF - Environmental research letters N2 - In their comment on our paper (Caesar et al 2020 Environ. Res. Lett. 15 024003), Chen and Tung (hereafter C&T) argue that our analysis, showing that over the last decades Atlantic meridional overturning circulation (AMOC) strength and global mean surface temperature (GMST) were positively correlated, is incorrect. Their claim is mainly based on two arguments, neither of which is justified: first, C&T claim that our analysis is based on 'established evidence' that was only true for preindustrial conditions-this is not the case. Using data from the modern period (1947-2012), we show that the established understanding (i.e. deep-water formation in the North Atlantic cools the deep ocean and warms the surface) is correct, but our analysis is not based on this fact. Secondly, C&T claim that our results are based on a statistical analysis of only one cycle of data which was furthermore incorrectly detrended. This, too, is not true. Our conclusion that a weaker AMOC delays the current surface warming rather than enhances it, is based on several independent lines of evidence. The data we show to support this covers more than one cycle and the detrending (which was performed to avoid spurious correlations due to a common trend) does not affect our conclusion: the correlation between AMOC strength and GMST is positive. We do not claim that this is strong evidence that the two time series are in phase, but rather that this means that the two time series are not anti-correlated. KW - Atlantic meridional overturning circulation KW - global surface warming KW - ocean heat uptake Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/abc776 SN - 1748-9326 VL - 16 IS - 3 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Zeuschner, Steffen Peer A1 - Wang, Xi-Guang A1 - Deb, Marwan A1 - Popova, Elena A1 - Malinowski, Gregory A1 - Hehn, Michel A1 - Keller, Niels A1 - Berakdar, Jamal A1 - Bargheer, Matias T1 - Standing spin wave excitation in Bi BT - YIG films via temperature-induced anisotropy changes and magneto-elastic coupling JF - Physical review : B, Condensed matter and materials physics N2 - Based on micromagnetic simulations and experimental observations of the magnetization and lattice dynamics after the direct optical excitation of the magnetic insulator Bi : YIG or indirect excitation via an optically opaque Pt/Cu double layer, we disentangle the dynamical effects of magnetic anisotropy and magneto-elastic coupling. The strain and temperature of the lattice are quantified via modeling ultrafast x-ray diffraction data. Measurements of the time-resolved magneto-optical Kerr effect agree well with the magnetization dynamics simulated according to the excitation via two mechanisms: the magneto-elastic coupling to the experimentally verified strain dynamics and the ultrafast temperature-induced transient change in the magnetic anisotropy. The numerical modeling proves that, for direct excitation, both mechanisms drive the fundamental mode with opposite phase. The relative ratio of standing spin wave amplitudes of higher-order modes indicates that both mechanisms are substantially active. Y1 - 2022 U6 - https://doi.org/10.1103/PhysRevB.106.134401 SN - 2469-9950 SN - 2469-9969 VL - 106 IS - 13 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Zu, Fengshuo A1 - Schultz, Thorsten A1 - Wolff, Christian Michael A1 - Shin, Dongguen A1 - Frohloff, Lennart A1 - Neher, Dieter A1 - Amsalem, Patrick A1 - Koch, Norbert T1 - Position-locking of volatile reaction products by atmosphere and capping layers slows down photodecomposition of methylammonium lead triiodide perovskite JF - RSC Advances N2 - The remarkable progress of metal halide perovskites in photovoltaics has led to the power conversion efficiency approaching 26%. However, practical applications of perovskite-based solar cells are challenged by the stability issues, of which the most critical one is photo-induced degradation. Bare CH3NH3PbI3 perovskite films are known to decompose rapidly, with methylammonium and iodine as volatile species and residual solid PbI2 and metallic Pb, under vacuum under white light illumination, on the timescale of minutes. We find, in agreement with previous work, that the degradation is non-uniform and proceeds predominantly from the surface, and that illumination under N-2 and ambient air (relative humidity 20%) does not induce substantial degradation even after several hours. Yet, in all cases the release of iodine from the perovskite surface is directly identified by X-ray photoelectron spectroscopy. This goes in hand with a loss of organic cations and the formation of metallic Pb. When CH3NH3PbI3 films are covered with a few nm thick organic capping layer, either charge selective or non-selective, the rapid photodecomposition process under ultrahigh vacuum is reduced by more than one order of magnitude, and becomes similar in timescale to that under N-2 or air. We conclude that the light-induced decomposition reaction of CH3NH3PbI3, leading to volatile methylammonium and iodine, is largely reversible as long as these products are restrained from leaving the surface. This is readily achieved by ambient atmospheric pressure, as well as a thin organic capping layer even under ultrahigh vacuum. In addition to explaining the impact of gas pressure on the stability of this perovskite, our results indicate that covalently "locking" the position of perovskite components at the surface or an interface should enhance the overall photostability. Y1 - 2020 U6 - https://doi.org/10.1039/d0ra03572f SN - 2046-2069 VL - 10 IS - 30 SP - 17534 EP - 17542 PB - Royal Society of Chemistry CY - Cambridge ER - TY - JOUR A1 - Samson, Stephanie A1 - Rech, Jeromy A1 - Perdigon-Toro, Lorena A1 - Peng, Zhengxing A1 - Shoaee, Safa A1 - Ade, Harald A1 - Neher, Dieter A1 - Stolterfoht, Martin A1 - You, Wei T1 - Organic solar cells with large insensitivity to donor polymer molar mass across all acceptor classes JF - ACS applied polymer materials N2 - Donor polymer number-average molar mass (M-n) has long been known to influence organic photovoltaic (OPV) performance via changes in both the polymer properties and the resulting bulk heterojunction morphology. The exact nature of these M-n effects varies from system to system, although there is generally some intermediate M-n that results in optimal performance. Interestingly, our earlier work with the difluorobenzotriazole (FTAZ)-based donor polymer, paired with either N2200 (polymer acceptor) or PC61BM (fullerene acceptor), PcBm demonstrated <10% variation in power conversion efficiency and a consistent morphology over a large span of M-n (30 kg/mol to over 100 kg/mol). Would such insensitivity to polymer M-n still hold true when prevailing small molecular acceptors were used with FTAZ? To answer this question, we explored the impact of FTAZ on OPVs with ITIC, a high-performance small-molecule fused-ring electron acceptor (FREA). By probing the photovoltaic characteristics of the resulting OPVs, we show that a similar FTAZ mn insensitivity is also found in the FTAZ:ITIC system. This study highlights a single-donor polymer which, when paired with an archetypal fullerene, polymer, and FREA, results in systems that are largely insensitive to donor M. Our results may have implications in polymer batch-to-batch reproducibility, in particular, relaxing the need for tight M-n control during synthesis. KW - polymer solar cells KW - conjugated polymers KW - fullerenes KW - fluorination KW - molecular weight KW - non-fullerene acceptors KW - power conversion efficiency Y1 - 2020 U6 - https://doi.org/10.1021/acsapm.0c01041 SN - 2637-6105 VL - 2 IS - 11 SP - 5300 EP - 5308 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Middelanis, Robin A1 - Willner, Sven N. A1 - Otto, Christian A1 - Kuhla, Kilian A1 - Quante, Lennart A1 - Levermann, Anders T1 - Wave-like global economic ripple response to Hurricane Sandy JF - Environmental research letters : ERL / Institute of Physics N2 - Tropical cyclones range among the costliest disasters on Earth. Their economic repercussions along the supply and trade network also affect remote economies that are not directly affected. We here simulate possible global repercussions on consumption for the example case of Hurricane Sandy in the US (2012) using the shock-propagation model Acclimate. The modeled shock yields a global three-phase ripple: an initial production demand reduction and associated consumption price decrease, followed by a supply shortage with increasing prices, and finally a recovery phase. Regions with strong trade relations to the US experience strong magnitudes of the ripple. A dominating demand reduction or supply shortage leads to overall consumption gains or losses of a region, respectively. While finding these repercussions in historic data is challenging due to strong volatility of economic interactions, numerical models like ours can help to identify them by approaching the problem from an exploratory angle, isolating the effect of interest. For this, our model simulates the economic interactions of over 7000 regional economic sectors, interlinked through about 1.8 million trade relations. Under global warming, the wave-like structures of the economic response to major hurricanes like the one simulated here are likely to intensify and potentially overlap with other weather extremes. KW - supply chains KW - Hurricane Sandy KW - economic ripples KW - extreme weather KW - impacts KW - loss propagation KW - natural disasters Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac39c0 SN - 1748-9326 VL - 16 IS - 12 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Quante, Lennart A1 - Willner, Sven N. A1 - Middelanis, Robin A1 - Levermann, Anders T1 - Regions of intensification of extreme snowfall under future warming JF - Scientific reports N2 - Due to climate change the frequency and character of precipitation are changing as the hydrological cycle intensifies. With regards to snowfall, global warming has two opposing influences; increasing humidity enables intense snowfall, whereas higher temperatures decrease the likelihood of snowfall. Here we show an intensification of extreme snowfall across large areas of the Northern Hemisphere under future warming. This is robust across an ensemble of global climate models when they are bias-corrected with observational data. While mean daily snowfall decreases, both the 99th and the 99.9th percentiles of daily snowfall increase in many regions in the next decades, especially for Northern America and Asia. Additionally, the average intensity of snowfall events exceeding these percentiles as experienced historically increases in many regions. This is likely to pose a challenge to municipalities in mid to high latitudes. Overall, extreme snowfall events are likely to become an increasingly important impact of climate change in the next decades, even if they will become rarer, but not necessarily less intense, in the second half of the century. Y1 - 2021 U6 - https://doi.org/10.1038/s41598-021-95979-4 SN - 2045-2322 VL - 11 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - Berlin ER - TY - JOUR A1 - Fulmer, Leah M. A1 - Gallagher, John S. A1 - Hamann, Wolf-Rainer A1 - Oskinova, Lida A1 - Ramachandran, Varsha T1 - Testing massive star evolution, star-formation history, and feedback at low metallicity BT - photometric analysis of OB stars in the SMC Wing JF - Astronomy and astrophysics : an international weekly journal N2 - Context. The supergiant ionized shell SMC-SGS 1 (DEM 167), which is located in the outer Wing of the Small Magellanic Cloud (SMC), resembles structures that originate from an energetic star-formation event and later stimulate star formation as they expand into the ambient medium. However, stellar populations within and surrounding SMC-SGS 1 tell a different story. Aims. We present a photometric study of the stellar population encompassed by SMC-SGS 1 in order to trace the history of such a large structure and its potential influence on star formation within the low-density, low-metallicity environment of the SMC. Methods. For a stellar population that is physically associated with SMC-SGS 1, we combined near-ultraviolet (NUV) photometry from the Galaxy Evolution Explorer with archival optical (V-band) photometry from the ESO Danish 1.54 m Telescope. Given their colors and luminosities, we estimated stellar ages and masses by matching observed photometry to theoretical stellar isochrone models. Results. We find that the investigated region supports an active, extended star-formation event spanning similar to 25-40 Myr ago, as well as continued star formation into the present. Using a standard initial mass function, we infer a lower bound on the stellar mass from this period of similar to 3 x 10(4) M-circle dot, corresponding to a star-formation intensity of similar to 6 x 10(-3) M-circle dot kpc(-2) yr(-1). Conclusions. The spatial and temporal distributions of young stars encompassed by SMC-SGS 1 imply a slow, consistent progression of star formation over millions of years. Ongoing star formation, both along the edge and interior to SMC-SGS 1, suggests a combined stimulated and stochastic mode of star formation within the SMC Wing. We note that a slow expansion of the shell within this low-density environment may preserve molecular clouds within the volume of the shell, leaving them to form stars even after nearby stellar feedback expels local gas and dust. KW - galaxies KW - stellar content KW - stars KW - formation KW - individual KW - Small KW - Magellanic Cloud Y1 - 2020 U6 - https://doi.org/10.1051/0004-6361/201834314 SN - 0004-6361 SN - 1432-0746 VL - 633 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Silanteva, Irina A. A1 - Komolkin, Andrei A1 - Mamontova, Veronika V. A1 - Gabrusenok, Pavel A1 - Vorontsov-Velyaminov, Pavel N. A1 - Santer, Svetlana A1 - Kasyanenko, Nina A. T1 - Cis-isomers of photosensitive cationic azobenzene surfactants in DNA solutions at different NaCl concentrations BT - Experiment and modeling JF - The journal of physical chemistry : B, Condensed matter, materials, surfaces, interfaces & biophysical chemistry N2 - The DNA interaction with cis-isomers of photosensitive azobenzene-containing surfactants was studied by both experimental methods and computer simulation. It was shown that before the organization of micelles, such surfactants in the cis-conformation form associates of only a single type with a disordered orientation of molecules. In contrast, for trans-isomers, there exist two types of associates with head-to-head or head-to-tail orientations of molecules in dependence on salt concentration in a solution. The comparison of cis- and trans-isomer binding to DNA and the influence of salt concentration on the formation of their complexes with DNA were studied. It was shown that cis-isomers interact with phosphate groups of DNA and that their molecules were also located along the minor groove of DNA. Y1 - 2021 U6 - https://doi.org/10.1021/acs.jpcb.1c07864 SN - 1520-6106 SN - 1520-5207 VL - 125 IS - 40 SP - 11197 EP - 11207 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Jay, Raphael M. A1 - Eckert, Sebastian A1 - Mitzner, Rolf A1 - Fondell, Mattis A1 - Föhlisch, Alexander T1 - Quantitative evaluation of transient valence orbital occupations in a 3d transition metal complex as seen from the metal and ligand perspective JF - Chemical physics letters N2 - It is demonstrated for the case of photo-excited ferrocyanide how time-resolved soft X-ray absorption spectroscopy in transmission geometry at the ligand K-edge and metal L-3-edge provides quantitatively equivalent valence electronic structure information, where signatures of photo-oxidation are assessed locally at the metal as well as the ligand. This allows for a direct and independent quantification of the number of photo-oxidized molecules at two soft X-ray absorption edges highlighting the sensitivity of X-ray absorption spectroscopy to the valence orbital occupation of 3d transition metal complexes throughout the soft X-ray range. KW - iron cyanides KW - photochemistry KW - soft X-ray absorption Y1 - 2020 U6 - https://doi.org/10.1016/j.cplett.2020.137681 SN - 0009-2614 SN - 1873-4448 VL - 754 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Laquai, René A1 - Schaupp, Thomas A1 - Griesche, Axel A1 - Müller, Bernd R. A1 - Kupsch, Andreas A1 - Hannemann, Andreas A1 - Kannengiesser, Thomas A1 - Bruno, Giovanni T1 - Quantitative analysis of hydrogen-assisted microcracking in duplex stainless steel through X-ray refraction 3D imaging JF - Advanced engineering materials N2 - While the problem of the identification of mechanisms of hydrogen-assisted damage has and is being thoroughly studied, the quantitative analysis of such damage still lacks suitable tools. In fact, while, for instance, electron microscopy yields excellent characterization, the quantitative analysis of damage requires at the same time large field-of-views and high spatial resolution. Synchrotron X-ray refraction techniques do possess both features. Herein, it is shown how synchrotron X-ray refraction computed tomography (SXRCT) can quantify damage induced by hydrogen embrittlement in a lean duplex steel, yielding results that overperform even those achievable by synchrotron X-ray absorption computed tomography. As already reported in the literature, but this time using a nondestructive technique, it is shown that the hydrogen charge does not penetrate to the center of tensile specimens. By the comparison between virgin and hydrogen-charged specimens, it is deduced that cracks in the specimen bulk are due to the rolling process rather than hydrogen-assisted. It is shown that (micro)cracks propagate from the surface of tensile specimens to the interior with increasing applied strain, and it is deduced that a significant crack propagation can only be observed short before rupture. KW - 2101 duplex stainless steel KW - computed tomography KW - fractography KW - hydrogen KW - embrittlement KW - microcracking KW - synchrotron radiation KW - X-ray refraction Y1 - 2022 U6 - https://doi.org/10.1002/adem.202101287 SN - 1527-2648 VL - 24 IS - 6 PB - Wiley-VCH CY - Weinheim ER -