TY - JOUR A1 - Monhonval, Arthur A1 - Strauss, Jens A1 - Thomas, Maxime A1 - Hirst, Catherine A1 - Titeux, Hugues A1 - Louis, Justin A1 - Gilliot, Alexia A1 - D'Aische, Eleonore du Bois A1 - Pereira, Benoit A1 - Vandeuren, Aubry A1 - Grosse, Guido A1 - Schirrmeister, Lutz A1 - Jongejans, Loeka Laura A1 - Ulrich, Mathias A1 - Opfergelt, Sophie T1 - Thermokarst processes increase the supply of stabilizing surfaces and elements (Fe, Mn, Al, and Ca) for mineral-organic carbon interactions JF - Permafrost and periglacial processes N2 - The stabilizing properties of mineral-organic carbon (OC) interactions have been studied in many soil environments (temperate soils, podzol lateritic soils, and paddy soils). Recently, interest in their role in permafrost regions is increasing as permafrost was identified as a hotspot of change. In thawing ice-rich permafrost regions, such as the Yedoma domain, 327-466 Gt of frozen OC is buried in deep sediments. Interactions between minerals and OC are important because OC is located very near the mineral matrix. Mineral surfaces and elements could mitigate recent and future greenhouse gas emissions through physical and/or physicochemical protection of OC. The dynamic changes in redox and pH conditions associated with thermokarst lake formation and drainage trigger metal-oxide dissolution and precipitation, likely influencing OC stabilization and microbial mineralization. However, the influence of thermokarst processes on mineral-OC interactions remains poorly constrained. In this study, we aim to characterize Fe, Mn, Al, and Ca minerals and their potential protective role for OC. Total and selective extractions were used to assess the crystalline and amorphous oxides or complexed metal pools as well as the organic acids found within these pools. We analyzed four sediment cores from an ice-rich permafrost area in Central Yakutia, which were drilled (i) in undisturbed Yedoma uplands, (ii) beneath a recent lake formed within Yedoma deposits, (iii) in a drained thermokarst lake basin, and (iv) beneath a mature thermokarst lake from the early Holocene period. We find a decrease in the amount of reactive Fe, Mn, Al, and Ca in the deposits on lake formation (promoting reduction reactions), and this was largely balanced by an increase in the amount of reactive metals in the deposits on lake drainage (promoting oxidation reactions). We demonstrate an increase in the metal to C molar ratio on thermokarst process, which may indicate an increase in metal-C bindings and could provide a higher protective role against microbial mineralization of organic matter. Finally, we find that an increase in mineral-OC interactions corresponded to a decrease in CO2 and CH4 gas emissions on thermokarst process. Mineral-OC interactions could mitigate greenhouse gas production from permafrost thaw as soon as lake drainage occurs. KW - Arctic KW - organic carbon stabilization KW - permafrost KW - redox processes KW - thaw KW - Yedoma Y1 - 2022 U6 - https://doi.org/10.1002/ppp.2162 SN - 1045-6740 SN - 1099-1530 VL - 33 IS - 4 SP - 452 EP - 469 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Katzenberger, Anja A1 - Levermann, Anders A1 - Schewe, Jacob A1 - Pongratz, Julia T1 - Intensification of very wet monsoon seasons in India under global warming JF - Geophysical research letters N2 - Rainfall-intense summer monsoon seasons on the Indian subcontinent that are exceeding long-term averages cause widespread floods and landslides. Here we show that the latest generation of coupled climate models robustly project an intensification of very rainfall-intense seasons (June-September). Under the shared socioeconomic pathway SSP5-8.5, very wet monsoon seasons as observed in only 5 years in the period 1965-2015 are projected to occur 8 times more often in 2050-2100 in the multi-model average. Under SSP2-4.5, these seasons become only a factor of 6 times more frequent, showing that even modest efforts to mitigate climate change can have a strong impact on the frequency of very strong rainfall seasons. Besides, we find that the increasing risk of extreme seasonal rainfall is accompanied by a shift from days with light rainfall to days with moderate or heavy rainfall. Additionally, the number of wet days is projected to increase. KW - Indian monsoon KW - climate modeling KW - extreme seasons KW - climate change KW - CMIP6 KW - India Y1 - 2022 U6 - https://doi.org/10.1029/2022GL098856 SN - 0094-8276 SN - 1944-8007 VL - 49 IS - 15 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Allroggen, Niklas A1 - Heincke, Bjorn H. A1 - Koyan, Philipp A1 - Wheeler, Walter A1 - Ronning, Jan S. T1 - 3D ground-penetrating radar attribute classification BT - a case study from a paleokarst breccia pipe in the Billefjorden area on Spitsbergen, Svalbard JF - Geophysics N2 - Ground-penetrating radar (GPR) is a method that can provide detailed information about the near subsurface in sedimentary and carbonate environments. The classical interpretation of GPR data (e.g., based on manual feature selection) often is labor-intensive and limited by the experience of the intercally used for seismic interpretation, can provide faster, more repeatable, and less biased interpretations. We have recorded a 3D GPD data set collected across a paleokarst breccia pipe in the Billefjorden area on Spitsbergen, Svalbard. After performing advanced processing, we compare the results of a classical GPR interpretation to the results of an attribute-based classification. Our attribute classification incorporates a selection of dip and textural attributes as the input for a k-means clustering approach. Similar to the results of the classical interpretation, the resulting classes differentiate between undisturbed strata and breccias or fault zones. The classes also reveal details inside the breccia pipe that are not discerned in the classical fer that the intrapipe GPR facies result from subtle differences, such as breccia lithology, clast size, or pore-space filling. Y1 - 2022 U6 - https://doi.org/10.1190/GEO2021-0651.1 SN - 0016-8033 SN - 1942-2156 VL - 87 IS - 4 SP - WB19 EP - WB30 PB - Society of Exploration Geophysicists CY - Tulsa ER - TY - JOUR A1 - Illien, Luc A1 - Sens-Schönfelder, Christoph A1 - Andermann, Christoff A1 - Marc, Odin A1 - Cook, Kristen L. A1 - Adhikari, Lok Bijaya A1 - Hovius, Niels T1 - Seismic velocity recovery in the subsurface BT - transient damage and groundwater drainage following the 2015 Gorkha Earthquake, Nepal JF - Journal of geophysical research : Solid earth N2 - Shallow earthquakes frequently disturb the hydrological and mechanical state of the subsurface, with consequences for hazard and water management. Transient post-seismic hydrological behavior has been widely reported, suggesting that the recovery of material properties (relaxation) following ground shaking may impact groundwater fluctuations. However, the monitoring of seismic velocity variations associated with earthquake damage and hydrological variations are often done assuming that both effects are independent. In a field site prone to highly variable hydrological conditions, we disentangle the different forcing of the relative seismic velocity variations delta v retrieved from a small dense seismic array in Nepal in the aftermath of the 2015 M-w 7.8 Gorkha earthquake. We successfully model transient damage effects by introducing a universal relaxation function that contains a unique maximum relaxation timescale for the main shock and the aftershocks, independent of the ground shaking levels. Next, we remove the modeled velocity from the raw data and test whether the corresponding residuals agree with a background hydrological behavior we inferred from a previously calibrated groundwater model. The fitting of the delta v data with this model is improved when we introduce transient hydrological properties in the phase immediately following the main shock. This transient behavior, interpreted as an enhanced permeability in the shallow subsurface, lasts for similar to 6 months and is shorter than the damage relaxation (similar to 1 yr). Thus, we demonstrate the capability of seismic interferometry to deconvolve transient hydrological properties after earthquakes from non-linear mechanical recovery. KW - earthquake damage KW - earthquake hydrology KW - relaxation KW - Gorkha earthquake KW - seismic monitoring KW - ambient noise Y1 - 2022 U6 - https://doi.org/10.1029/2021JB023402 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 2 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Rodriguez, Victoria A1 - Moskwa, Lisa-Marie A1 - Oses, Romulo A1 - Kühn, Peter A1 - Riveras-Muñoz, Nicolás A1 - Seguel, Oscar A1 - Scholten, Thomas A1 - Wagner, Dirk T1 - Impact of climate and slope aspects on the composition of soil bacterial communities involved in pedogenetic processes along the chilean coastal cordillera JF - Microorganisms N2 - Soil bacteria play a fundamental role in pedogenesis. However, knowledge about both the impact of climate and slope aspects on microbial communities and the consequences of these items in pedogenesis is lacking. Therefore, soil-bacterial communities from four sites and two different aspects along the climate gradient of the Chilean Coastal Cordillera were investigated. Using a combination of microbiological and physicochemical methods, soils that developed in arid, semi-arid, mediterranean, and humid climates were analyzed. Proteobacteria, Acidobacteria, Chloroflexi, Verrucomicrobia, and Planctomycetes were found to increase in abundance from arid to humid climates, while Actinobacteria and Gemmatimonadetes decreased along the transect. Bacterial-community structure varied with climate and aspect and was influenced by pH, bulk density, plant-available phosphorus, clay, and total organic-matter content. Higher bacterial specialization was found in arid and humid climates and on the south-facing slope and was likely promoted by stable microclimatic conditions. The presence of specialists was associated with ecosystem-functional traits, which shifted from pioneers that accumulated organic matter in arid climates to organic decomposers in humid climates. These findings provide new perspectives on how climate and slope aspects influence the composition and functional capabilities of bacteria, with most of these capabilities being involved in pedogenetic processes. KW - bacterial-community structure KW - bacterial diversity KW - climate gradient KW - slope aspect KW - Chilean Coastal Cordillera KW - soil formation Y1 - 2022 U6 - https://doi.org/10.3390/microorganisms10050847 SN - 2076-2607 VL - 10 IS - 5 PB - MDPI CY - Basel ER - TY - JOUR A1 - Platz, Anna A1 - Weckmann, Ute A1 - Pek, Josef A1 - Kovacikova, Svetlana A1 - Klanica, Radek A1 - Mair, Johannes A1 - Aleid, Basel T1 - 3D imaging of the subsurface electrical resistivity structure in West Bohemia/Upper Palatinate covering mofettes and quaternary volcanic structures by using magnetotellurics JF - Tectonophysics : international journal of geotectonics and the geology and physics of the interior of the earth N2 - The region of West Bohemia and Upper Palatinate belongs to the West Bohemian Massif. The study area is situated at the junction of three different Variscan tectonic units and hosts the ENE-WSW trending Ohre Rift as well as many different fault systems. The entire region is characterized by ongoing magmatic processes in the intra-continental lithospheric mantle expressed by a series of phenomena, including e.g. the occurrence of repeated earthquake swarms and massive degassing of mantle derived CO2 in form of mineral springs and mofettes. Ongoing active tectonics is mainly manifested by Cenozoic volcanism represented by different Quaternary volcanic structures. All these phenomena make the Ohre Rift a unique target area for European intra-continental geo-scientific research. With magnetotelluric (MT) measurements we image the subsurface distribution of the electrical resistivity and map possible fluid pathways. Two-dimensional (2D) inversion results by Munoz et al. (2018) reveal a conductive channel in the vicinity of the earthquake swarm region that extends from the lower crust to the surface forming a pathway for fluids into the region of the mofettes. A second conductive channel is present in the south of their model; however, their 2D inversions allow ambiguous interpretations of this feature. Therefore, we conducted a large 3D MT field experiment extending the study area towards the south. The 3D inversion result matches well with the known geology imaging different fluid/magma reservoirs at crust-mantle depth and mapping possible fluid pathways from the reservoirs to the surface feeding known mofettes and spas. A comparison of 3D and 2D inversion results suggests that the 2D inversion results are considerably characterized by 3D and off-profile structures. In this context, the new results advocate for the swarm earthquakes being located in the resistive host rock surrounding the conductive channels; a finding in line with observations e.g. at the San Andreas Fault, California. KW - Magnetotellurics KW - Ohre Rift KW - Conductive channel KW - Fluid/magma reservoir KW - Earthquake swarm Y1 - 2022 U6 - https://doi.org/10.1016/j.tecto.2022.229353 SN - 0040-1951 SN - 1879-3266 VL - 833 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Nguyen, Tam A1 - Kumar, Rohini A1 - Musolff, Andreas A1 - Lutz, Stefanie R. A1 - Sarrazin, Fanny A1 - Attinger, Sabine A1 - Fleckenstein, Jan H. T1 - Disparate Seasonal Nitrate Export From Nested Heterogeneous Subcatchments Revealed With StorAge Selection Functions JF - Water resources research N2 - Understanding catchment controls on catchment solute export is a prerequisite for water quality management. StorAge Selection (SAS) functions encapsulate essential information about catchment functioning in terms of discharge selection preference and solute export dynamics. However, they lack information on the spatial origin of solutes when applied at the catchment scale, thereby limiting our understanding of the internal (subcatchment) functioning. Here, we parameterized SAS functions in a spatially explicit way to understand the internal catchment responses and transport dynamics of reactive dissolved nitrate (N-NO3). The model was applied in a nested mesoscale catchment (457 km(2)), consisting of a mountainous partly forested, partly agricultural subcatchment, a middle-reach forested subcatchment, and a lowland agricultural subcatchment. The model captured flow and nitrate concentration dynamics not only at the catchment outlet but also at internal gauging stations. Results reveal disparate subsurface mixing dynamics and nitrate export among headwater and lowland subcatchments. The headwater subcatchment has high seasonal variation in subsurface mixing schemes and younger water in discharge, while the lowland subcatchment has less pronounced seasonality in subsurface mixing and much older water in discharge. Consequently, nitrate concentration in discharge from the headwater subcatchment shows strong seasonality, whereas that from the lowland subcatchment is stable in time. The temporally varying responses of headwater and lowland subcatchments alternate the dominant contribution to nitrate export in high and low-flow periods between subcatchments. Overall, our results demonstrate that the spatially explicit SAS modeling provides useful information about internal catchment functioning, helping to develop or evaluate spatial management practices. KW - catchment nitrate export KW - StorAge Selection function KW - travel time distribution KW - mesoscale heterogeneous catchment KW - subcatchment response Y1 - 2022 U6 - https://doi.org/10.1029/2021WR030797 SN - 0043-1397 SN - 1944-7973 VL - 58 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Gosling, William D. A1 - Scerri, Eleanor A1 - Kaboth-Bahr, Stefanie T1 - The climate and vegetation backdrop to hominin evolution in Africa JF - Philosophical transactions of the Royal Society of London : B, Biological sciences N2 - The most profound shift in the African hydroclimate of the last 1 million years occurred around 300 thousand years (ka) ago. This change in African hydroclimate is manifest as an east-west change in moisture balance that cannot be fully explained through linkages to high latitude climate systems. The east-west shift is, instead, probably driven by a shift in the tropical Walker Circulation related to sea surface temperature change driven by orbital forcing. Comparing records of past vegetation change, and hominin evolution and development, with this breakpoint in the climate system is challenging owing to the paucity of study sites available and uncertainties regarding the dating of records. Notwithstanding these uncertainties we find that, broadly speaking, both vegetation and hominins change around 300 ka. The vegetative backdrop suggests that relative abundance of vegetative resources shifted from western to eastern Africa, although resources would have persisted across the continent. The climatic and vegetation changes probably provided challenges for hominins and are broadly coincident with the appearance of Homo sapiens (ca 315 ka) and the emergence of Middle Stone Age technology. The concomitant changes in climate, vegetation and hominin evolution suggest that these factors are closely intertwined. This article is part of the theme issue 'Tropical forests in the deep human past'. KW - hominid KW - pollen KW - El Nino Southern Oscillation KW - habitat KW - human evolution KW - Homo sapiens Y1 - 2022 U6 - https://doi.org/10.1098/rstb.2020.0483 SN - 0962-8436 SN - 1471-2970 VL - 377 IS - 1849 PB - Royal Society CY - London ER - TY - JOUR A1 - Buter, Anuschka A1 - Heckmann, Tobias A1 - Filisetti, Lorenzo A1 - Savi, Sara A1 - Mao, Luca A1 - Gems, Bernhard A1 - Comiti, Francesco T1 - Effects of catchment characteristics and hydro-meteorological scenarios on sediment connectivity in glacierised catchments JF - Geomorphology : an international journal on pure and applied geomorphology N2 - In the past decade, sediment connectivity has become a widely recognized characteristic of a geomorphic system. However, the quantification of functional connectivity (i.e. connectivity which arises due to the actual occurrence of sediment transport processes) and its variation over space and time is still a challenge. In this context, this study assesses the effects of expected future phenomena in the context of climate change (i.e. glacier retreat, permafrost degradation or meteorological extreme events) on sediment transport dynamics in a glacierised Alpine basin. The study area is the Sulden river basin (drainage area 130 km(2)) in the Italian Alps, which is composed of two geomorphologically diverse sub-basins. Based on graph theory, we evaluated the spatio-temporal variations in functional connectivity in these two sub-basins. The graph-object, obtained by manually mapping sediment transport processes between landforms, was adapted to 6 different hydro-meteorological scenarios, which derive from combining base, heatwave and rainstorm conditions with snowmelt and glacier-melt periods. For each scenario and each sub-basin, the sediment transport network and related catchment characteristics were analysed. To compare the effects of the scenarios on functional connectivity, we introduced a connectivity degree, calculated based on the area of the landforms involved in sediment cascades. Results indicate that the area of the basin connected to its outlet in terms of sediment transport might feature a six-fold increase in case of rainstorm conditions compared to "average " meteorological conditions assumed for the base scenario. Furthermore, markedly different effects of climate change on sediment connectivity are expected between the two sub-catchments due to their contrasting morphological and lithological characteristics, in terms of relative importance of rainfall triggered colluvial processes vs temperature-driven proglacial fluvial dynamics. KW - Functional connectivity KW - Graph theory KW - Climate change KW - Geomorphic systems Y1 - 2022 U6 - https://doi.org/10.1016/j.geomorph.2022.108128 SN - 0169-555X SN - 1872-695X VL - 402 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Foong, Adrian A1 - Pradhan, Prajal A1 - Frör, Oliver A1 - Kropp, Jürgen P. T1 - Adjusting agricultural emissions for trade matters for climate change mitigation JF - Nature Communications N2 - Reducing greenhouse gas emissions in food systems is becoming more challenging as food is increasingly consumed away from producer regions, highlighting the need to consider emissions embodied in trade in agricultural emissions accounting. To address this, our study explores recent trends in trade-adjusted agricultural emissions of food items at the global, regional, and national levels. We find that emissions are largely dependent on a country’s consumption patterns and their agricultural emission intensities relative to their trading partners’. The absolute differences between the production-based and trade-adjusted emissions accounting approaches are especially apparent for major agricultural exporters and importers and where large shares of emission-intensive items such as ruminant meat, milk products and rice are involved. In relative terms, some low-income and emerging and developing economies with consumption of high emission intensity food products show large differences between approaches. Similar trends are also found under various specifications that account for trade and re-exports differently. These findings could serve as an important element towards constructing national emissions reduction targets that consider trading partners, leading to more effective emissions reductions overall. Y1 - 2022 U6 - https://doi.org/10.1038/s41467-022-30607-x SN - 2041-1723 VL - 13 IS - 1 PB - Nature Publishing Group CY - London ER - TY - JOUR A1 - Daskalopoulou, Kyriaki A1 - D'Alessandro, Walter A1 - Longo, Manfredi A1 - Pecoraino, Giovannella A1 - Calabrese, Sergio T1 - Shallow sea gas manifestations in the Aegean Sea (Greece) as natural analogs to study ocean acidification BT - first catalog and geochemical characterization JF - Frontiers in Marine Science N2 - The concepts of CO2 emission, global warming, climate change, and their environmental impacts are of utmost importance for the understanding and protection of the ecosystems. Among the natural sources of gases into the atmosphere, the contribution of geogenic sources plays a crucial role. However, while subaerial emissions are widely studied, submarine outgassing is not yet well understood. In this study, we review and catalog 122 literature and unpublished data of submarine emissions distributed in ten coastal areas of the Aegean Sea. This catalog includes descriptions of the degassing vents through in situ observations, their chemical and isotopic compositions, and flux estimations. Temperatures and pH data of surface seawaters in four areas affected by submarine degassing are also presented. This overview provides useful information to researchers studying the impact of enhanced seawater CO2 concentrations related either to increasing CO2 levels in the atmosphere or leaking carbon capture and storage systems. KW - CO2 emissions KW - submarine gas vents KW - geogenic degassing KW - environmental KW - impact KW - Greek Islands KW - gas flux Y1 - 2022 U6 - https://doi.org/10.3389/fmars.2021.775247 SN - 2296-7745 VL - 8 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Ortiz, Gustavo A1 - Saez, Mauro A1 - Alvarado, Patricia A1 - Rivas, Carolina A1 - García, Víctor Hugo A1 - Alonso, Ricardo A1 - Zullo, Fernando Morales T1 - Seismotectonic characterization of the 1948 (M-W 6.9) Anta earthquake Santa Barbara System, central Andes broken foreland of northwestern Argentina JF - Journal of South American earth sciences N2 - The region of the Andean back-arc of northwestern Argentina has been struck by several magnitude >= 6 crustal earthquakes since the first historically recorded event in 1692. One of these events corresponds to the Anta earthquake on 25 August 1948, with epicenter in the Santa Barbara System causing three deaths and severe damage in Salta and Jujuy provinces with maximum Modified Mercalli seismic intensities (MMI) of IX. We collected and digitized analog seismograms of this earthquake from worldwide seismic observatories in order to perform first-motion analysis and modeling of long-period teleseismic P-waveforms. Our results indicate a simple seismic source of M0 = 2.85 x 1019 N m consistent with a moment magnitude Mw = 6.9. We have also tested for the focal depth determining a shallow source at 8 km with a reverse focal mechanism solution with a minor dextral strike-slip component (strike 20 degrees, dip 30 degrees, rake 120 degrees) from the best fit of waveforms. Using magnitude size empirical relationships, the comparison of the obtained Mw 6.9 magnitude value and the ca. 10,000 km2 area of MMI >= IX from our seismic intensity map, which was obtained from newspaper and many historical reports, indicates a rupture length of 42 +/- 8 km for the Anta earthquake. We show our results in a 3D geological model around the epicentral area, which integrates modern seismicity, geological data, and information of a previously studied east-west cross section located a few kilometers south of the 1948 epicenter. The integration of all available information provides evidence of the re-activation of the Pie de la Sierra del Gallo fault during the 1948 Mw 6.9 shallow earthquake; this thrust fault bounds the Santa Barbara System along its western foothill. KW - Active tectonics KW - Analog historical seismograms KW - Andean back-arc; KW - Thick-skinned tectonics KW - Central Andes Y1 - 2022 U6 - https://doi.org/10.1016/j.jsames.2022.103822 SN - 0895-9811 SN - 1873-0647 VL - 116 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Müller, Daniela A1 - Neugebauer, Ina A1 - Ben Dor, Yoav A1 - Enzel, Yehouda A1 - Schwab, Markus Julius A1 - Tjallingii, Rik A1 - Brauer, Achim T1 - Phases of stability during major hydroclimate change ending the Last Glacial in the Levant JF - Scientific reports N2 - In-depth understanding of the reorganization of the hydrological cycle in response to global climate change is crucial in highly sensitive regions like the eastern Mediterranean, where water availability is a major factor for socioeconomic and political development. The sediments of Lake Lisan provide a unique record of hydroclimatic change during the last glacial to Holocene transition (ca. 24-11 ka) with its tremendous water level drop of similar to 240 m that finally led to its transition into the present hypersaline water body-the Dead Sea. Here we utilize high-resolution sedimentological analyses from the marginal terraces and deep lake to reconstruct an unprecedented seasonal record of the last millennia of Lake Lisan. Aragonite varve formation in intercalated intervals of our record demonstrates that a stepwise long-term lake level decline was interrupted by almost one millennium of rising or stable water level. Even periods of pronounced water level drops indicated by gypsum deposition were interrupted by decades of positive water budgets. Our results thus highlight that even during major climate change at the end of the last glacial, decadal to millennial periods of relatively stable or positive moisture supply occurred which could have been an important premise for human sedentism. Y1 - 2022 U6 - https://doi.org/10.1038/s41598-022-10217-9 SN - 2045-2322 VL - 12 IS - 1 PB - Macmillan Publishers Limited, part of Springer Nature CY - London ER - TY - JOUR A1 - Yen, Ming-Hsuan A1 - von Specht, Sebastian A1 - Lin, Yen-Yu A1 - Cotton, Fabrice A1 - Ma, Kuo-Fong T1 - Within- and between-event variabilities of strong-velocity pulses of moderate earthquakes within dense seismic arrays JF - Bulletin of the Seismological Society of America N2 - Ground motion with strong-velocity pulses can cause significant damage to buildings and structures at certain periods; hence, knowing the period and velocity amplitude of such pulses is critical for earthquake structural engineering. However, the physical factors relating the scaling of pulse periods with magnitude are poorly understood. In this study, we investigate moderate but damaging earthquakes (M-w 6-7) and characterize ground- motion pulses using the method of Shahi and Baker (2014) while considering the potential static-offset effects. We confirm that the within-event variability of the pulses is large. The identified pulses in this study are mostly from strike-slip-like earthquakes. We further perform simulations using the freq uency-wavenumber algorithm to investigate the causes of the variability of the pulse periods within and between events for moderate strike-slip earthquakes. We test the effect of fault dips, and the impact of the asperity locations and sizes. The simulations reveal that the asperity properties have a high impact on the pulse periods and amplitudes at nearby stations. Our results emphasize the importance of asperity characteristics, in addition to earthquake magnitudes for the occurrence and properties of pulses produced by the forward directivity effect. We finally quantify and discuss within- and between-event variabilities of pulse properties at short distances. Y1 - 2021 U6 - https://doi.org/10.1785/0120200376 SN - 0037-1106 SN - 1943-3573 VL - 112 IS - 1 SP - 361 EP - 380 PB - Seismological Society of America CY - El Cerito, Calif. ER - TY - JOUR A1 - Stolpmann, Lydia A1 - Mollenhauer, Gesine A1 - Morgenstern, Anne A1 - Hammes, Jens S. A1 - Boike, Julia A1 - Overduin, Pier Paul A1 - Grosse, Guido T1 - Origin and pathways of dissolved organic carbon in a small catchment in the Lena River Delta JF - Frontiers in Earth Science N2 - The Arctic is rich in aquatic systems and experiences rapid warming due to climate change. The accelerated warming causes permafrost thaw and the mobilization of organic carbon. When dissolved organic carbon is mobilized, this DOC can be transported to aquatic systems and degraded in the water bodies and further downstream. Here, we analyze the influence of different landscape components on DOC concentrations and export in a small (6.45 km(2)) stream catchment in the Lena River Delta. The catchment includes lakes and ponds, with the flow path from Pleistocene yedoma deposits across Holocene non-yedoma deposits to the river outlet. In addition to DOC concentrations, we use radiocarbon dating of DOC as well as stable oxygen and hydrogen isotopes (delta O-18 and delta D) to assess the origin of DOC. We find significantly higher DOC concentrations in the Pleistocene yedoma area of the catchment compared to the Holocene non-yedoma area with medians of 5 and 4.5 mg L-1 (p < 0.05), respectively. When yedoma thaw streams with high DOC concentration reach a large yedoma thermokarst lake, we observe an abrupt decrease in DOC concentration, which we attribute to dilution and lake processes such as mineralization. The DOC ages in the large thermokarst lake (between 3,428 and 3,637 C-14 y BP) can be attributed to a mixing of mobilized old yedoma and Holocene carbon. Further downstream after the large thermokarst lake, we find progressively younger DOC ages in the stream water to its mouth, paired with decreasing DOC concentrations. This process could result from dilution with leaching water from Holocene deposits and/or emission of ancient yedoma carbon to the atmosphere. Our study shows that thermokarst lakes and ponds may act as DOC filters, predominantly by diluting incoming waters of higher DOC concentrations or by re-mineralizing DOC to CO2 and CH4. Nevertheless, our results also confirm that the small catchment still contributes DOC on the order of 1.2 kg km(-2) per day from a permafrost landscape with ice-rich yedoma deposits to the Lena River. KW - Arctic lakes KW - ice complex KW - yedoma KW - thermokarst lakes KW - DOC KW - aquatic carbon cycle KW - permafrost KW - radiocarbon dating Y1 - 2022 U6 - https://doi.org/10.3389/feart.2021.759085 SN - 2296-6463 VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Wolf, Sebastian G. A1 - Huismans, Ritske S. A1 - Braun, Jean A1 - Yuan, Xiaoping T1 - Topography of mountain belts controlled by rheology and surface processes JF - Nature : the international weekly journal of science N2 - It is widely recognized that collisional mountain belt topography is generated by crustal thickening and lowered by river bedrock erosion, linking climate and tectonics(1-4). However, whether surface processes or lithospheric strength control mountain belt height, shape and longevity remains uncertain. Additionally, how to reconcile high erosion rates in some active orogens with long-term survival of mountain belts for hundreds of millions of years remains enigmatic. Here we investigate mountain belt growth and decay using a new coupled surface process(5,6) and mantle-scale tectonic model(7). End-member models and the new non-dimensional Beaumont number, Bm, quantify how surface processes and tectonics control the topographic evolution of mountain belts, and enable the definition of three end-member types of growing orogens: type 1, non-steady state, strength controlled (Bm > 0.5); type 2, flux steady state(8), strength controlled (Bm approximate to 0.4-0.5); and type 3, flux steady state, erosion controlled (Bm < 0.4). Our results indicate that tectonics dominate in Himalaya-Tibet and the Central Andes (both type 1), efficient surface processes balance high convergence rates in Taiwan (probably type 2) and surface processes dominate in the Southern Alps of New Zealand (type 3). Orogenic decay is determined by erosional efficiency and can be subdivided into two phases with variable isostatic rebound characteristics and associated timescales. The results presented here provide a unified framework explaining how surface processes and lithospheric strength control the height, shape, and longevity of mountain belts. Y1 - 2022 U6 - https://doi.org/10.1038/s41586-022-04700-6 SN - 0028-0836 SN - 1476-4687 VL - 606 IS - 7914 SP - 516 EP - 521 PB - Nature portfolio CY - Berlin ER - TY - JOUR A1 - Macdonald, Elena A1 - Merz, Bruno A1 - Guse, Björn A1 - Wietzke, Luzie A1 - Ullrich, Sophie A1 - Kemter, Matthias A1 - Ahrens, Bodo A1 - Vorogushyn, Sergiy T1 - Event and catchment controls of heavy tail behavior of floods JF - Water resources research N2 - In some catchments, the distribution of annual maximum streamflow shows heavy tail behavior, meaning the occurrence probability of extreme events is higher than if the upper tail decayed exponentially. Neglecting heavy tail behavior can lead to an underestimation of the likelihood of extreme floods and the associated risk. Partly contradictory results regarding the controls of heavy tail behavior exist in the literature and the knowledge is still very dispersed and limited. To better understand the drivers, we analyze the upper tail behavior and its controls for 480 catchments in Germany and Austria over a period of more than 50 years. The catchments span from quickly reacting mountain catchments to large lowland catchments, allowing for general conclusions. We compile a wide range of event and catchment characteristics and investigate their association with an indicator of the tail heaviness of flood distributions, namely the shape parameter of the GEV distribution. Following univariate analyses of these characteristics, along with an evaluation of different aggregations of event characteristics, multiple linear regression models, as well as random forests, are constructed. A novel slope indicator, which represents the relation between the return period of flood peaks and event characteristics, captures the controls of heavy tails best. Variables describing the catchment response are found to dominate the heavy tail behavior, followed by event precipitation, flood seasonality, and catchment size. The pre-event moisture state in a catchment has no relevant impact on the tail heaviness even though it does influence flood magnitudes. KW - heavy tail behavior KW - floods KW - event characteristics KW - catchment KW - characteristics KW - catchment response Y1 - 2022 U6 - https://doi.org/10.1029/2021WR031260 SN - 0043-1397 SN - 1944-7973 VL - 58 IS - 6 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Jamalreyhani, Mohammadreza A1 - Rezapour, Mehdi A1 - Cesca, Simone A1 - Dahm, Torsten A1 - Heimann, Sebastian A1 - Sudhaus, Henriette A1 - Isken, Marius Paul T1 - Insight into the 2017-2019 Lurestan arc seismic sequence (Zagros, Iran); complex earthquake interaction in the basement and sediments JF - Geophysical journal international N2 - Despite its high-seismogenic potential, the details of the seismogenic processes of Zagros Simply Folded Belt (SFB) remains debated. Three large earthquakes (M-w 7.3, 5.9 and 6.3) struck in the Lurestan arc of the Zagros SFB in 2017 and 2018. The sequence was recorded by seismic stations at regional, and teleseismic distances. Coseismic surface displacements, measured by Sentinel-1A/B satellites, provide additional data and a unique opportunity to study these earthquakes in detail. Here, we complement previous studies of the coseismic slip distribution of the 12 November 2017 M-w 7.3 Ezgeleh earthquake by a detailed analysis of its aftershocks, and we analysed the rupture process of the two interrelated earthquakes (25 August 2018 M-w 5.9 Tazehabad and the 25 November 2018 M-w 6.3 Sarpol-e Zahab earthquakes). We model the surface displacements obtained from Interferometric Synthetic Aperture Radar (InSAR) measurements and seismic records. We conduct non-linear probabilistic optimizations based on joint InSAR and seismic data to obtain finite-fault rupture of these earthquakes. The Lurestan arc earthquakes were followed by a sustained aftershock activity, with 133 aftershocks exceeding M-n 4.0 until 30 December 2019. We rely on the permanent seismic networks of Iran and Iraq to relocate similar to 700 M-n 3 + events and estimate moment tensor solutions for 85 aftershocks down to M-w 4.0. The 2017 Ezgeleh earthquake has been considered to activate a low-angle (similar to 17 degrees) dextral-thrust fault at the depth of 10-20 km. However, most of its aftershocks have shallow centroid depths (8-12 km). The joint interpretation of finite source models, moment tensor and hypocentral location indicate that the 2018 Tazehabad and Sarpol-e Zahab earthquakes ruptured different strike-slip structures, providing evidence for the activation of the sinistral and dextral strike-slip faults, respectively. The deformation in the Lurestan arc is seismically accommodated by a complex fault system involving both thrust and strike-slip faults. Knowledge about the deformation characteristics is important for the understanding of crustal shortening, faulting and hazard and risk assessment in this region. KW - Joint Inversion KW - Waveform inversion KW - Earthquake source observations KW - Seismicity and tectonics Y1 - 2022 U6 - https://doi.org/10.1093/gji/ggac057 SN - 0956-540X SN - 1365-246X VL - 230 IS - 1 SP - 114 EP - 130 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Melchert, Jan Olaf A1 - Wischhöfer, Philipp A1 - Knoblauch, Christian A1 - Eckhardt, Tim A1 - Liebner, Susanne A1 - Rethemeyer, Janet T1 - Sources of CO2 Produced in Freshly Thawed Pleistocene-Age Yedoma Permafrost JF - Frontiers in Earth Science N2 - The release of greenhouse gases from the large organic carbon stock in permafrost deposits in the circumarctic regions may accelerate global warming upon thaw. The extent of this positive climate feedback is thought to be largely controlled by the microbial degradability of the organic matter preserved in these sediments. In addition, weathering and oxidation processes may release inorganic carbon preserved in permafrost sediments as CO2, which is generally not accounted for. We used C-13 and C-14 analysis and isotopic mass balances to differentiate and quantify organic and inorganic carbon released as CO2 in the field from an active retrogressive thaw slump of Pleistocene-age Yedoma and during a 1.5-years incubation experiment. The results reveal that the dominant source of the CO2 released from freshly thawed Yedoma exposed as thaw mound is Pleistocene-age organic matter (48-80%) and to a lesser extent modern organic substrate (3-34%). A significant portion of the CO2 originated from inorganic carbon in the Yedoma (17-26%). The mixing of young, active layer material with Yedoma at a site on the slump floor led to the preferential mineralization of this young organic carbon source. Admixtures of younger organic substrates in the Yedoma thaw mound were small and thus rapidly consumed as shown by lower contributions to the CO2 produced during few weeks of aerobic incubation at 4 degrees C corresponding to approximately one thaw season. Future CO2 fluxes from the freshly thawed Yedoma will contain higher proportions of ancient inorganic (22%) and organic carbon (61-78%) as suggested by the results at the end, after 1.5 years of incubation. The increasing contribution of inorganic carbon during the incubation is favored by the accumulation of organic acids from microbial organic matter degradation resulting in lower pH values and, in consequence, in inorganic carbon dissolution. Because part of the inorganic carbon pool is assumed to be of pedogenic origin, these emissions would ultimately not alter carbon budgets. The results of this study highlight the preferential degradation of younger organic substrates in freshly thawed Yedoma, if available, and a substantial release of CO2 from inorganic sources. KW - yedoma ice complex KW - permafost KW - carbon cycle KW - climat change KW - thermokarst KW - radiocarbon KW - greenhouse gas Y1 - 2022 U6 - https://doi.org/10.3389/feart.2021.737237 SN - 2296-6463 VL - 9 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Cruces-Zabala, José Alejandro A1 - Ritter, Oliver A1 - Weckmann, Ute A1 - Tietze, Kristina A1 - Meqbel, Naser M. A1 - Audemard, Franck A1 - Schmitz, Michael T1 - Three-dimensional magnetotelluric imaging of the Merida Andes, Venezuela JF - Journal of South American earth sciences N2 - The 100 km wide Merida Andes extend from the Colombian/Venezuelan border to the Coastal Cordillera. The mountain chain and its associated major strike-slip fault systems in western Venezuela formed due to oblique convergence of the Caribbean with the South American Plates and the north-eastwards expulsion of the North Andean Block. Due to the limited knowledge of lithospheric structures related to the formation of the Merida Andes research projects have been developed to illuminate this zone with deep geophysical data. In this study, we present three-dimensional inversion of broadband magnetotelluric data, collected along a 240 km long profile crossing the Merida Andes and the Maracaibo and Barinas-Apure foreland basins. The distribution of the stations limits resolution of the model to off-profile features. Combining 3D inversion of synthetic data sets derived from 3D modelling with 3D inversion of measured data, we could derive a 10 to 15 km wide corridor with good lateral resolution to develop hypotheses about the origin of deep-reaching anomalies of high electrical conductivity. The Merida Andes appear generally as electrically resistive structures, separated by anomalies associated with the most important fault systems of the region, the Bocono and Valera faults. Sensitivity tests suggest that the Valera Fault reaches to depths of up to 12 km and the Bocono Fault to more than 35 km depth. Both structures are connected to a sizeable conductor located east of the profile at 12-15 km depth. We propose that the high conductivity associated with this off-profile conductor may be related to the detachment of the Trujillo Block. We also identified a conductive zone that correlates spatially with the location of a gravity low, possibly representing a SE tilt of the Maracaibo Triangular Block under the mountain chain to great depths (>30 km). The relevance of these tectonic blocks in our models at crustal depths seems to be consistent with proposed theories that describe the geodynamics of western Venezuela as dominated by floating blocks or orogens. Our results stress the importance of the Trujillo Block for the current tectonic evolution of western Venezuela and confirm the relevance of the Bocono Fault carrying deformation to the lower crust and upper mantle. The Barinas-Apure and the Maracaibo sedimentary basins are imaged as electrically conductive with depths of 4 to 5 km and 5 to 10 km, respectively. The Barinas-Apure basin is imaged as a simple 1D structure, in contrast to the Maracaibo Basin, where a series of conductive and resistive bodies could be related to active deformation causing the juxtaposition of older geological formations and younger basin sediments. KW - Magnetotellurics KW - Merida Andes KW - Geodynamics KW - Trujillo Block KW - Chain structure KW - Strike-slip faults KW - Bocono Y1 - 2022 U6 - https://doi.org/10.1016/j.jsames.2022.103711 SN - 0895-9811 SN - 1873-0647 VL - 114 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Valenzuela-Malebran, Carla A1 - Cesca, Simone A1 - Lopez-Comino, José Ángel A1 - Zeckra, Martin A1 - Krüger, F. A1 - Dahm, Torsten T1 - Source mechanisms and rupture processes of the Jujuy seismic nest, Chile-Argentina border JF - Journal of South American earth sciences N2 - The Altiplano-Puna plateau, in Central Andes, is the second-largest continental plateau on Earth, extending between 22 degrees and 27 degrees S at an average altitude of 4400 m. The Puna plateau has been formed in consequence of the subduction of the oceanic Nazca Plate beneath the continental South American plate, which has an average crustal thickness of 50 km at this location. A large seismicity cluster, the Jujuy cluster, is observed at depth of 150-250 km beneath the central region of the Puna plateau. The cluster is seismically very active, with hundreds of earthquakes reported and a peak magnitude MW 6.6 on 25th August 2006. The cluster is situated in one of three band of intermediate-depth focus seismicity, which extend parallel to the trench roughly North to South. It has been hypothesized that the Jujuy cluster could be a seismic nest, a compact seismogenic region characterized by a high stationary activity relative to its surroundings. In this study, we collected more than 40 years of data from different catalogs and proof that the cluster meets the three conditions of a seismic nest. Compared to other known intermediate depth nests at Hindu Kush (Afganisthan) or Bucaramanga (Colombia), the Jujuy nest presents an outstanding seismicity rate, with more than 100 M4+ earthquakes per year. We additionally performed a detailed analysis of the rupture process of some of the largest earthquakes in the nest, by means of moment tensor inversion and directivity analysis. We focused on the time period 2017-2018, where the seismic monitoring was the most extended. Our results show that earthquakes in the nest take place within the eastward subducting oceanic plate, but rupture along sub-horizontal planes dipping westward. We suggest that seismicity at Jujuy nest is controlled by dehydration processes, which are also responsible for the generation of fluids ascending to the crust beneath the Puna volcanic region. We use the rupture plane and nest geometry to provide a constraint to maximal expected magnitude, which we estimate as MW -6.7. KW - Seismic nest KW - Intermediate-deep earthquakes KW - Cluster analysis moment KW - tensor inversion KW - directivity analysis Y1 - 2022 U6 - https://doi.org/10.1016/j.jsames.2022.103887 SN - 0895-9811 SN - 1873-0647 VL - 117 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Carvalho, Thayslan A1 - Brosinsky, Arlena A1 - Foerster, Saskia A1 - Teixeira, Adunias A1 - Medeiros, Pedro Henrique Augusto T1 - Reservoir sediment characterisation by diffuse reflectance spectroscopy in a semiarid region to support sediment reuse for soil fertilization JF - Journal of soils and sediments : protection, risk assessment and remediation N2 - Purpose: Soil erosion by water yields sediment to surface reservoirs, reducing their storage capacities, changing their geometry, and degrading water quality. Sediment reuse, i.e., fertilization of agricultural soils with the nutrient-enriched sediment from reservoirs, has been proposed as a recovery strategy. However, the sediment needs to meet certain criteria. In this study, we characterize sediments from the densely dammed semiarid Northeast Brazil by VNIR-SWIR spectroscopy and assess the effect of spectral resolution and spatial scale on the accuracy of N, P, K, C, electrical conductivity, and clay prediction models. Methods Sediment was collected in 10 empty reservoirs, and physical and chemical laboratory analyses as well as spectral measurements were performed. The spectra, initially measured at 1 nm spectral resolution, were resampled to 5 and 10 nm, and samples were analysed for both high and low spectral resolution at three spatial scales, namely (1) reservoir, (2) catchment, and (3) regional scale. Results Partial least square regressions performed from good to very good in the prediction of clay and electrical conductivity from reservoir (<40 km(2)) to regional (82,500 km(2)) scales. Models for C and N performed satisfactorily at the reservoir scale, but degraded to unsatisfactory at the other scales. Models for P and K were more unstable and performed from unsatisfactorily to satisfactorily at all scales. Coarsening spectral resolution by up to 10 nm only slightly degrades the models' performance, indicating the potential of characterizing sediment from spectral data captured at lower resolutions, such as by hyperspectral satellite sensors. Conclusion: By reducing the costly and time-consuming laboratory analyses, the method helps to promote the sediment reuse as a practice of soil and water conservation. KW - Sediment characterization KW - Spectroscopy KW - Sediment reuse KW - Surface KW - reservoirs KW - Semiarid KW - Brazil Y1 - 2022 U6 - https://doi.org/10.1007/s11368-022-03281-1 SN - 1439-0108 SN - 1614-7480 VL - 22 SP - 2557 EP - 2577 PB - Springer CY - Heidelberg ER - TY - JOUR A1 - Kumar, Satish A1 - Guntu, Ravi Kumar A1 - Agarwal, Ankit A1 - Villuri, Vasant Govind Kumar A1 - Pasupuleti, Srinivas A1 - Kaushal, Deo Raj A1 - Gosian, Ashwin Kumar A1 - Bronstert, Axel T1 - Multi-objective optimization for stormwater management by green-roofs and infiltration trenches to reduce urban flooding in central Delhi JF - Journal of hydrology N2 - Urban surface runoff management via best management practices (BMP) and low impact development (LID) has earned significant recognition owing to positive environmental and ecological impacts. However, due to the complexity of the parameters involved, the estimation of LID efficiency in attenuating the urban surface runoff at the watershed scale is challenging. A planning analysis of employing Green Roofs and Infiltration Trenches as BMPs/LIDs practices for urban surface runoff control is presented in this study. A multi-objective optimization decision-making framework is established by coupling SWMM (Storm Water Management Model) with NSGA-II models to check the performance of BMPs/LIDs concerning the cost-benefit analysis of LID at the watershed scale. Two urbanized areas belonging to Central Delhi in India were used as case studies. The results showed that the SWMM model is useful in simulating optimization problems for managing urban surface runoff. The optimum scenarios efficiently minimized the urban runoff volume while maintaining the BMPs/LIDs implementation costs and size. With BMPs/LIDs implementation, the reduction in runoff volume increases as expenses increase initially; however, there is no noticeable reduction in flood volume after a certain threshold. Contrasted with the haphazard arrangement of BMPs/LIDs, the proposed approach demonstrates 22%-24% runoff reductions for the same expenditures in watershed 1 and 23%-26% in watershed 2. The result of the study provides insights into planning and management of the urban surface runoff control with LID practices. The proposed framework assists the hydrologists in optimum selection and placements of BMPs/LIDs practices to acquire the most extreme ecological advantages with the least expenses. KW - Storm water management model KW - Genetic algorithm KW - NSGA-II KW - Best management practice KW - Low impact development KW - Cost-benefit Y1 - 2022 U6 - https://doi.org/10.1016/j.jhydrol.2022.127455 SN - 0022-1694 SN - 1879-2707 VL - 606 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Shprits, Yuri Y. A1 - Allison, Hayley J. A1 - Wang, Dedong A1 - Drozdov, Alexander A1 - Szabo-Roberts, Matyas A1 - Zhelavskaya, Irina A1 - Vasile, Ruggero T1 - A new population of ultra-relativistic electrons in the outer radiation zone JF - Journal of geophysical research : Space physics N2 - Van Allen Probes measurements revealed the presence of the most unusual structures in the ultra-relativistic radiation belts. Detailed modeling, analysis of pitch angle distributions, analysis of the difference between relativistic and ultra-realistic electron evolution, along with theoretical studies of the scattering and wave growth, all indicate that electromagnetic ion cyclotron (EMIC) waves can produce a very efficient loss of the ultra-relativistic electrons in the heart of the radiation belts. Moreover, a detailed analysis of the profiles of phase space densities provides direct evidence for localized loss by EMIC waves. The evolution of multi-MeV fluxes shows dramatic and very sudden enhancements of electrons for selected storms. Analysis of phase space density profiles reveals that growing peaks at different values of the first invariant are formed at approximately the same radial distance from the Earth and show the sequential formation of the peaks from lower to higher energies, indicating that local energy diffusion is the dominant source of the acceleration from MeV to multi-MeV energies. Further simultaneous analysis of the background density and ultra-relativistic electron fluxes shows that the acceleration to multi-MeV energies only occurs when plasma density is significantly depleted outside of the plasmasphere, which is consistent with the modeling of acceleration due to chorus waves. KW - radiation belts KW - ultra-relativistic electrons KW - EMIC waves KW - modeling; KW - plasma density KW - chorus waves Y1 - 2022 U6 - https://doi.org/10.1029/2021JA030214 SN - 2169-9380 SN - 2169-9402 VL - 127 IS - 5 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Landis, D. A. A1 - Saikin, Anthony A1 - Zhelavskaya, Irina A1 - Drozdov, Alexander A1 - Aseev, Nikita A1 - Shprits, Yuri Y. A1 - Pfitzer, Maximilian F. A1 - Smirnov, Artem G. T1 - NARX Neural Network Derivations of the Outer Boundary Radiation Belt Electron Flux JF - Space Weather: the international journal of research and applications N2 - We present two new empirical models of radiation belt electron flux at geostationary orbit. GOES-15 measurements of 0.8 MeV electrons were used to train a Nonlinear Autoregressive with Exogenous input (NARX) neural network for both modeling GOES-15 flux values and an upper boundary condition scaling factor (BF). The GOES-15 flux model utilizes an input and feedback delay of 2 and 2 time steps (i.e., 5 min time steps) with the most efficient number of hidden layers set to 10. Magnetic local time, Dst, Kp, solar wind dynamic pressure, AE, and solar wind velocity were found to perform as predicative indicators of GOES-15 flux and therefore were used as the exogenous inputs. The NARX-derived upper boundary condition scaling factor was used in conjunction with the Versatile Electron Radiation Belt (VERB) code to produce reconstructions of the radiation belts during the period of July-November 1990, independent of in-situ observations. Here, Kp was chosen as the sole exogenous input to be more compatible with the VERB code. This Combined Release and Radiation Effects Satellite-era reconstruction showcases the potential to use these neural network-derived boundary conditions as a method of hindcasting the historical radiation belts. This study serves as a companion paper to another recently published study on reconstructing the radiation belts during Solar Cycles 17-24 (Saikin et al., 2021, ), for which the results featured in this paper were used. KW - radiation belts KW - forecasting (1922, 4315, 7924, 7964) KW - machine learning (0555) Y1 - 2022 U6 - https://doi.org/10.1029/2021SW002774 SN - 1542-7390 VL - 20 IS - 5 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Lescesen, Igor A1 - Sraj, Mojca A1 - Basarin, Biljana A1 - Pavic, Dragoslav A1 - Mesaros, Minucer A1 - Mudelsee, Manfred T1 - Regional flood frequency analysis of the sava river in south-eastern Europe JF - Sustainability N2 - Regional flood frequency analysis (RFFA) is a powerful method for interrogating hydrological series since it combines observational time series from several sites within a region to estimate risk-relevant statistical parameters with higher accuracy than from single-site series. Since RFFA extreme value estimates depend on the shape of the selected distribution of the data-generating stochastic process, there is need for a suitable goodness-of-distributional-fit measure in order to optimally utilize given data. Here we present a novel, least-squares-based measure to select the optimal fit from a set of five distributions, namely Generalized Extreme Value (GEV), Generalized Logistic, Gumbel, Log-Normal Type III and Log-Pearson Type III. The fit metric is applied to annual maximum discharge series from six hydrological stations along the Sava River in South-eastern Europe, spanning the years 1961 to 2020. Results reveal that (1) the Sava River basin can be assessed as hydrologically homogeneous and (2) the GEV distribution provides typically the best fit. We offer hydrological-meteorological insights into the differences among the six stations. For the period studied, almost all stations exhibit statistically insignificant trends, which renders the conclusions about flood risk as relevant for hydrological sciences and the design of regional flood protection infrastructure. KW - discharge time series KW - flood risk analysis KW - Generalized Extreme Value distribution KW - L-moments estimation KW - regional flood frequency analysis KW - Sava River Y1 - 2022 U6 - https://doi.org/10.3390/su14159282 SN - 2071-1050 VL - 14 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Ramachandran, Srikanthan A1 - Rupakheti, Maheswar A1 - Cherian, R. A1 - Lawrence, Mark T1 - Climate Benefits of Cleaner Energy Transitions in East and South Asia Through Black Carbon Reduction JF - Frontiers in environmental science N2 - The state of air pollution has historically been tightly linked to how we produce and use energy. Air pollutant emissions over Asia are now changing rapidly due to cleaner energy transitions; however, magnitudes of benefits for climate and air quality remain poorly quantified. The associated risks involve adverse health impacts, reduced agricultural yields, reduced freshwater availability, contributions to climate change, and economic costs. We focus particularly on climate benefits of energy transitions by making first-time use of two decades of high quality observations of atmospheric loading of light-absorbing black carbon (BC) over Kanpur (South Asia) and Beijing (East Asia) and relating these observations to changing energy, emissions, and economic trends in India and China. Our analysis reveals that absorption aerosol optical depth (AAOD) due to BC has decreased substantially, by 40% over Kanpur and 60% over Beijing between 2001 and 2017, and thus became decoupled from regional economic growth. Furthermore, the resultant decrease in BC emissions and BC AAOD over Asia is regionally coherent and occurs primarily due to transitions into cleaner energies (both renewables and fossil fuels) and not due to the decrease in primary energy supply or decrease in use of fossil use and biofuels and waste. Model simulations show that BC aerosols alone contribute about half of the surface temperature change (warming) of the total forcing due to greenhouse gases, natural and internal variability, and aerosols, thus clearly revealing the climate benefits due to a reduction in BC emissions, which would significantly reduce global warming. However, this modeling study excludes responses from natural variability, circulation, and sea ice responses, which cause relatively strong temperature fluctuations that may mask signals from BC aerosols. Our findings show additional benefits for climate (beyond benefits of CO2 reduction) and for several other issues of sustainability over South and East Asia, provide motivation for ongoing cleaner energy production, and consumption transitions, especially when they are associated with reduced emissions of air pollutants. Such an analysis connecting the trends in energy transitions and aerosol absorption loading, unavailable so far, is crucial for simulating the aerosol climate impacts over Asia which is quite uncertain. KW - cleaner energy transitions KW - Asia KW - air pollution KW - black carbon KW - climate benefits Y1 - 2022 U6 - https://doi.org/10.3389/fenvs.2022.842319 SN - 2296-665X VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Jozi Najafabadi, Azam A1 - Haberland, Christian A1 - Le Breton, Eline A1 - Handy, Mark R. A1 - Verwater, Vincent F. A1 - Heit, Benjamin A1 - Weber, Michael T1 - Constraints on crustal structure in the vicinity of the adriatic indenter (European Alps) from Vp and Vp/Vs local earthquake tomography JF - Journal of geophysical research : Solid earth N2 - In this study, 3-D models of P-wave velocity (Vp) and P-wave and S-wave ratio (Vp/Vs) of the crust and upper mantle in the Eastern and eastern Southern Alps (northern Italy and southern Austria) were calculated using local earthquake tomography (LET). The data set includes high-quality arrival times from well-constrained hypocenters observed by the dense, temporary seismic networks of the AlpArray AASN and SWATH-D. The resolution of the LET was checked by synthetic tests and analysis of the model resolution matrix. The small inter-station spacing (average of similar to 15 km within the SWATH-D network) allowed us to image crustal structure at unprecedented resolution across a key part of the Alps. The derived P velocity model revealed a highly heterogeneous crustal structure in the target area. One of the main findings is that the lower crust is thickened, forming a bulge at 30-50 km depth just south of and beneath the Periadriatic Fault and the Tauern Window. This indicates that the lower crust decoupled both from its mantle substratum as well as from its upper crust. The Moho, taken to be the iso-velocity contour of Vp = 7.25 km/s, agrees with the Moho depth from previous studies in the European and Adriatic forelands. It is shallower on the Adriatic side than on the European side. This is interpreted to indicate that the European Plate is subducted beneath the Adriatic Plate in the Eastern and eastern Southern Alps. KW - European Alps KW - crustal structure KW - subduction KW - seismic tomography KW - body waves Y1 - 2022 U6 - https://doi.org/10.1029/2021JB023160 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 2 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Dey, Somnath A1 - Schönleber, Andreas A1 - Smaalen, Sander van A1 - Morgenroth, Wolfgang A1 - Larsen, Finn Krebs T1 - Incommensurate phase in Λ-cobalt (III) sepulchrate trinitrate governed by highly competitive N-H...O and C-H...O hydrogen bond networks JF - Chemistry - a European journal N2 - Phase transitions in molecular crystals are often determined by intermolecular interactions. The cage complex of [Co(C12H30N8)](3+) . 3 NO3- is reported to undergo a disorder-order phase transition at T-c1 approximate to 133 K upon cooling. Temperature-dependent neutron and synchrotron diffraction experiments revealed satellite reflections in addition to main reflections in the diffraction patterns below T-c1. The modulation wave vector varies as function of temperature and locks in at T-c3 approximate to 98 K. Here, we demonstrate that the crystal symmetry lowers from hexagonal to monoclinic in the incommensurately modulated phases in T-c150km, the temperatures of the overriding plate are mainly controlled by the mantle heat input and the subduction angle. The thermal field of the upper plate likely preserves the flat subduction angle and influences the spatial distribution of shortening. Y1 - 2022 U6 - https://doi.org/10.2113/2022/2237272 SN - 1941-8264 SN - 1947-4253 VL - 2022 IS - 1 PB - GeoScienceWorld CY - McLean ER - TY - JOUR A1 - Lilienkamp, Henning A1 - von Specht, Sebastian A1 - Weatherill, Graeme A1 - Caire, Giuseppe A1 - Cotton, Fabrice T1 - Ground-Motion modeling as an image processing task BT - introducing a neural network based, fully data-driven, and nonergodic JF - Bulletin of the Seismological Society of America N2 - We construct and examine the prototype of a deep learning-based ground-motion model (GMM) that is both fully data driven and nonergodic. We formulate ground-motion modeling as an image processing task, in which a specific type of neural network, the U-Net, relates continuous, horizontal maps of earthquake predictive parameters to sparse observations of a ground-motion intensity measure (IM). The processing of map-shaped data allows the natural incorporation of absolute earthquake source and observation site coordinates, and is, therefore, well suited to include site-, source-, and path-specific amplification effects in a nonergodic GMM. Data-driven interpolation of the IM between observation points is an inherent feature of the U-Net and requires no a priori assumptions. We evaluate our model using both a synthetic dataset and a subset of observations from the KiK-net strong motion network in the Kanto basin in Japan. We find that the U-Net model is capable of learning the magnitude???distance scaling, as well as site-, source-, and path-specific amplification effects from a strong motion dataset. The interpolation scheme is evaluated using a fivefold cross validation and is found to provide on average unbiased predictions. The magnitude???distance scaling as well as the site amplification of response spectral acceleration at a period of 1 s obtained for the Kanto basin are comparable to previous regional studies. Y1 - 2022 U6 - https://doi.org/10.1785/0120220008 SN - 0037-1106 SN - 1943-3573 VL - 112 IS - 3 SP - 1565 EP - 1582 PB - Seismological Society of America CY - Albany ER - TY - JOUR A1 - Rasigraf, Olivia A1 - Wagner, Dirk T1 - Landslides BT - an emerging model for ecosystem and soil chronosequence research JF - Earth science reviews : the international geological journal bridging the gap between research articles and textbooks N2 - Erosion by landslides is a common phenomenon in mountain regions around the globe, affecting all climatic zones. Landslides facilitate bedrock weathering, pedogenesis and ecological succession, being key drivers of biodiversity. Landslide chronosequences have long been used for studies of vegetation succession in initial ecosystems, but they further offer ideal model systems for studies of soil development and microbial community succession. In this review we synthesize the state of knowledge on the role of landslides in ecosystems, their influence on element cycles and interactions with biota. Further, we discuss feedback mechanisms between global warming, landslide activity and greenhouse gas emissions. In the view of increasing anthropogenic influence and climate change, soils are becoming a critical resource. Due to their ubiquity, landslide chronosequences have the potential to provide critical insights into soil development under different climates and thereby contribute to future soil restoration efforts. KW - Landslides KW - Greenhouse gas emissions KW - Landslide chronosequences KW - Soil KW - microbial community KW - Erosion KW - Biodiversity KW - Microbial processes KW - Climate KW - change Y1 - 2022 U6 - https://doi.org/10.1016/j.earscirev.2022.104064 SN - 0012-8252 SN - 1872-6828 VL - 231 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Guillemoteau, Julien A1 - Vignoli, Giulio A1 - Barreto, Jeniffer A1 - Sauvin, Guillaume T1 - Sparse laterally constrained inversion of surface-wave dispersion curves via minimum gradient support regularization JF - Geophysics N2 - We have developed a 1D laterally constrained inversion of surface-wave dispersion curves based on the minimum gradient support regularization, which allows solutions with tunable sharpness in the vertical and horizontal directions. The forward modeling consists of a finite-elements approach incorporated in a flexible nonparametric gradient-based inversion scheme, which has already demonstrated good stability and convergence capabilities when tested on other kinds of data. Our deterministic inversion procedure is performed in the shear-wave velocity log space as we noticed that the associated Jacobian indicates a reduced model dependency, and this, in turn, decreases the risks of local nonconvexity. We show several synthetics and one field example to demonstrate the effectiveness and the applicability of the proposed approach. KW - surface wave, inversion, near surface Y1 - 2022 U6 - https://doi.org/10.1190/GEO2021-0247.1 SN - 0016-8033 SN - 1942-2156 VL - 87 IS - 3 SP - R281 EP - R289 PB - Society of Exploration Geophysicists CY - Tulsa, Okla. ER - TY - JOUR A1 - Armstrong, Michael R. A1 - Radousky, Harry B. A1 - Austin, Ryan A. A1 - Tschauner, Oliver A1 - Brown, Shaughnessy A1 - Gleason, Arianna E. A1 - Goldman, Nir A1 - Granados, Eduardo A1 - Grivickas, Paulius A1 - Holtgrewe, Nicholas A1 - Kroonblawd, Matthew P. A1 - Lee, Hae Ja A1 - Lobanov, Sergey A1 - Nagler, Bob A1 - Nam, Inhyuk A1 - Prakapenka, Vitali A1 - Prescher, Clemens A1 - Reed, Evan J. A1 - Stavrou, Elissaios A1 - Walter, Peter A1 - Goncharov, Alexander F. A1 - Belof, Jonathan L. T1 - Highly ordered graphite (HOPG) to hexagonal diamond (lonsdaleite) phase transition observed on picosecond time scales using ultrafast x-ray diffraction JF - Journal of applied physics N2 - The response of rapidly compressed highly oriented pyrolytic graphite (HOPG) normal to its basal plane was investigated at a pressure of & SIM;80 GPa. Ultrafast x-ray diffraction using & SIM;100 fs pulses at the Materials Under Extreme Conditions sector of the Linac Coherent Light Source was used to probe the changes in crystal structure resulting from picosecond timescale compression at laser drive energies ranging from 2.5 to 250 mJ. A phase transformation from HOPG to a highly textured hexagonal diamond structure is observed at the highest energy, followed by relaxation to a still highly oriented, but distorted graphite structure following release. We observe the formation of a highly oriented lonsdaleite within 20 ps, subsequent to compression. This suggests that a diffusionless martensitic mechanism may play a fundamental role in phase transition, as speculated in an early work on this system, and more recent static studies of diamonds formed in impact events. Published by AIP Publishing. Y1 - 2022 U6 - https://doi.org/10.1063/5.0085297 SN - 0021-8979 SN - 1089-7550 VL - 132 IS - 5 PB - AIP Publishing CY - Melville ER - TY - JOUR A1 - Procyk, Roman A1 - Lovejoy, Shaun A1 - Hébert, Raphaёl T1 - The fractional energy balance equation for climate projections through 2100 JF - Earth system dynamics / European Geosciences Union N2 - We produce climate projections through the 21st century using the fractional energy balance equation (FEBE): a generalization of the standard energy balance equation (EBE). The FEBE can be derived from Budyko-Sellers models or phenomenologically through the application of the scaling symmetry to energy storage processes, easily implemented by changing the integer order of the storage (derivative) term in the EBE to a fractional value. The FEBE is defined by three parameters: a fundamental shape parameter, a timescale and an amplitude, corresponding to, respectively, the scaling exponent h, the relaxation time tau and the equilibrium climate sensitivity (ECS). Two additional parameters were needed for the forcing: an aerosol recalibration factor alpha to account for the large aerosol uncertainty and a volcanic intermittency correction exponent upsilon. A Bayesian framework based on historical temperatures and natural and anthropogenic forcing series was used for parameter estimation. Significantly, the error model was not ad hoc but rather predicted by the model itself: the internal variability response to white noise internal forcing. The 90 % credible interval (CI) of the exponent and relaxation time were h = [0.33, 0.44] (median = 0.38) and tau = [2.4, 7.0] (median = 4.7) years compared to the usual EBE h = 1, and literature values of tau typically in the range 2-8 years. Aerosol forcings were too strong, requiring a decrease by an average factor alpha = [0.2, 1.0] (median = 0.6); the volcanic intermittency correction exponent was upsilon = [0.15, 0.41] (median = 0.28) compared to standard values alpha = upsilon = 1. The overpowered aerosols support a revision of the global modern (2005) aerosol forcing 90 % CI to a narrower range [ -1.0, -0.2] W m(-2). The key parameter ECS in comparison to IPCC AR5 (and to the CMIP6 MME), the 90 % CI range is reduced from [1.5, 4.5] K ([2.0, 5.5] K) to [1.6, 2.4] K ([1.5, 2.2] K), with median value lowered from 3.0 K (3.7 K) to 2.0 K (1.8 K) Similarly we found for the transient climate response (TCR), the 90 % CI range shrinks from [1.0, 2.5] K ([1.2, 2.8] K) to [1.2, 1.8] K ([1.1, 1.6] K) and the median estimate decreases from 1.8 K (2.0 K) to 1.5 K (1.4 K). As often seen in other observational-based studies, the FEBE values for climate sensitivities are therefore somewhat lower but still consistent with those in IPCC AR5 and the CMIP6 MME.
Using these parameters, we made projections to 2100 using both the Representative Concentration Pathway (RCP) and Shared Socioeconomic Pathway (SSP) scenarios, and compared them to the corresponding CMIP5 and CMIP6 multi-model ensembles (MMEs). The FEBE historical reconstructions (1880-2020) closely follow observations, notably during the 1998-2014 slowdown ("hiatus"). We also reproduce the internal variability with the FEBE and statistically validate this against centennial-scale temperature observations. Overall, the FEBE projections were 10 %-15 % lower but due to their smaller uncertainties, their 90 % CIs lie completely within the GCM 90 % CIs. This agreement means that the FEBE validates the MME, and vice versa. Y1 - 2022 U6 - https://doi.org/10.5194/esd-13-81-2022 SN - 2190-4979 SN - 2190-4987 VL - 13 IS - 1 SP - 81 EP - 107 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Bufe, Aaron A1 - Cook, Kristen L. A1 - Galy, Albert A1 - Wittmann, Hella A1 - Hovius, Niels T1 - The effect of lithology on the relationship between denudation rate and chemical weathering pathways BT - evidence from the eastern Tibetan Plateau JF - Earth surface dynamics N2 - The denudation of rocks in mountain belts exposes a range of fresh minerals to the surface of the Earth that are chemically weathered by acidic and oxygenated fluids. The impact of the resulting coupling between denudation and weathering rates fundamentally depends on the types of minerals that are weathering. Whereas silicate weathering sequesters CO2, the combination of sulfide oxidation and carbonate dissolution emits CO2 to the atmosphere. Here, we combine the concentrations of dissolved major elements in stream waters with Be-10 basin-wide denudation rates from 35 small catchments in eastern Tibet to elucidate the importance of lithology in modulating the relationships between denudation rate, chemical weathering pathways, and CO2 consumption or release. Our catchments span 3 orders of magnitude in denudation rate in low-grade flysch, high-grade metapelites, and granitoid rocks. For each stream, we estimate the concentrations of solutes sourced from silicate weathering, carbonate dissolution, and sulfide oxidation using a mixing model. We find that for all lithologies, cation concentrations from silicate weathering are largely independent of denudation rate, but solute concentrations from carbonates and, where present, sulfides increase with increasing denudation rate. With increasing denudation rates, weathering may therefore shift from consuming to releasing CO2 in both (meta)sedimentary and granitoid lithologies. For a given denudation rate, we report dissolved solid concentrations and inferred weathering fluxes in catchments underlain by (meta)sedimentary rock that are 2-10 times higher compared to catchments containing granitoid lithologies, even though climatic and topographic parameters do not vary systematically between these catchments. Thus, varying proportions of exposed (meta)sedimentary and igneous rocks during orogenesis could lead to changes in the sequestration and release of CO2 that are independent of denudation rate. Y1 - 2022 U6 - https://doi.org/10.5194/esurf-10-513-2022 SN - 2196-6311 SN - 2196-632X VL - 10 IS - 3 SP - 513 EP - 530 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Kühn, Daniela A1 - Hainzl, Sebastian A1 - Dahm, Torsten A1 - Richter, Gudrun A1 - Vera Rodriguez, Ismael T1 - A review of source models to further the understanding of the seismicity of the Groningen field JF - Netherlands journal of geosciences : NJG N2 - The occurrence of felt earthquakes due to gas production in Groningen has initiated numerous studies and model attempts to understand and quantify induced seismicity in this region. The whole bandwidth of available models spans the range from fully deterministic models to purely empirical and stochastic models. In this article, we summarise the most important model approaches, describing their main achievements and limitations. In addition, we discuss remaining open questions and potential future directions of development. KW - deterministic KW - empirical KW - hybrid KW - machine learning KW - seismicity model Y1 - 2022 U6 - https://doi.org/10.1017/njg.2022.7 SN - 0016-7746 SN - 1573-9708 VL - 101 PB - Cambridge Univ. Press CY - Cambridge ER - TY - JOUR A1 - Franz, Gerhard A1 - Sudo, Masafumi A1 - Khomenko, Vladimir T1 - 40Ar/39Ar dating of a hydrothermal pegmatitic buddingtonite–muscovite assemblage from Volyn, Ukraine JF - European journal of mineralogy : EJM : an international journal on mineralogy, petrology, geochemistry, and related sciences N2 - We determined Ar-40/Ar-39 ages of buddingtonite, occurring together with muscovite, with the laser-ablation method. This is the first attempt to date the NH4-feldspar buddingtonite, which is typical for sedimentary-diagenetic environments of sediments, rich in organic matter, or in hydrothermal environments, associated with volcanic geyser systems. The sample is a hydrothermal breccia, coming from the Paleoproterozoic pegmatite field of the Korosten Plutonic Complex, Volyn, Ukraine. A detailed characterization by optical methods, electron microprobe analyses, backscattered electron imaging, and IR analyses showed that the buddingtonite consists of euhedral-appearing platy crystals of tens of micrometers wide, 100 or more micrometers in length, which consist of fine-grained fibers of <= 1 mu m thickness. The crystals are sector and growth zoned in terms of K-NH4-H3O content. The content of K allows for an age determination with the Ar-40/Ar-39 method, as well as in the accompanying muscovite, intimately intergrown with the buddingtonite. The determinations on muscovite yielded an age of 1491 +/- 9 Ma, interpreted as the hydrothermal event forming the breccia. However, buddingtonite apparent ages yielded a range of 563 +/- 14 Ma down to 383 +/- 12 Ma, which are interpreted as reset ages due to Ar loss of the fibrous buddingtonite crystals during later heating. We conclude that buddingtonite is suited for Ar-40/Ar-39 age determinations as a supplementary method, together with other methods and minerals; however, it requires a detailed mineralogical characterization, and the ages will likely represent minimum ages. Y1 - 2022 U6 - https://doi.org/10.5194/ejm-34-7-2022 SN - 0935-1221 SN - 1617-4011 VL - 34 IS - 1 SP - 7 EP - 18 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Nomosatryo, Sulung A1 - Tjallingii, Rik A1 - Henny, Cynthia A1 - Ridwansyah, Iwan A1 - Wagner, Dirk A1 - Tomás, Sara A1 - Kallmeyer, Jens T1 - Surface sediment composition and depositional environments in tropical Lake Sentani, Papua Province, Indonesia JF - Journal of Paleolimnology N2 - Tropical Lake Sentani in the Indonesian Province Papua consists of four separate basins and is surrounded by a catchment with a very diverse geology. We characterized the surface sediment (upper 5 cm) of the lake's four sub-basins based on multivariate statistical analyses (principal component analysis, hierarchical clustering) of major element compositions obtained by X-ray fluorescence scanning. Three types of sediment are identified based on distinct compositional differences between rivers, shallow/proximal and deep/distal lake sediments. The different sediment types are mainly characterized by the correlation of elements associated with redox processes (S, Mn, Fe), carbonates (Ca), and detrital input (Ti, Al, Si, K) derived by river discharge. The relatively coarse-grained river sediments mainly derive form the mafic catchment geology and contribution of the limestone catchment geology is only limited. Correlation of redox sensitive and detrital elements are used to reveal oxidation conditions, and indicate oxic conditions in river samples and reducing conditions for lake sediments. Organic carbon (TOC) generally correlates with redox sensitive elements, although a correlation between TOC and individual elements change strongly between the three sediment types. Pyrite is the quantitatively dominant reduced sulfur mineral, monosulfides only reach appreciable concentrations in samples from rivers draining mafic and ultramafic catchments. Our study shows large spatial heterogeneity within the lake's sub-basins that is mainly caused by catchment geology and topography, river runoff as well as the bathymetry and the depth of the oxycline. We show that knowledge about lateral heterogeneity is crucial for understanding the geochemical and sedimentological variations recorded by these sediments. The highly variable conditions make Lake Sentani a natural laboratory, with its different sub-basins representing different depositional environments under identical tropical climate conditions. KW - Tropical lake KW - Lacustrine sediment KW - XRF analysis KW - Multivariate KW - statistics Y1 - 2022 U6 - https://doi.org/10.1007/s10933-022-00259-4 SN - 0921-2728 SN - 1573-0417 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Sieber, Melanie Jutta A1 - Yaxley, Greg A1 - Hermann, Jörg T1 - COH-fluid induced metasomatism of peridotites in the forearc mantle JF - Contributions to Mineralogy and Petrology N2 - Devolatilization of subducting lithologies liberates COH-fluids. These may become partially sequestered in peridotites in the slab and the overlying forearc mantle, affecting the cycling of volatiles and fluid mobile elements in subduction zones. Here we assess the magnitudes, timescales and mechanism of channelized injection of COH-fluids doped with Ca-aq(2+), Sr-aq(2+) and Ba-aq(2+) into the dry forearc mantle by performing piston cylinder experiments between 1-2.5 GPa and 600-700 degrees C. Cylindrical cores of natural spinel-bearing harzburgites were used as starting materials. Based on mineral assemblage and composition three reaction zones are distinguishable from the rim towards the core of primary olivine and orthopyroxene grains. Zone 1 contains carbonates + quartz +/- kyanite and zone 2 contains carbonates + talc +/- chlorite. Olivine is further replaced in zone 3 by either antigorite+ magnesite or magnesite +talc within or above antigorite stability, respectively. Orthopyroxene is replaced in zone 3 by talc + chlorite. Mineral assemblages and the compositions of secondary minerals depend on fluid composition and the replaced primary silicate. The extent of alteration depends on fluid CO2 content and fluid/rock-ratio, and is further promoted by fluid permeable reaction zones and reaction driven cracking. Our results show that COH-fluid induced metasomatism of the forearc mantle is self-perpetuating and efficient at sequestering Ca-aq(2+), Sr-aq(2+), Ba-aq(2+) and CO2aq into newly formed carbonates. This process is fast with 90% of the available C sequestered and nearly 50% of the initial minerals altered at 650 degrees C, 2 GPa within 55 h. The dissolution of primary silicates under high COH-fluid/rock-ratios, as in channelized fluid flow, enriches SiO2aq in the fluid, while CO2aq is sequestered into carbonates. In an open system, the remaining CO2-depleted, Si-enriched aqueous fluid may cause Si-metasomatism in the forearc further away from the injection of the COH-fluid into peridotite. KW - Carbonation KW - Deep carbon cycle KW - COH-fluid KW - Forearc KW - HP-experiments Y1 - 2022 U6 - https://doi.org/10.1007/s00410-022-01905-w SN - 0010-7999 SN - 1432-0967 VL - 177 IS - 4 PB - Springer CY - New York ER - TY - JOUR A1 - Mar, Kathleen A. A1 - Unger, Charlotte A1 - Walderdorff, Ludmila A1 - Butler, Tim T1 - Beyond CO2 equivalence BT - The impacts of methane on climate, ecosystems, and health JF - Environmental science & policy N2 - In this article we review the physical and chemical properties of methane (CH4) relevant to impacts on climate, ecosystems, and air pollution, and examine the extent to which this is reflected in climate and air pollution governance. Although CH4 is governed under the UNFCCC climate regime, its treatment there is limited to the ways in which it acts as a "CO2 equivalent" climate forcer on a 100-year time frame. The UNFCCC framework neglects the impacts that CH4 has on near-term climate, as well its impacts on human health and ecosystems, which are primarily mediated by methane's role as a precursor to tropospheric ozone. Frameworks for air quality governance generally address tropospheric ozone as a pollutant, but do not regulate CH4 itself. Methane's climate and air quality impacts, together with its alarming rise in atmospheric concentrations in recent years, make it clear that mitigation of CH4 emissions needs to be accelerated globally. We examine challenges and opportunities for further progress on CH4 mitigation within the international governance landscapes for climate change and air pollution. KW - Methane KW - Climate governance KW - Air pollution KW - International policy KW - Short-lived climate pollutants KW - Global warming potential Y1 - 2022 U6 - https://doi.org/10.1016/j.envsci.2022.03.027 SN - 1462-9011 SN - 1873-6416 VL - 134 SP - 127 EP - 136 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Farrag, Mostafa A1 - Brill, Fabio Alexander A1 - Nguyen, Viet Dung A1 - Sairam, Nivedita A1 - Schröter, Kai A1 - Kreibich, Heidi A1 - Merz, Bruno A1 - de Bruijn, Karin M. A1 - Vorogushyn, Sergiy T1 - On the role of floodplain storage and hydrodynamic interactions in flood risk estimation JF - Hydrological sciences journal = Journal des sciences hydrologiques N2 - Hydrodynamic interactions, i.e. the floodplain storage effects caused by inundations upstream on flood wave propagation, inundation areas, and flood damage downstream, are important but often ignored in large-scale flood risk assessments. Although new methods considering these effects sometimes emerge, they are often limited to a small or meso scale. In this study, we investigate the role of hydrodynamic interactions and floodplain storage on flood hazard and risk in the German part of the Rhine basin. To do so, we compare a new continuous 1D routing scheme within a flood risk model chain to the piece-wise routing scheme, which largely neglects floodplain storage. The results show that floodplain storage is significant, lowers water levels and discharges, and reduces risks by over 50%. Therefore, for accurate risk assessments, a system approach must be adopted, and floodplain storage and hydrodynamic interactions must carefully be considered. KW - hydrodynamic interactions KW - derived flood risk analysis KW - flood modelling; KW - Rhine basin Y1 - 2022 U6 - https://doi.org/10.1080/02626667.2022.2030058 SN - 0262-6667 SN - 2150-3435 VL - 67 IS - 4 SP - 508 EP - 534 PB - Routledge, Taylor & Francis Group CY - Abingdon ER - TY - JOUR A1 - Siegmund, Nicole A1 - Funk, Roger A1 - Sommer, Michael A1 - Avecilla, Fernando A1 - Esteban Panebianco, Juan A1 - Iturri, Laura Antonela A1 - Buschiazzo, Daniel T1 - Horizontal and vertical fluxes of particulate matter during wind erosion on arable land in the province La Pampa, Argentina JF - International journal of sediment research N2 - A detailed analysis of horizontal and vertical particulate matter (PM) fluxes during wind erosion has been done, based on measurements of PM smaller than 10, 2.5, and 1.0 mu mm, at windward and leeward positions on a measuring field. The three fractions of PM measurement are differently influenced by the increasing wind and shear velocities of the wind. The measured concentrations of the coarser fractions of the fine dust, PM10, and PM2.5, increase with wind and shear velocity, whereas the PM1.0 concentrations show no clear correlation to the shear velocity. The share of PM2.5 on PM10 depends on the measurement height and wind speed and varies between 4 and 12 m/s at the 1 m height ranging from 25% to 7% (average 10%), and at the 4 m height from 39% to 23% (average 30%). Although general relationships between wind speed, PM concentration, and horizontal and vertical fluxes could be found, the contribution of the measuring field was very low, as balances of incoming and outgoing fluxes show. Consequently, the measured PM concentrations are determined from a variety of sources, such as traffic on unpaved roads, cattle drives, tillage operations, and wind erosion, and thus, represent all components of land use and landscape structure in the near and far surroundings of the measuring field. The current results may reflect factors from the landscape scale rather than the influence of field-related variables. The measuring devices used to monitor PM concentrations showed differences of up to 20%, which led to considerable deviations when determining total balances. Differences up to 67% between the calculated fluxes prove the necessity of a previous calibration of the devices used. (c) 2022 International Research and Training Centre on Erosion and Sedimentation/the World Association for Sedimentation and Erosion Research. KW - PM10, PM2.5 and PM1.0 concentrations KW - Field measurements KW - Horizontal KW - flux KW - Vertical flux KW - PM balances Y1 - 2022 U6 - https://doi.org/10.1016/j.ijsrc.2022.01.004 SN - 1001-6279 SN - 2589-7284 VL - 37 IS - 5 SP - 539 EP - 552 PB - IRTCES CY - Beijing ER - TY - JOUR A1 - Fischer, Tomáš A1 - Hrubcova, Pavla A1 - Dahm, Torsten A1 - Woith, Heiko A1 - Vylita, Tomáš A1 - Ohrnberger, Matthias A1 - Vlček, Josef A1 - Horalek, Josef A1 - Dedecek, Petr A1 - Zimmer, Martin A1 - Lipus, Martin P. A1 - Pierdominici, Simona A1 - Kallmeyer, Jens A1 - Krüger, Frank A1 - Hannemann, Katrin A1 - Korn, Michael A1 - Kaempf, Horst A1 - Reinsch, Thomas A1 - Klicpera, Jakub A1 - Vollmer, Daniel A1 - Daskalopoulou, Kyriaki T1 - ICDP drilling of the Eger Rift observatory BT - magmatic fluids driving the earthquake swarms and deep biosphere JF - Scientific drilling : reports on deep earth sampling and monitoring N2 - The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia–Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Nový Kostel seismogenic zone, borehole F3 in the Hartoušov mofette field and borehole S4 in the newly discovered Bažina maar near Libá. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartoušov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity. Y1 - 2022 U6 - https://doi.org/10.5194/sd-31-31-2022 SN - 1816-8957 SN - 1816-3459 VL - 31 SP - 31 EP - 49 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Regmi, Shakil A1 - Bookhagen, Bodo T1 - The spatial pattern of extreme precipitation from 40 years of gauge data in the central Himalaya JF - Weather and climate extremes N2 - The topography of the Himalaya exerts a substantial control on the spatial distribution of monsoonal rainfall, which is a vital water source for the regional economy and population. But the occurrence of short-lived and high-intensity precipitation results in socio-economic losses. This study relies on 40 years of daily data from 204 ground stations in Nepal to derive extreme precipitation thresholds, amounts, and days at the 95th percentile. We additionally determine the precipitation magnitude-frequency relation. We observe that extreme precipitation amounts follow an almost uniform band parallel to topographic contour lines in the southern Himalaya mountains in central and eastern Nepal but not in western Nepal. The relationship of extreme precipitation indices with topographic relief shows that extreme precipitation thresholds decrease with increasing elevation, but extreme precipitation days increase in higher elevation areas. Furthermore, stations above 1 km elevation exhibit a power-law relation in the rainfall magnitude-frequency framework. Stations at higher elevations generally have lower values of power-law exponents than low elevation areas. This suggests a fundamentally different behaviour of the rainfall distribution and an increased occurrence of extreme rainfall storms in the high elevation areas of Nepal. KW - Himalaya KW - Nepal KW - Indian summer monsoon KW - Precipitation KW - Extreme KW - precipitation Y1 - 2022 U6 - https://doi.org/10.1016/j.wace.2022.100470 SN - 2212-0947 VL - 37 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Erbello Doelesso, Asfaw A1 - Melnick, Daniel A1 - Zeilinger, Gerold A1 - Bookhagen, Bodo A1 - Pingel, Heiko A1 - Strecker, Manfred T1 - Geomorphic expression of a tectonically active rift-transfer zone in southern Ethiopia JF - Geomorphology : an international journal on pure and applied geomorphology N2 - The Gofa Province and the Chew Bahir Basin of southern Ethiopia constitute tectonically active regions, where the Southern Main Ethiopian Rift converges with the Northern Kenya Rift through a wide zone of extensional deformation with several north to northeast-trending, left-stepping en-e & PRIME;chelon basins. This sector of the Southern Main Ethiopian Rift is characterized by a semi-arid climate and a largely uniform lithology, and thus provides ideal conditions for studying the different parameters that define the tectonic and geomorphic features of this complex kinematic transfer zone. In this study, the degree of tectonic activity, spatiotemporal variations in extension, and the nature of kinematic linkage between different fault systems of the transfer zone are constrained by detailed quantitative geomorphic analysis of river catchments and focused field work. We analyzed fluvial and landscape morphometric characteristics in combination with structural, seismicity, and climatic data to better evaluate the tectono-geomorphic history of this transfer zone. Our data reveal significant north-south variations in the degree of extension from the Sawula Basin in the north (mature) to the Chew Bahir Basin in the south (juvenile). First, normalized channel-steepness indices and the spatial arrangement of knickpoints in footwall-draining streams suggest a gradual, southward shift in extensional deformation and recent tectonic activity. Second, based on 1-k(m) radius local relief and mean-hillslope maximum values that are consistent with ksn anomalies, we confirm strain localization within zones of fault interaction. Third, morphometric indices such as hypsometry, basin asymmetry factor, and valley floor width to valley height ratio also indicate a north to south gradient in tectonic activity, highlighting the importance of such a wide transfer zone with diffuse extension linking different rift segments during the break-up of continental crust. KW - rift transfer zone KW - Ethiopia rift KW - renya Rift KW - morphometric indices KW - knickpoints Y1 - 2022 U6 - https://doi.org/10.1016/j.geomorph.2022.108162 SN - 0169-555X SN - 1872-695X VL - 403 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Viltres, Renier A1 - Nobile, Adriano A1 - Vasyura-Bathke, Hannes A1 - Trippanera, Daniele A1 - Xu, Wenbin A1 - Jónsson, Sigurjón T1 - Transtensional rupture within a diffuse plate boundary zone during the 2020 M-w 6.4 Puerto Rico earthquake JF - Seismological research letters N2 - On 7 January 2020, an M-w 6.4 earthquake occurred in the northeastern Caribbean, a few kilometers offshore of the island of Puerto Rico. It was the mainshock of a complex seismic sequence, characterized by a large number of energetic earthquakes illuminating an east-west elongated area along the southwestern coast of Puerto Rico. Deformation fields constrained by Interferometric Synthetic Aperture Radar and Global Navigation Satellite System data indicate that the coseismic movements affected only the western part of the island. To assess the mainshock's source fault parameters, we combined the geodetically derived coseismic deformation with teleseismic waveforms using Bayesian inference. The results indicate a roughly east-west oriented fault, dipping northward and accommodating similar to 1.4 m of transtensional motion. Besides, the determined location and orientation parameters suggest an offshore continuation of the recently mapped North Boqueron Bay-Punta Montalva fault in southwest Puerto Rico. This highlights the existence of unmapped faults with moderate-to-large earthquake potential within the Puerto Rico region. Y1 - 2021 U6 - https://doi.org/10.1785/0220210261 SN - 0895-0695 SN - 1938-2057 VL - 93 IS - 2A SP - 567 EP - 583 PB - Seismological Society of America CY - Boulder, Colo. ER - TY - JOUR A1 - Fischer, Tomas A1 - Hrubcova, Pavla A1 - Dahm, Torsten A1 - Woith, Heiko A1 - Vylita, Tomas A1 - Ohrnberger, Matthias A1 - Vlcek, Josef A1 - Horalek, Josef A1 - Dedecek, Petr A1 - Zimmer, Martin A1 - Lipus, Martin P. A1 - Pierdominici, Simona A1 - Kallmeyer, Jens A1 - Krüger, Frank A1 - Hannemann, Katrin A1 - Korn, Michael A1 - Kämpf, Horst A1 - Reinsch, Thomas A1 - Klicpera, Jakub A1 - Vollmer, Daniel A1 - Daskalopoulou, Kyriaki T1 - ICDP drilling of the Eger Rift observatory BT - magmatic fluids driving the earthquake swarms and deep biosphere JF - Scientific Drilling N2 - The new in situ geodynamic laboratory established in the framework of the ICDP Eger project aims to develop the most modern, comprehensive, multiparameter laboratory at depth for studying earthquake swarms, crustal fluid flow, mantle-derived CO2 and helium degassing, and processes of the deep biosphere. In order to reach a new level of high-frequency, near-source and multiparameter observation of earthquake swarms and related phenomena, such a laboratory comprises a set of shallow boreholes with high-frequency 3-D seismic arrays as well as modern continuous real-time fluid monitoring at depth and the study of the deep biosphere. This laboratory is located in the western part of the Eger Rift at the border of the Czech Republic and Germany (in the West Bohemia-Vogtland geodynamic region) and comprises a set of five boreholes around the seismoactive zone. To date, all monitoring boreholes have been drilled. This includes the seismic monitoring boreholes S1, S2 and S3 in the crystalline units north and east of the major Novy Kostel seismogenic zone, borehole F3 in the Hartousov mofette field and borehole S4 in the newly discovered Bazina maar near Liba. Supplementary borehole P1 is being prepared in the Neualbenreuth maar for paleoclimate and biological research. At each of these sites, a borehole broadband seismometer will be installed, and sites S1, S2 and S3 will also host a 3-D seismic array composed of a vertical geophone chain and surface seismic array. Seismic instrumenting has been completed in the S1 borehole and is in preparation in the remaining four monitoring boreholes. The continuous fluid monitoring site of Hartousov includes three boreholes, F1, F2 and F3, and a pilot monitoring phase is underway. The laboratory also enables one to analyze microbial activity at CO2 mofettes and maar structures in the context of changes in habitats. The drillings into the maar volcanoes contribute to a better understanding of the Quaternary paleoclimate and volcanic activity. Y1 - 2022 U6 - https://doi.org/10.5194/sd-31-31-2022 SN - 1816-8957 SN - 1816-3459 VL - 31 SP - 31 EP - 49 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Böhnke, Denise A1 - Krehl, Alice A1 - Moermann, Kai A1 - Volk, Rebekka A1 - Lützkendorf, Thomas A1 - Naber, Elias A1 - Becker, Ronja A1 - Norra, Stefan T1 - Mapping urban green and its ecosystem services at microscale-a methodological approach for climate adaptation and biodiversity JF - Sustainability / Multidisciplinary Digital Publishing Institute (MDPI) N2 - The current awareness of the high importance of urban green leads to a stronger need for tools to comprehensively represent urban green and its benefits. A common scientific approach is the development of urban ecosystem services (UES) based on remote sensing methods at the city or district level. Urban planning, however, requires fine-grained data that match local management practices. Hence, this study linked local biotope and tree mapping methods to the concept of ecosystem services. The methodology was tested in an inner-city district in SW Germany, comparing publicly accessible areas and non-accessible courtyards. The results provide area-specific [m(2)] information on the green inventory at the microscale, whereas derived stock and UES indicators form the basis for comparative analyses regarding climate adaptation and biodiversity. In the case study, there are ten times more micro-scale green spaces in private courtyards than in the public space, as well as twice as many trees. The approach transfers a scientific concept into municipal planning practice, enables the quantitative assessment of urban green at the microscale and illustrates the importance for green stock data in private areas to enhance decision support in urban development. Different aspects concerning data collection and data availability are critically discussed. KW - climate adaptation KW - urban green KW - mapping KW - ecosystem service cascade KW - model KW - surface type-function-concept KW - planning indicators KW - city district KW - level KW - urban planning practice KW - climate change Y1 - 2022 U6 - https://doi.org/10.3390/su14159029 SN - 2071-1050 VL - 14 IS - 15 PB - MDPI CY - Basel ER - TY - JOUR A1 - Nagakura, Toshiki A1 - Schubert, Florian A1 - Wagner, Dirk A1 - Kallmeyer, Jens T1 - Biological sulfate reduction in deep subseafloor sediment of Guaymas Basin JF - Frontiers in microbiology N2 - Sulfate reduction is the quantitatively most important process to degrade organic matter in anoxic marine sediment and has been studied intensively in a variety of settings. Guaymas Basin, a young marginal ocean basin, offers the unique opportunity to study sulfate reduction in an environment characterized by organic-rich sediment, high sedimentation rates, and high geothermal gradients (100-958 degrees C km(-1)). We measured sulfate reduction rates (SRR) in samples taken during the International Ocean Discovery Program (IODP) Expedition 385 using incubation experiments with radiolabeled (SO42-)-S-35 carried out at in situ pressure and temperature. The highest SRR (387 nmol cm(-3) d(-1)) was recorded in near-surface sediments from Site U1548C, which had the steepest geothermal gradient (958 degrees C km(-1)). At this site, SRR were generally over an order of magnitude higher than at similar depths at other sites (e.g., 387-157 nmol cm(-3) d(-1) at 1.9 mbsf from Site U1548C vs. 46-1.0 nmol cm(-3) d(-1) at 2.1 mbsf from Site U1552B). Site U1546D is characterized by a sill intrusion, but it had already reached thermal equilibrium and SRR were in the same range as nearby Site U1545C, which is minimally affected by sills. The wide temperature range observed at each drill site suggests major shifts in microbial community composition with very different temperature optima but awaits confirmation by molecular biological analyses. At the transition between the mesophilic and thermophilic range around 40 degrees C-60 degrees C, sulfate-reducing activity appears to be decreased, particularly in more oligotrophic settings, but shows a slight recovery at higher temperatures. KW - sulfate reduction KW - subsurface life KW - deep biosphere KW - thermophiles; KW - Guaymas Basin Y1 - 2022 U6 - https://doi.org/10.3389/fmicb.2022.845250 SN - 1664-302X VL - 13 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Türker, Elif A1 - Cotton, Fabrice A1 - Pilz, Marco A1 - Weatherill, Graeme T1 - Analysis of the 2019 Mw 5.8 Silivri earthquake ground motions BT - evidence of systematic azimuthal variations associated with directivity effects JF - Seismological research letters N2 - The main Marmara fault (MMF) extends for 150 km through the Sea of Marmara and forms the only portion of the North Anatolian fault zone that has not ruptured in a large event (Mw >7) for the last 250 yr. Accordingly, this portion is potentially a major source contributing to the seismic hazard of the Istanbul region. On 26 September 2019, a sequence of moderate-sized events started along the MMF only 20 km south of Istanbul and were widely felt by the population. The largest three events, 26 September Mw 5.8 (10:59 UTC), 26 September 2019 Mw 4.1 (11:26 UTC), and 20 January 2020 Mw 4.7 were recorded by numerous strong-motion seismic stations and the resulting ground motions were compared to the predicted means resulting from a set of the most recent ground-motion prediction equations (GMPEs). The estimated residuals were used to investigate the spatial variation of ground motion across the Marmara region. Our results show a strong azimuthal trend in ground-motion residuals, which might indicate systematically repeating directivity effects toward the eastern Marmara region. Y1 - 2022 U6 - https://doi.org/10.1785/0220210168 SN - 0895-0695 SN - 1938-2057 VL - 93 IS - 2A SP - 693 EP - 705 PB - Seismological Society of America CY - Boulder, Colo. ER - TY - JOUR A1 - Foerster, Verena A1 - Asrat, Asfawossen A1 - Ramsey, Christopher Bronk A1 - Brown, Erik T. A1 - Chapot, Melissa S. A1 - Deino, Alan A1 - Düsing, Walter A1 - Grove, Matthew A1 - Hahn, Annette A1 - Junginger, Annett A1 - Kaboth-Bahr, Stefanie A1 - Lane, Christine S. A1 - Opitz, Stephan A1 - Noren, Anders A1 - Roberts, Helen M. A1 - Stockhecke, Mona A1 - Tiedemann, Ralph A1 - Vidal, Celine M. A1 - Vogelsang, Ralf A1 - Cohen, Andrew S. A1 - Lamb, Henry F. A1 - Schaebitz, Frank A1 - Trauth, Martin H. T1 - Pleistocene climate variability in eastern Africa influenced hominin evolution JF - Nature geoscience N2 - Despite more than half a century of hominin fossil discoveries in eastern Africa, the regional environmental context of hominin evolution and dispersal is not well established due to the lack of continuous palaeoenvironmental records from one of the proven habitats of early human populations, particularly for the Pleistocene epoch. Here we present a 620,000-year environmental record from Chew Bahir, southern Ethiopia, which is proximal to key fossil sites. Our record documents the potential influence of different episodes of climatic variability on hominin biological and cultural transformation. The appearance of high anatomical diversity in hominin groups coincides with long-lasting and relatively stable humid conditions from similar to 620,000 to 275,000 years bp (episodes 1-6), interrupted by several abrupt and extreme hydroclimate perturbations. A pattern of pronounced climatic cyclicity transformed habitats during episodes 7-9 (similar to 275,000-60,000 years bp), a crucial phase encompassing the gradual transition from Acheulean to Middle Stone Age technologies, the emergence of Homo sapiens in eastern Africa and key human social and cultural innovations. Those accumulative innovations plus the alignment of humid pulses between northeastern Africa and the eastern Mediterranean during high-frequency climate oscillations of episodes 10-12 (similar to 60,000-10,000 years bp) could have facilitated the global dispersal of H. sapiens. KW - Evolutionary ecology KW - Limnology KW - Palaeoclimate Y1 - 2022 U6 - https://doi.org/10.1038/s41561-022-01032-y SN - 1752-0894 SN - 1752-0908 VL - 15 IS - 10 SP - 805 EP - 811 PB - Nature Publ. Group CY - London ER - TY - JOUR A1 - van Geffen, Femke A1 - Heim, Birgit A1 - Brieger, Frederic A1 - Geng, Rongwei A1 - Shevtsova, Iuliia A. A1 - Schulte, Luise A1 - Stuenzi, Simone M. A1 - Bernhardt, Nadine A1 - Troeva, Elena A1 - Pestryakova, Luidmila Agafyevna A1 - Zakharov, Evgenii S. A1 - Pflug, Bringfried A1 - Herzschuh, Ulrike A1 - Kruse, Stefan T1 - SiDroForest: a comprehensive forest inventory of Siberian boreal forest investigations including drone-based point clouds, individually labeled trees, synthetically generated tree crowns, and Sentinel-2 labeled image patches JF - Earth system science data N2 - The SiDroForest (Siberian drone-mapped forest inventory) data collection is an attempt to remedy the scarcity of forest structure data in the circumboreal region by providing adjusted and labeled tree-level and vegetation plot-level data for machine learning and upscaling purposes. We present datasets of vegetation composition and tree and plot level forest structure for two important vegetation transition zones in Siberia, Russia; the summergreen-evergreen transition zone in Central Yakutia and the tundra-taiga transition zone in Chukotka (NE Siberia). The SiDroForest data collection consists of four datasets that contain different complementary data types that together support in-depth analyses from different perspectives of Siberian Forest plot data for multi-purpose applications. i. Dataset 1 provides unmanned aerial vehicle (UAV)-borne data products covering the vegetation plots surveyed during fieldwork (Kruse et al., 2021, ). The dataset includes structure-from-motion (SfM) point clouds and red-green-blue (RGB) and red-green-near-infrared (RGN) orthomosaics. From the orthomosaics, point-cloud products were created such as the digital elevation model (DEM), canopy height model (CHM), digital surface model (DSM) and the digital terrain model (DTM). The point-cloud products provide information on the three-dimensional (3D) structure of the forest at each plot. Dataset 2 contains spatial data in the form of point and polygon shapefiles of 872 individually labeled trees and shrubs that were recorded during fieldwork at the same vegetation plots (van Geffen et al., 2021c, ). The dataset contains information on tree height, crown diameter, and species type. These tree and shrub individually labeled point and polygon shapefiles were generated on top of the RGB UVA orthoimages. The individual tree information collected during the expedition such as tree height, crown diameter, and vitality are provided in table format. This dataset can be used to link individual information on trees to the location of the specific tree in the SfM point clouds, providing for example, opportunity to validate the extracted tree height from the first dataset. The dataset provides unique insights into the current state of individual trees and shrubs and allows for monitoring the effects of climate change on these individuals in the future. Dataset 3 contains a synthesis of 10 000 generated images and masks that have the tree crowns of two species of larch ( and ) automatically extracted from the RGB UAV images in the common objects in context (COCO) format (van Geffen et al., 2021a, ). As machine-learning algorithms need a large dataset to train on, the synthetic dataset was specifically created to be used for machine-learning algorithms to detect Siberian larch species. Larix gmeliniiLarix cajanderiDataset 4 contains Sentinel-2 (S-2) Level-2 bottom-of-atmosphere processed labeled image patches with seasonal information and annotated vegetation categories covering the vegetation plots (van Geffen et al., 2021b, ). The dataset is created with the aim of providing a small ready-to-use validation and training dataset to be used in various vegetation-related machine-learning tasks. It enhances the data collection as it allows classification of a larger area with the provided vegetation classes. The SiDroForest data collection serves a variety of user communities.
The detailed vegetation cover and structure information in the first two datasets are of use for ecological applications, on one hand for summergreen and evergreen needle-leaf forests and also for tundra-taiga ecotones. Datasets 1 and 2 further support the generation and validation of land cover remote-sensing products in radar and optical remote sensing. In addition to providing information on forest structure and vegetation composition of the vegetation plots, the third and fourth datasets are prepared as training and validation data for machine-learning purposes. For example, the synthetic tree-crown dataset is generated from the raw UAV images and optimized to be used in neural networks. Furthermore, the fourth SiDroForest dataset contains S-2 labeled image patches processed to a high standard that provide training data on vegetation class categories for machine-learning classification with JavaScript Object Notation (JSON) labels provided. The SiDroForest data collection adds unique insights into remote hard-to-reach circumboreal forest regions. Y1 - 2022 U6 - https://doi.org/10.5194/essd-14-4967-2022 SN - 1866-3508 SN - 1866-3516 VL - 14 IS - 11 SP - 4967 EP - 4994 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Tella, Timothy Oluwatobi A1 - Winterleitner, Gerd A1 - Mutti, Maria T1 - Investigating the role of differential biotic production on carbonate geometries through stratigraphic forward modelling and sensitivity analysis BT - the Llucmajor example JF - Petroleum geoscience N2 - The geometry of carbonate platforms reflects the interaction of several factors. However, the impact of carbonate-producing organisms has been poorly investigated so far. This study applies stratigraphic forward modelling (SFM) and sensitivity analysis to examine, referenced to the Miocene Llucmajor Platform, the effect of changes of dominant biotic production in the oligophotic and euphotic zones on platform geometry. Our results show that the complex interplay of carbonate production rates, bathymetry and variations in accommodation space control the platform geometry. The main driver of progradation is the oligophotic production of rhodalgal sediments during the lowstands. This study demonstrates that platform geometry and internal architecture varies significantly according to the interaction of the predominant carbonate-producing biotas. The input parameters for this study are based on well-understood Miocene carbonate biotas with characteristic euphotic, oligophotic and photo-independent carbonate production in which it is crucial that each carbonate-producing class is modelled explicitly within the simulation run and not averaged with a single carbonate production-depth profile. This is important in subsurface exploration studies based on stratigraphic forward models where the overall platform geometry may be approximated through calibration runs, and constrained by seismic surveys and wellbores. However, the internal architecture is likely to be oversimplified without an in-depth understanding of the target carbonate system and a transfer to forward modelling parameters. Y1 - 2022 U6 - https://doi.org/10.1144/petgeo2021-053 SN - 1354-0793 SN - 2041-496X VL - 28 IS - 2 PB - Geological Soc. Publ. House CY - Bath ER - TY - JOUR A1 - Li, Zhen A1 - Spangenberg, Erik A1 - Schicks, Judith Maria A1 - Kempka, Thomas T1 - Numerical simulation of hydrate formation in the LArge-Scale Reservoir Simulator (LARS) JF - Energies : open-access journal of related scientific research, technology development and studies in policy and management N2 - The LArge-scale Reservoir Simulator (LARS) has been previously developed to study hydrate dissociation in hydrate-bearing systems under in-situ conditions. In the present study, a numerical framework of equations of state describing hydrate formation at equilibrium conditions has been elaborated and integrated with a numerical flow and transport simulator to investigate a multi-stage hydrate formation experiment undertaken in LARS. A verification of the implemented modeling framework has been carried out by benchmarking it against another established numerical code. Three-dimensional (3D) model calibration has been performed based on laboratory data available from temperature sensors, fluid sampling, and electrical resistivity tomography. The simulation results demonstrate that temperature profiles, spatial hydrate distribution, and bulk hydrate saturation are consistent with the observations. Furthermore, our numerical framework can be applied to calibrate geophysical measurements, optimize post-processing workflows for monitoring data, improve the design of hydrate formation experiments, and investigate the temporal evolution of sub-permafrost methane hydrate reservoirs. KW - methane hydrate KW - temperature sensor KW - electrical resistivity tomography KW - hydrate formation KW - numerical simulation Y1 - 2022 U6 - https://doi.org/10.3390/en15061974 SN - 1996-1073 VL - 15 IS - 6 PB - MDPI CY - Basel ER - TY - JOUR A1 - Nievas, Cecilia A1 - Pilz, Marco A1 - Prehn, Karsten A1 - Schorlemmer, Danijel A1 - Weatherill, Graeme A1 - Cotton, Fabrice T1 - Calculating earthquake damage building by building BT - the case of the city of Cologne, Germany JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - The creation of building exposure models for seismic risk assessment is frequently challenging due to the lack of availability of detailed information on building structures. Different strategies have been developed in recent years to overcome this, including the use of census data, remote sensing imagery and volunteered graphic information (VGI). This paper presents the development of a building-by-building exposure model based exclusively on openly available datasets, including both VGI and census statistics, which are defined at different levels of spatial resolution and for different moments in time. The initial model stemming purely from building-level data is enriched with statistics aggregated at the neighbourhood and city level by means of a Monte Carlo simulation that enables the generation of full realisations of damage estimates when using the exposure model in the context of an earthquake scenario calculation. Though applicable to any other region of interest where analogous datasets are available, the workflow and approach followed are explained by focusing on the case of the German city of Cologne, for which a scenario earthquake is defined and the potential damage is calculated. The resulting exposure model and damage estimates are presented, and it is shown that the latter are broadly consistent with damage data from the 1978 Albstadt earthquake, notwithstanding the differences in the scenario. Through this real-world application we demonstrate the potential of VGI and open data to be used for exposure modelling for natural risk assessment, when combined with suitable knowledge on building fragility and accounting for the inherent uncertainties. KW - Building exposure modelling KW - Seismic damage assessment KW - Scenario KW - earthquake KW - Seismic risk KW - Cologne Y1 - 2022 U6 - https://doi.org/10.1007/s10518-021-01303-w SN - 1570-761X SN - 1573-1456 VL - 20 IS - 3 SP - 1519 EP - 1565 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Mukherjee, Shreya A1 - Adhikari, Avishek A1 - Nicoli, Gautier A1 - Vadlamani, Ravikant T1 - Neoarchean (similar to 2.73-2.70 Ga) accretionary history of the eastern Dharwar Craton, India BT - Lu-Hf and Sm-Nd garnet geochronologic constraints from the Karimnagar granulite-facies supracrustal enclaves JF - Precambrian research N2 - Cratonic mid-crustal plutons may contain supracrustal enclaves that preserve evidence of an earlier growth history. The Eastern Dharwar craton records Neoarchean two-stage accretionary sequential growth (2.70 and 2.55 Ga) and a chronology of their enclaves could refine orogenic models. To test whether the metamorphic history of their enclaves was related to any of these stages, phase equilibria modelling and combined Lu-Hf and Sm-Nd geochronology on garnet were conducted on metapsammite, now preserved as garnet-orthopyroxene-cordierite gneiss. Phase equilibria modelling indicates peak metamorphic conditions, similar to 850 degrees C and similar to 8.5 kbar (M1a), were followed by near isothermal decompression to 5-6 kbar (M1b) and isobaric cooling to similar to 800 degrees C (M1c). The thermobaric gradient related to peak metamorphic conditions, similar to 30 degrees C kbar(-1), is typical of collisional orogens. Regression of the whole-rock and garnet, for sample S17b, yield Lu-Hf isochron ages of 2733 +/- 29 Ma, and for sample S18, 2724 +/- 13 Ma. A Lu-Hf weighted mean age for the porphyroblastic garnet suggests growth at 2725.5 +/- 11.9 Ma during the M1a-M1b stages. In contrast, the whole-rock sample S17b and the garnet fractions yield a Sm-Nd isochron age of 2696 +/- 10 Ma. From sample S18 the whole rock, garnet fractions, and orthopyroxene yield an isochron age of 2683 +/- 15 Ma. The garnet Sm-Nd weighted mean age at 2692.0 +/- 8.3 Ma constrains the M1b-M1c stages. We suggest that the protoliths to these supracrustal enclaves were deposited in an arc tectonic setting and underwent thickening followed by heating during peeled-back lithospheric convergence. Therefore, the earliest of the craton-forming accretionary stages is preserved as the similar to 2.73 Ga granulite-facies enclaves, marginally older than the 2.70-2.65 Ga cratonic greenstone volcanism. Tectonic exhumation of these mid-crustal granulite enclaves was in response to the late-Proterozoic (similar to 1.7 Ga) Bhopalpatnam orogeny. KW - Eastern Dharwar craton KW - Granulite enclaves KW - Garnet-orthopyroxene-cordierite gneiss KW - Lu-Hf KW - Sm-Nd KW - Geochronology Y1 - 2022 U6 - https://doi.org/10.1016/j.precamres.2022.106657 SN - 0301-9268 VL - 375 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Riedl, Simon A1 - Melnick, Daniel A1 - Njue, Lucy A1 - Sudo, Masafumi A1 - Strecker, Manfred T1 - Mid-Pleistocene to recent crustal extension in the inner graben of the Northern Kenya Rift JF - Geochemistry, geophysics, geosystems N2 - Magmatic continental rifts often constitute nascent plate boundaries, yet long-term extension rates and transient rate changes associated with these early stages of continental breakup remain difficult to determine. Here, we derive a time-averaged minimum extension rate for the inner graben of the Northern Kenya Rift (NKR) of the East African Rift System for the last 0.5 m.y. We use the TanDEM-X science digital elevation model to evaluate fault-scarp geometries and determine fault throws across the volcano-tectonic axis of the inner graben of the NKR. Along rift-perpendicular profiles, amounts of cumulative extension are determined, and by integrating four new Ar-40/Ar-39 radiometric dates for the Silali volcano into the existing geochronology of the faulted volcanic units, time-averaged extension rates are calculated. This study reveals that in the inner graben of the NKR, the long-term extension rate based on mid-Pleistocene to recent brittle deformation has minimum values of 1.0-1.6 mm yr(-1), locally with values up to 2.0 mm yr(-1). A comparison with the decadal, geodetically determined extension rate reveals that at least 65% of the extension must be accommodated within a narrow, 20-km-wide zone of the inner rift. In light of virtually inactive border faults of the NKR, we show that extension is focused in the region of the active volcano-tectonic axis in the inner graben, thus highlighting the maturing of continental rifting in the NKR. KW - extensional tectonics KW - Kenya Rift KW - TanDEM-X DEM KW - DEM analysis KW - geochronology KW - normal faults Y1 - 2022 U6 - https://doi.org/10.1029/2021GC010123 SN - 1525-2027 VL - 23 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Braun, Jean T1 - Comparing the transport-limited and ξ-q models for sediment transport JF - Earth surface dynamics N2 - Here I present a comparison between two of the most widely used reduced-complexity models for the representation of sediment transport and deposition processes, namely the transport-limited (or TL) model and the under-capacity (or xi-q) model more recently developed by Davy and Lague (2009). Using both models, I investigate the behavior of a sedimentary continental system of length L fed by a fixed sedimentary flux from a catchment of size A(0) in a nearby active orogen through which sediments transit to a fixed base level representing a large river, a lake or an ocean. This comparison shows that the two models share the same steady-state solution, for which I derive a simple 1D analytical expression that reproduces the major features of such sedimentary systems: a steep fan that connects to a shallower alluvial plain. The resulting fan geometry obeys basic observational constraints on fan size and slope with respect to the upstream drainage area, A(0). The solution is strongly dependent on the size of the system, L, in comparison to a distance L-0, which is determined by the size of A(0), and gives rise to two fundamentally different types of sedimentary systems: a constrained system where L < L-0 and open systems where L > L-0. I derive simple expressions that show the dependence of the system response time on the system characteristics, such as its length, the size of the upstream catchment area, the amplitude of the incoming sedimentary flux and the respective rate parameters (diffusivity or erodibility) for each of the two models. I show that the xi-q model predicts longer response times. I demonstrate that although the manner in which signals propagates through the sedimentary system differs greatly between the two models, they both predict that perturbations that last longer than the response time of the system can be recorded in the stratigraphy of the sedimentary system and in particular of the fan. Interestingly, the xi-q model predicts that all perturbations in the incoming sedimentary flux will be transmitted through the system, whereas the TL model predicts that rapid perturbations cannot. I finally discuss why and under which conditions these differences are important and propose observational ways to determine which of the two models is most appropriate to represent natural systems. Y1 - 2022 U6 - https://doi.org/10.5194/esurf-10-301-2022 SN - 2196-6311 SN - 2196-632X VL - 10 IS - 2 SP - 301 EP - 327 PB - Copernicus CY - Göttingen ER - TY - JOUR A1 - Rodriguez Piceda, Constanza A1 - Scheck-Wenderoth, Magdalena A1 - Cacace, Mauro A1 - Bott, Judith A1 - Strecker, Manfred T1 - Long-Term Lithospheric Strength and Upper-Plate Seismicity in the Southern Central Andes, 29 degrees-39 degrees S JF - Geochemistry, geophysics, geosystems N2 - We examined the relationship between the mechanical strength of the lithosphere and the distribution of seismicity within the overriding continental plate of the southern Central Andes (SCA, 29 degrees-39 degrees S), where the oceanic Nazca Plate changes its subduction angle between 33 degrees S and 35 degrees S, from subhorizontal in the north (<5 degrees) to steep in the south (similar to 30 degrees). We computed the long-term lithospheric strength based on an existing 3D model describing variations in thickness, density, and temperature of the main geological units forming the lithosphere of the SCA and adjacent forearc and foreland regions. The comparison between our results and seismicity within the overriding plate (upper-plate seismicity) shows that most of the events occur within the modeled brittle domain of the lithosphere. The depth where the deformation mode switches from brittle frictional to thermally activated ductile creep provides a conservative lower bound to the seismogenic zone in the overriding plate of the study area. We also found that the majority of upper-plate earthquakes occurs within the realm of first-order contrasts in integrated strength (12.7-13.3 log Pam in the Andean orogen vs. 13.5-13.9 log Pam in the forearc and the foreland). Specific conditions characterize the mechanically strong northern foreland of the Andes, where seismicity is likely explained by the effects of slab steepening. KW - subduction zone KW - Andes KW - rheology KW - seismicity KW - flat-slab Y1 - 2022 U6 - https://doi.org/10.1029/2021GC010171 SN - 1525-2027 VL - 23 IS - 3 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Bartholomäus, Alexander A1 - Lipus, Daniel A1 - Mitzscherling, Julia A1 - MacLean, Joana A1 - Wagner, Dirk T1 - Draft Genome Sequence of Nocardioides alcanivorans NGK65(T), a Hexadecane-Degrading Bacterium JF - Microbiology Resource Announcements N2 - The Gram-positive bacterium Nocardioides alcanivorans NGK65(T) was isolated from plastic-polluted soil and cultivated on medium with polyethylene as the single carbon source. Nanopore sequencing revealed the presence of candidate enzymes for the biodegradation of polyethylene. Here, we report the draft genome of this newly described member of the terrestrial plastisphere. Y1 - 2022 U6 - https://doi.org/10.1128/mra.01213-21 SN - 2576-098X VL - 11 IS - 8 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Isken, Marius Paul A1 - Vasyura-Bathke, Hannes A1 - Dahm, Torsten A1 - Heimann, Sebastian T1 - De-noising distributed acoustic sensing data using an adaptive frequency-wavenumber filter JF - Geophysical journal international N2 - Data recorded by distributed acoustic sensing (DAS) along an optical fibre sample the spatial and temporal properties of seismic wavefields at high spatial density. Often leading to massive amount of data when collected for seismic monitoring along many kilometre long cables. The spatially coherent signals from weak seismic arrivals within the data are often obscured by incoherent noise. We present a flexible and computationally efficient filtering technique, which makes use of the dense spatial and temporal sampling of the data and that can handle the large amount of data. The presented adaptive frequency-wavenumber filter suppresses the incoherent seismic noise while amplifying the coherent wavefield. We analyse the response of the filter in time and spectral domain, and we demonstrate its performance on a noisy data set that was recorded in a vertical borehole observatory showing active and passive seismic phase arrivals. Lastly, we present a performant open-source software implementation enabling real-time filtering of large DAS data sets. KW - Fourier analysis KW - Image processing KW - Time-series analysis KW - Seismic noise KW - Distributed acoustic sensing Y1 - 2022 U6 - https://doi.org/10.1093/gji/ggac229 SN - 0956-540X SN - 1365-246X VL - 231 IS - 2 SP - 944 EP - 949 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Balischewski, Christian A1 - Bhattacharyya, Biswajit A1 - Sperlich, Eric A1 - Günter, Christina A1 - Beqiraj, Alkit A1 - Klamroth, Tillmann A1 - Behrens, Karsten A1 - Mies, Stefan A1 - Kelling, Alexandra A1 - Lubahn, Susanne A1 - Holtzheimer, Lea A1 - Nitschke, Anne A1 - Taubert, Andreas T1 - Tetrahalidometallate(II) ionic liquids with more than one metal BT - the effect of bromide versus chloride JF - Chemistry - a European journal N2 - Fifteen N-butylpyridinium salts - five monometallic [C4Py](2)[MBr4] and ten bimetallic [C4Py](2)[(M0.5M0.5Br4)-M-a-Br-b] (M=Co, Cu, Mn, Ni, Zn) - were synthesized, and their structures and thermal and electrochemical properties were studied. All the compounds are ionic liquids (ILs) with melting points between 64 and 101 degrees C. Powder and single-crystal X-ray diffraction show that all ILs are isostructural. The electrochemical stability windows of the ILs are between 2 and 3 V. The conductivities at room temperature are between 10(-5) and 10(-6) S cm(-1). At elevated temperatures, the conductivities reach up to 10(-4) S cm(-1) at 70 degrees C. The structures and properties of the current bromide-based ILs were also compared with those of previous examples using chloride ligands, which illustrated differences and similarities between the two groups of ILs. KW - electrochemistry KW - ionic liquids KW - metal-containing ionic liquids; KW - N-butylpyridinium bromide KW - tetrahalidometallates Y1 - 2022 U6 - https://doi.org/10.1002/chem.202201068 SN - 1521-3765 VL - 28 IS - 64 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Li, Zhen A1 - Spangenberg, Erik A1 - Schicks, Judith Maria A1 - Kempka, Thomas T1 - Numerical Simulation of Coastal Sub-Permafrost Gas Hydrate Formation in the Mackenzie Delta, Canadian Arctic JF - Energies N2 - The Mackenzie Delta (MD) is a permafrost-bearing region along the coasts of the Canadian Arctic which exhibits high sub-permafrost gas hydrate (GH) reserves. The GH occurring at the Mallik site in the MD is dominated by thermogenic methane (CH4), which migrated from deep conventional hydrocarbon reservoirs, very likely through the present fault systems. Therefore, it is assumed that fluid flow transports dissolved CH4 upward and out of the deeper overpressurized reservoirs via the existing polygonal fault system and then forms the GH accumulations in the Kugmallit-Mackenzie Bay Sequences. We investigate the feasibility of this mechanism with a thermo-hydraulic-chemical numerical model, representing a cross section of the Mallik site. We present the first simulations that consider permafrost formation and thawing, as well as the formation of GH accumulations sourced from the upward migrating CH4-rich formation fluid. The simulation results show that temperature distribution, as well as the thickness and base of the ice-bearing permafrost are consistent with corresponding field observations. The primary driver for the spatial GH distribution is the permeability of the host sediments. Thus, the hypothesis on GH formation by dissolved CH4 originating from deeper geological reservoirs is successfully validated. Furthermore, our results demonstrate that the permafrost has been substantially heated to 0.8-1.3 degrees C, triggered by the global temperature increase of about 0.44 degrees C and further enhanced by the Arctic Amplification effect at the Mallik site from the early 1970s to the mid-2000s. KW - gas hydrate KW - permafrost KW - methane KW - faults KW - climate change KW - Mallik KW - numerical simulations Y1 - 2022 U6 - https://doi.org/10.3390/en15144986 SN - 1996-1073 VL - 15 IS - 14 PB - MDPI CY - Basel ER - TY - JOUR A1 - Schifferle, Lukas A1 - Lobanov, Sergey S. T1 - Evolution of chemical bonding and spin-pairing energy in ferropericlase across Its spin transition JF - ACS Earth and Space Chemistry N2 - The evolution of chemical bonding in ferropericlase, (Mg,Fe)O, with pressure may affect the physical and chemical properties of the Earth's lower mantle. Here, we report high-pressure optical absorption spectra of single-crystalline ferropericlase ((Mg0.87Fe0.13)O) up to 135 GPa. Combined with a re-evaluation of published partial fluorescence yield X-ray absorption spectroscopy data, we show that the covalency of the Fe-O bond increases with pressure, but the iron spin transition at 57-76.5 GPa reverses this trend. The qualitative crossover in chemical bonding suggests that the spin-pairing transition weakens the Fe-O bond in ferropericlase. We find, that the spin transition in ferropericlase is caused by both the increase of the ligand field-splitting energy and the decrease in the spin-pairing energy of high-spin Fe2+. KW - high-pressure KW - diamond anvil cell KW - covalency KW - bond strength KW - iron KW - spin KW - transition Y1 - 2022 U6 - https://doi.org/10.1021/acsearthspacechem.2c00014 SN - 2472-3452 VL - 6 IS - 3 SP - 788 EP - 799 PB - American Chemical Society CY - Washington ER - TY - JOUR A1 - Trauth, Martin H. A1 - Marwan, Norbert T1 - Introduction-time series analysis for Earth, climate and life interactions JF - Quaternary science reviews : the international multidisciplinary research and review journal Y1 - 2022 U6 - https://doi.org/10.1016/j.quascirev.2022.107475 SN - 0277-3791 SN - 1873-457X VL - 284 PB - Elsevier CY - Amsterdam [u.a.] ER - TY - JOUR A1 - Zhang, Di A1 - Cao, Kai A1 - Yuan, Xiaoping A1 - Wang, Guocan A1 - van der Beek, Peter T1 - Late Oligocene-early Miocene origin of the First Bend of the Yangtze River explained by thrusting-induced river reorganization JF - Geomorphology N2 - The origin of the First Bend of the Yangtze River is key to understanding the birth of the modern Yangtze River. Despite considerable efforts, the timing and mechanism of formation of the First Bend remain highly debated. Inverse river-profile modeling of three tributaries (Chongjiang, Lima, and Gudu) of the Jinsha River, integrated with regional tectonic and geomorphic interpretations, allows the onset of incision at the First Bend to be constrained to 28-20 Ma. The spatio-temporal coincidence of initial river incision and activity of Yulong Thrust Belt in southeastern Tibet highlights thrusting to be fundamental in reshaping the pre-existing stream network at the First Bend. These results enable us to reinterpret a change in sedimentary environment from a braided river to a swamp-like lake in the Jianchuan Basin south of the First Bend, recording the destruction of the hypothesized southwards-flowing paleo-Jinsha and Shuiluo Rivers at ~36-35 Ma by magmatism. During the late Oligoceneearly Miocene, the paleo-Shuiluo River was diverted to the north by focused rock uplift due to thrusting along the Yulong Thrust Belt, which also led to exhumation of the Jianchuan Basin. Diversion of the paleo-Shuiluo River can be explained by capture from a downstream river in the footwall of the Yulong Thrust Belt. Subsequent rapid headward erosion, that was caused by thrusting-induced drop of local base level, is recorded by upstream younging ages for the onset of incision and led to the formation of the First Bend. The combination of new ages for the onset of incision at 28-20 Ma at the First Bend and younger ages upstream indicates northwards expansion of the Jinsha River at a rate of 62 +/- 18 mm/yr. Our results suggest that the origin of the First Bend was likely triggered by thrusting at 28-20 Ma, after which the Yangtze River formed. KW - Tibetan Plateau KW - Yangtze River KW - river incision KW - inverse modeling Y1 - 2022 U6 - https://doi.org/10.1016/j.geomorph.2022.108303 SN - 0169-555X SN - 1872-695X VL - 411 PB - Elsevier Science CY - Amsterdam [u.a.] ER - TY - BOOK ED - Falk, Gregor C. ED - Strecker, Manfred ED - Schneider, Simon T1 - Alexander von Humboldt BT - multiperspective approaches N2 - This book aims to view and to understand Alexander von Humboldt from different perspectives and in varying disciplinary contexts. His contributions addressed numerous topics in the earth but also life sciences—spanning from geo-botany, climatology, paleontology, oceanography, mineralogy, resources, and hydrogeology to links between the environmental impact of humans, erosion, and climate change. From the very beginning, he paved the way for a modern, integrated earth system science approach to decipher, characterize, and model the different forcing factors and their feedback mechanisms. It becomes obvious that Humboldt’s holistic approach is far beyond simple description and empiric data collection. As documented and analyzed in the different texts of this volume, he combines observation and analysis with emotions and subjective perceptions in a very affectionate way. However, this publication does not intend to add another encyclopedic text compilation but to observe and critically analyze this unique personality´s relevance in a modern context, particularly in discussing environmental and social key issues in the twenty-first century. KW - Alexander von Humboldt KW - multiperspective reception of AvH KW - biogeography KW - environmentalism KW - interdisciplinarity KW - earth system sciences KW - mining sciences KW - andean geology KW - intercultural understanding KW - expedition KW - Orinoco River system KW - historical geography Y1 - 2022 SN - 978-3-030-94007-2 SN - 978-3-030-94008-9 SN - 978-3-030-94010-2 U6 - https://doi.org/10.1007/978-3-030-94008-9 PB - Springer CY - Cham ER - TY - JOUR A1 - Radosavljevic, Boris A1 - Lantuit, Hugues A1 - Knoblauch, Christian A1 - Couture, Nicole A1 - Herzschuh, Ulrike A1 - Fritz, Michael T1 - Arctic nearshore sediment dynamics - an example from Herschel Island - Qikiqtaruk, Canada JF - Journal of marine science and engineering N2 - Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island-Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes delta C-13. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the delta C-13 (mean: -26.4 parts per thousand VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area. KW - permafrost KW - Arctic Ocean KW - stable carbon isotopes KW - nitrogen KW - sediment KW - chemistry KW - sediment dynamics KW - Beaufort Sea KW - grain size Y1 - 2022 U6 - https://doi.org/10.3390/jmse10111589 SN - 2077-1312 VL - 10 IS - 11 PB - MDPI CY - Basel ER - TY - JOUR A1 - Greenfield, Tim A1 - Winder, Tom A1 - Rawlinson, Nicholas A1 - Maclennan, John A1 - White, Robert S. A1 - Ágústsdóttir, Thorbjörg A1 - Bacon, Conor Andrew A1 - Brandsdóttir, Bryndis A1 - Eibl, Eva P. S. A1 - Glastonbury-Southern, Esme A1 - Gudnason, Egill Árni A1 - Hersir, Gylfi Páll A1 - Horálek, Josef T1 - Deep long period seismicity preceding and during the 2021 Fagradalsfjall eruption, Iceland JF - Bulletin of volcanology : official journal of the International Association of Volcanology and Chemistry of the Earth's Interior (IAVCEI) N2 - We use a dense seismic network on the Reykjanes Peninsula, Iceland, to image a group of earthquakes at 10-12 km depth, 2 km north-east of 2021 Fagradalsfjall eruption site. These deep earthquakes have a lower frequency content compared to earthquakes located in the upper, brittle crust and are similar to deep long period (DLP) seismicity observed at other volcanoes in Iceland and around the world. We observed several swarms of DLP earthquakes between the start of the study period (June 2020) and the initiation of the 3-week-long dyke intrusion that preceded the eruption in March 2021. During the eruption, DLP earthquake swarms returned 1 km SW of their original location during periods when the discharge rate or fountaining style of the eruption changed. The DLP seismicity is therefore likely to be linked to the magma plumbing system beneath Fagradalsfjall. However, the DLP seismicity occurred similar to 5 km shallower than where petrological modelling places the near-Moho magma storage region in which the Fagradalsfjall lava was stored. We suggest that the DLP seismicity was triggered by the exsolution of CO2-rich fluids or the movement of magma at a barrier to the transport of melt in the lower crust. Increased flux through the magma plumbing system during the eruption likely adds to the complexity of the melt migration process, thus causing further DLP seismicity, despite a contemporaneous magma channel to the surface. KW - deep long-period earthquakes KW - magma plumbing system KW - Iceland KW - Reykjanes KW - low-frequency KW - Fagradalsfjall Y1 - 2022 U6 - https://doi.org/10.1007/s00445-022-01603-2 SN - 0258-8900 SN - 1432-0819 VL - 84 IS - 12 PB - Springer CY - Berlin ; Heidelberg ; New York ER - TY - JOUR A1 - Vorogushyn, Sergiy A1 - Apel, Heiko A1 - Kemter, Matthias A1 - Thieken, Annegret T1 - Analyse der Hochwassergefährdung im Ahrtal unter Berücksichtigung historischer Hochwasser T1 - Analysis of flood hazard in the Ahr Valley considering historical floods JF - Hydrologie und Wasserbewirtschaftung N2 - The flood disaster in July 2021 in western Germany calls for a critical discussion on flood hazard assessment, revision of flood hazard maps and communication of extreme flood scenarios. In the presented work, extreme value analysis was carried out for annual maximum peak flow series at the Altenahr gauge on the river Ahr. We compared flood statistics with and without considering historical flood events. An estimate for the return period of the recent flood based on the Generalized Extreme Value (GEV) distribution considering historical floods ranges between about 2600 and above 58700 years (90% confidence interval) with a median of approximately 8600 years, whereas an estimate based on the 74-year long systematically recorded flow series would theoretically exceed 100 million years. Consideration of historical floods dramatically changes the flood quantiles that are used for the generation of official flood hazard maps. The fitting of the GEV to the time series with historical floods reveals, however, that the model potentially inadequately reflects the flood population. In this case, we might face a mixed sample, in which extreme floods result from very different processes compared to smaller floods. Hence, the probabilities of extreme floods could be much larger than those resulting from a single GEV model. The application of a process-based mixed flood distribution should be explored in future work.
The comparison of the official HQextrem flood maps for the AhrValley with the inundation areas from July 2021 shows a striking discrepancy in the affected areas and calls for revision of design values used to define extreme flood scenarios. The hydrodynamic simulations of a 1000-year return period flood considering historical events and of the 1804 flood scenario compare much better to the flooded areas from July 2021, though both scenarios still underestimated the flood extent.
Particular effects such as clogging of bridges and geomorphological changes of the river channel led to considerably larger flooded areas in July 2021 compared to the simulation results. Based on this analysis, we call for a consistent definition of HQextrem for flood hazard mapping in Germany, and suggest using high flood quantiles in the range of a 1,000-year flood. Flood maps should additionally include model-based reconstructions of the largest, reliably documented historical floods and/or synthetic worst-case scenarios. This would be an important step towards protecting potentially affected population and disaster management from surprises due to very rare and extreme flood events in future. N2 - Die Hochwasserkatastrophe im Juli 2021 in Westdeutschland erfordert eine kritische Diskussion über die Abschätzung der Hochwassergefährdung, Aktualisierung von Hochwassergefahrenkarten und Kommunikation von extremen Hochwasserszenarien. In der vorliegenden Arbeit wurde die Extremwertstatistik für die jährlichen maximalen Spitzenabflüsse am Pegel Altenahr im Ahrtal mit und ohne Berücksichtigung historischer Hochwasser berechnet und verglichen. Die Schätzung der Wiederkehrperiode für das aktuelle Hochwasser mittels Generalisierter Extremwertverteilung (GEV) unter Berücksichtigung historischer Hochwasser schwankt zwischen etwa 2.600 und über 58.700 Jahren (90%-Konfidenzintervall) mit einem Median bei etwa 8.600 Jahren, wogegen die Schätzung, die nur auf der systematisch gemessenen Abflusszeitreihe von 74 Jahren basiert, theoretisch eine Wiederkehrperiode von über 100 Millionen Jahren ergeben würde. Die Berücksichtigung der historischen Hochwasser führt zu einer dramatischen Änderung der Hochwasserquan- tile, die für eine Gefahrenkartierung zugrunde gelegt werden. Die Anpassung der GEV an die Zeitreihe mit historischen Hochwassern zeigt dennoch, dass das GEV-Modell möglicherweise die Grundgesamtheit der Hochwasser im Ahrtal nicht adäquat abbilden kann. Es könnte sich im vorliegenden Fall um eine gemischte Stichprobe handeln, in der die extremen Hochwasser im Vergleich zu kleineren Ereignissen durch besondere Prozesse hervorgerufen werden. Somit könnten die Wahrscheinlichkeiten von extremen Hochwassern deutlich größer sein, als aus dem GEV-Modell hervorgeht. Hier sollte in Zukunft die Anwendung einer prozessbasierten Mischverteilung untersucht werden. Der Vergleich von amtlichen Gefahrenkarten zu Extremhochwassern (HQextrem) im Ahrtal mit den Überflutungsflächen vom Juli 2021 zeigt eine deutliche Diskrepanz in den betroffenen Gebieten und die Notwendigkeit, die Grundlagen zur Erstellung der Extremszenarien zu überdenken. Die hydrodynamisch-numerischen Simulationen von 1.000-jährlichen Hochwassern (HQ1000) unter Berücksichtigung historischer Ereignisse und des größten historischen Hochwassers 1804 können die Gefährdung des Juli-Hochwassers 2021 deutlich besser widerspiegeln, wenngleich auch diese beiden Szenarien die Überflutungsflächen unterschätzen. Besondere Effekte wie die Verklausung von Brücken und die geomorphologischen Änderungen im Flussschlauch führten zu noch größeren Überflutungs- flächen im Juli 2021, als die Simulationsergebnisse zeigten. Basierend auf dieser Analyse wird eine einheitliche Festlegung von HQextrem bei Hochwassergefahrenkartierungen in Deutschland vorgeschlagen, die sich an höheren Hochwasserquantilen im Bereich von HQ1000 orientiert. Zusätzlich sollen simulationsbasierte Rekonstruktionen von den größten verlässlich dokumentierten historischen Hochwassern und/oder synthetische Worst-Case-Szenarien in den Hochwassergefahrenkarten gesondert dargestellt werden. Damit wird ein wichtiger Beitrag geleistet, um die potenziell betroffene Bevölkerung und das Katastrophenmanagement vor Überraschungen durch sehr seltene und extreme Hochwasser in Zukunft besser zu schützen. KW - Extreme value statistics KW - historical floods KW - flood hazard mapping; KW - inundation simulation KW - Ahr River KW - Extremwertstatistik KW - historische Hochwasser KW - Gefahrenkarten KW - Überflutungssimulation KW - Ahr Y1 - 2022 U6 - https://doi.org/10.5675/HyWa_2022.5_2 SN - 1439-1783 VL - 66 IS - 5 SP - 244 EP - 254 PB - Bundesanst. für Gewässerkunde CY - Koblenz ER - TY - JOUR A1 - Rolph, Rebecca A1 - Overduin, Pier Paul A1 - Ravens, Thomas A1 - Lantuit, Hugues A1 - Langer, Moritz T1 - ArcticBeach v1.0 BT - a physics-based parameterization of pan-Arctic coastline erosion JF - Frontiers in Earth Science N2 - In the Arctic, air temperatures are increasing and sea ice is declining, resulting in larger waves and a longer open water season, all of which intensify the thaw and erosion of ice-rich coasts. Climate change has been shown to increase the rate of Arctic coastal erosion, causing problems for Arctic cultural heritage, existing industrial, military, and civil infrastructure, as well as changes in nearshore biogeochemistry. Numerical models that reproduce historical and project future Arctic erosion rates are necessary to understand how further climate change will affect these problems, and no such model yet exists to simulate the physics of erosion on a pan-Arctic scale. We have coupled a bathystrophic storm surge model to a simplified physical erosion model of a permafrost coastline. This Arctic erosion model, called ArcticBeach v1.0, is a first step toward a physical parameterization of Arctic shoreline erosion for larger-scale models. It is forced by wind speed and direction, wave period and height, sea surface temperature, all of which are masked during times of sea ice cover near the coastline. Model tuning requires observed historical retreat rates (at least one value), as well as rough nearshore bathymetry. These parameters are already available on a pan-Arctic scale. The model is validated at three study sites at 1) Drew Point (DP), Alaska, 2) Mamontovy Khayata (MK), Siberia, and 3) Veslebogen Cliffs, Svalbard. Simulated cumulative retreat rates for DP and MK respectively (169 and 170 m) over the time periods studied at each site (2007-2016, and 1995-2018) are found to the same order of magnitude as observed cumulative retreat (172 and 120 m). The rocky Veslebogen cliffs have small observed cumulative retreat rates (0.05 m over 2014-2016), and our model was also able to reproduce this same order of magnitude of retreat (0.08 m). Given the large differences in geomorphology between the study sites, this study provides a proof-of-concept that ArcticBeach v1.0 can be applied on very different permafrost coastlines. ArcticBeach v1.0 provides a promising starting point to project retreat of Arctic shorelines, or to evaluate historical retreat in places that have had few observations. KW - permafrost KW - erosion KW - modelling KW - arctic KW - climate change Y1 - 2022 U6 - https://doi.org/10.3389/feart.2022.962208 SN - 2296-6463 VL - 10 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Sudibyo, Maria R. P. A1 - Eibl, Eva P. S. A1 - Hainzl, Sebastian A1 - Hersir, Gylfi Páll T1 - Eruption Forecasting of Strokkur Geyser, Iceland, Using Permutation Entropy JF - Journal of geophysical research : Solid earth N2 - A volcanic eruption is usually preceded by seismic precursors, but their interpretation and use for forecasting the eruption onset time remain a challenge. A part of the eruptive processes in open conduits of volcanoes may be similar to those encountered in geysers. Since geysers erupt more often, they are useful sites for testing new forecasting methods. We tested the application of Permutation Entropy (PE) as a robust method to assess the complexity in seismic recordings of the Strokkur geyser, Iceland. Strokkur features several minute-long eruptive cycles, enabling us to verify in 63 recorded cycles whether PE behaves consistently from one eruption to the next one. We performed synthetic tests to understand the effect of different parameter settings in the PE calculation. Our application to Strokkur shows a distinct, repeating PE pattern consistent with previously identified phases in the eruptive cycle. We find a systematic increase in PE within the last 15 s before the eruption, indicating that an eruption will occur. We quantified the predictive power of PE, showing that PE performs better than seismic signal strength or quiescence when it comes to forecasting eruptions. KW - permutation entropy KW - forecasting KW - geyser KW - eruption KW - hydrothermal system; KW - volcano-seismology Y1 - 2022 U6 - https://doi.org/10.1029/2022JB024840 SN - 2169-9313 SN - 2169-9356 VL - 127 IS - 10 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Wutzler, Bianca A1 - Hudson, Paul A1 - Thieken, Annegret T1 - Adaptation strategies of flood-damaged businesses in Germany JF - Frontiers in water N2 - Flood risk management in Germany follows an integrative approach in which both private households and businesses can make an important contribution to reducing flood damage by implementing property-level adaptation measures. While the flood adaptation behavior of private households has already been widely researched, comparatively less attention has been paid to the adaptation strategies of businesses. However, their ability to cope with flood risk plays an important role in the social and economic development of a flood-prone region. Therefore, using quantitative survey data, this study aims to identify different strategies and adaptation drivers of 557 businesses damaged by a riverine flood in 2013 and 104 businesses damaged by pluvial or flash floods between 2014 and 2017. Our results indicate that a low perceived self-efficacy may be an important factor that can reduce the motivation of businesses to adapt to flood risk. Furthermore, property-owners tended to act more proactively than tenants. In addition, high experience with previous flood events and low perceived response costs could strengthen proactive adaptation behavior. These findings should be considered in business-tailored risk communication. KW - risk management KW - climate change adaptation KW - floods KW - disaster risk KW - reduction KW - Germany KW - precaution KW - emergency management Y1 - 2022 U6 - https://doi.org/10.3389/frwa.2022.932061 SN - 2624-9375 VL - 4 PB - Frontiers Media CY - Lausanne ER - TY - JOUR A1 - Scholz, Carolin A1 - Voigt, Christian C. T1 - Diet analysis of bats killed at wind turbines suggests large-scale losses of trophic interactions JF - Conservation science and practice N2 - Agricultural practice has led to landscape simplification and biodiversity decline, yet recently, energy-producing infrastructures, such as wind turbines, have been added to these simplified agroecosystems, turning them into multi-functional energy-agroecosystems. Here, we studied the trophic interactions of bats killed at wind turbines using a DNA metabarcoding approach to shed light on how turbine-related bat fatalities may possibly affect local habitats. Specifically, we identified insect DNA in the stomachs of common noctule bats (Nyctalus noctula) killed by wind turbines in Germany to infer in which habitats these bats hunted. Common noctule bats consumed a wide variety of insects from different habitats, ranging from aquatic to terrestrial ecosystems (e.g., wetlands, farmland, forests, and grasslands). Agricultural and silvicultural pest insects made up about 20% of insect species consumed by the studied bats. Our study suggests that the potential damage of wind energy production goes beyond the loss of bats and the decline of bat populations. Bat fatalities at wind turbines may lead to the loss of trophic interactions and ecosystem services provided by bats, which may add to the functional simplification and impaired crop production, respectively, in multi-functional ecosystems. KW - bat fatalities KW - biodiversity decline KW - food web KW - green-green dilemma KW - renewable energy KW - wind energy production KW - wind energy-biodiversity conflict Y1 - 2022 U6 - https://doi.org/10.1111/csp2.12744 SN - 2578-4854 VL - 4 IS - 7 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Behrens, Karsten A1 - Balischewski, Christian A1 - Sperlich, Eric A1 - Menski, Antonia Isabell A1 - Balderas-Valadez, Ruth Fabiola A1 - Pacholski, Claudia A1 - Günter, Christina A1 - Lubahn, Susanne A1 - Kelling, Alexandra A1 - Taubert, Andreas T1 - Mixed chloridometallate(ii) ionic liquids with tunable color and optical response for potential ammonia sensors JF - RSC Advances N2 - Eight d-metal-containing N-butylpyridinium ionic liquids (ILs) with the nominal composition (C4Py)2[Ni0.5M0.5Cl4] or (C4Py)2[Zn0.5M0.5Cl4] (M = Cu, Co, Mn, Ni, Zn; C4Py = N-butylpyridinium) were synthesized, characterized, and investigated for their optical properties. Single crystal and powder X-ray analysis shows that the compounds are isostructural to existing examples based on other d-metal ions. Inductively coupled plasma optical emission spectroscopy measurements confirm that the metal/metal ratio is around 50 : 50. UV-Vis spectroscopy shows that the optical absorption can be tuned by selection of the constituent metals. Moreover, the compounds can act as an optical sensor for the detection of gases such as ammonia as demonstrated via a simple prototype setup. Y1 - 2022 U6 - https://doi.org/10.1039/d2ra05581c SN - 2046-2069 VL - 12 SP - 35072 EP - 35082 PB - RSC CY - London ER - TY - JOUR A1 - Berner, Nadine A1 - Trauth, Martin H. A1 - Holschneider, Matthias T1 - Bayesian inference about Plio-Pleistocene climate transitions in Africa JF - Quaternary science reviews : the international multidisciplinary research and review journal N2 - During the last 5 Ma the Earth's ocean-atmosphere system passed through several major transitions, many of which are discussed as possible triggers for human evolution. A classic in this context is the possible influence of the closure of the Panama Strait, the intensification of Northern Hemisphere Glaciation, a stepwise increase in aridity in Africa, and the first appearance of the genus Homo about 2.5 - 2.7 Ma ago. Apart from the fact that the correlation between these events does not necessarily imply causality, many attempts to establish a relationship between climate and evolution fail due to the challenge of precisely localizing an a priori unknown number of changes potentially underlying complex climate records. The kernel-based Bayesian inference approach applied here allows inferring the location, generic shape, and temporal scale of multiple transitions in established records of Plio-Pleistocene African climate. By defining a transparent probabilistic analysis strategy, we are able to identify conjoint changes occurring across the investigated terrigenous dust records from Ocean Drilling Programme (ODP) sites in the Atlantic Ocean (ODP 659), Arabian (ODP 721/722) and Mediterranean Sea (ODP 967). The study indicates a two-step transition in the African climate proxy records at (2.35-2.10) Ma and (1.70 - 1.50) Ma, that may be associated with the reorganization of the Hadley-Walker Circulation. . KW - Plio-Pleistocene KW - Hadley-Walker Circulation KW - climate transition KW - Bayesian inference KW - time series analysis KW - ODP 659 KW - ODP 721/722 KW - ODP 967 Y1 - 2022 U6 - https://doi.org/10.1016/j.quascirev.2021.107287 SN - 0277-3791 SN - 1873-457X VL - 277 PB - Elsevier CY - Oxford ER - TY - GEN A1 - Rembe, Johannes A1 - Sobel, Edward A1 - Kley, Jonas A1 - Terbishalieva, Baiansulu A1 - Musiol, Antje A1 - Chen, Jie A1 - Zhou, Renjie T1 - Geochronology, Geochemistry, and Geodynamic Implications of Permo-Triassic Back-Arc Basin Successions in the North Pamir, Central Asia T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - The Permo-Triassic period marks the time interval between Hercynian (Variscan) orogenic events in the Tien Shan and the North Pamir, and the Cimmerian accretion of the Gondwana-derived Central and South Pamir to the southern margin of the Paleo-Asian continent. A well-preserved Permo-Triassic volcano-sedimentary sequence from the Chinese North Pamir yields important information on the geodynamic evolution of Asia’s pre-Cimmerian southern margin. The oldest volcanic rocks from that section are dated to the late Guadalupian epoch by a rhyolite and a dacitic dike that gave zircon U-Pb ages of ~260 Ma. Permian volcanism was largely pyroclastic and mafic to intermediate. Upsection, a massive ignimbritic crystal tuff in the Chinese Qimgan valley was dated to 244.1 +/- 1.1 Ma, a similar unit in the nearby Gez valley to 245 +/- 11 Ma, and an associated rhyolite to 233.4 +/- 1.1 Ma. Deposition of the locally ~200 m thick crystal tuff unit follows an unconformity and marks the onset of intense, mainly mafic to intermediate, calc-alkaline magmatic activity. Triassic volcanic activity in the North Pamir was coeval with the major phase of Cimmerian intrusive activity in the Karakul-Mazar arc-accretionary complex to the south, caused by northward subduction of the Paleo-Tethys. It also coincided with the emplacement of basanitic and carbonatitic dikes and a thermal event in the South Tien Shan, to the north of our study area. Evidence for arc-related magmatic activity in a back-arc position provides strong arguments for back-arc extension or transtension and basin formation. This puts the Qimgan succession in line with a more than 1000 km long realm of extensional Triassic back-arc basins known from the North Pamir in the Kyrgyz Altyn Darya valley (Myntekin formation), the North Pamir of Tajikistan and Afghanistan, and the Afghan Hindukush (Doab formation) and further west from the Paropamisus and Kopet Dag (Aghdarband, NE Iran). T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1309 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-583318 SN - 1866-8372 IS - 1309 ER - TY - JOUR A1 - Rembe, Johannes A1 - Sobel, Edward A1 - Kley, Jonas A1 - Terbishalieva, Baiansulu A1 - Musiol, Antje A1 - Chen, Jie A1 - Zhou, Renjie T1 - Geochronology, Geochemistry, and Geodynamic Implications of Permo-Triassic Back-Arc Basin Successions in the North Pamir, Central Asia JF - Lithosphere N2 - The Permo-Triassic period marks the time interval between Hercynian (Variscan) orogenic events in the Tien Shan and the North Pamir, and the Cimmerian accretion of the Gondwana-derived Central and South Pamir to the southern margin of the Paleo-Asian continent. A well-preserved Permo-Triassic volcano-sedimentary sequence from the Chinese North Pamir yields important information on the geodynamic evolution of Asia’s pre-Cimmerian southern margin. The oldest volcanic rocks from that section are dated to the late Guadalupian epoch by a rhyolite and a dacitic dike that gave zircon U-Pb ages of ~260 Ma. Permian volcanism was largely pyroclastic and mafic to intermediate. Upsection, a massive ignimbritic crystal tuff in the Chinese Qimgan valley was dated to 244.1 +/- 1.1 Ma, a similar unit in the nearby Gez valley to 245 +/- 11 Ma, and an associated rhyolite to 233.4 +/- 1.1 Ma. Deposition of the locally ~200 m thick crystal tuff unit follows an unconformity and marks the onset of intense, mainly mafic to intermediate, calc-alkaline magmatic activity. Triassic volcanic activity in the North Pamir was coeval with the major phase of Cimmerian intrusive activity in the Karakul-Mazar arc-accretionary complex to the south, caused by northward subduction of the Paleo-Tethys. It also coincided with the emplacement of basanitic and carbonatitic dikes and a thermal event in the South Tien Shan, to the north of our study area. Evidence for arc-related magmatic activity in a back-arc position provides strong arguments for back-arc extension or transtension and basin formation. This puts the Qimgan succession in line with a more than 1000 km long realm of extensional Triassic back-arc basins known from the North Pamir in the Kyrgyz Altyn Darya valley (Myntekin formation), the North Pamir of Tajikistan and Afghanistan, and the Afghan Hindukush (Doab formation) and further west from the Paropamisus and Kopet Dag (Aghdarband, NE Iran). Y1 - 2022 U6 - https://doi.org/10.2113/2022/7514691 SN - 1947-4253 VL - 2022 IS - 1 PB - GeoScienceWorld, Geological Society of America CY - Boulder, Colorado, USA ER - TY - THES A1 - Klein, Konstantin Paul T1 - Remote Sensing of Suspended Sediment Dynamics in the Arctic Nearshore Zone T1 - Sedimentdynamiken im arktischen Nahküstenbereich analysiert mit Fernerkundungsdaten N2 - The Arctic nearshore zone plays a key role in the carbon cycle. Organic-rich sediments get eroded off permafrost affected coastlines and can be directly transferred to the nearshore zone. Permafrost in the Arctic stores a high amount of organic matter and is vulnerable to thermo-erosion, which is expected to increase due to climate change. This will likely result in higher sediment loads in nearshore waters and has the potential to alter local ecosystems by limiting light transmission into the water column, thus limiting primary production to the top-most part of it, and increasing nutrient export from coastal erosion. Greater organic matter input could result in the release of greenhouse gases to the atmosphere. Climate change also acts upon the fluvial system, leading to greater discharge to the nearshore zone. It leads to decreasing sea-ice cover as well, which will both increase wave energy and lengthen the open-water season. Yet, knowledge on these processes and the resulting impact on the nearshore zone is scarce, because access to and instrument deployment in the nearshore zone is challenging. Remote sensing can alleviate these issues in providing rapid data delivery in otherwise non-accessible areas. However, the waters in the Arctic nearshore zone are optically complex, with multiple influencing factors, such as organic rich suspended sediments, colored dissolved organic matter (cDOM), and phytoplankton. The goal of this dissertation was to use remotely sensed imagery to monitor processes related to turbidity caused by suspended sediments in the Arctic nearshore zone. In-situ measurements of water-leaving reflectance and surface water turbidity were used to calibrate a semi-empirical algorithm which relates turbidity from satellite imagery. Based on this algorithm and ancillary ocean and climate variables, the mechanisms underpinning nearshore turbidity in the Arctic were identified at a resolution not achieved before. The calibration of the Arctic Nearshore Turbidity Algorithm (ANTA) was based on in-situ measurements from the coastal and inner-shelf waters around Herschel Island Qikiqtaruk (HIQ) in the western Canadian Arctic from the summer seasons 2018 and 2019. It performed better than existing algorithms, developed for global applications, in relating turbidity from remotely sensed imagery. These existing algorithms were lacking validation data from permafrost affected waters, and were thus not able to reflect the complexity of Arctic nearshore waters. The ANTA has a higher sensitivity towards the lowest turbidity values, which is an asset for identifying sediment pathways in the nearshore zone. Its transferability to areas beyond HIQ was successfully demonstrated using turbidity measurements matching satellite image recordings from Adventfjorden, Svalbard. The ANTA is a powerful tool that provides robust turbidity estimations in a variety of Arctic nearshore environments. Drivers of nearshore turbidity in the Arctic were analyzed by combining ANTA results from the summer season 2019 from HIQ with ocean and climate variables obtained from the weather station at HIQ, the ERA5 reanalysis database, and the Mackenzie River discharge. ERA5 reanalysis data were obtained as domain averages over the Canadian Beaufort Shelf. Nearshore turbidity was linearly correlated to wind speed, significant wave height and wave period. Interestingly, nearshore turbidity was only correlated to wind speed at the shelf, but not to the in-situ measurements from the weather station at HIQ. This shows that nearshore turbidity, albeit being of limited spatial extent, gets influenced by the weather conditions multiple kilometers away, rather than in its direct vicinity. The large influence of wave energy on nearshore turbidity indicates that freshly eroded material off the coast is a major contributor to the nearshore sediment load. This contrasts results from the temperate and tropical oceans, where tides and currents are the major drivers of nearshore turbidity. The Mackenzie River discharge was not identified as a driver of nearshore turbidity in 2019, however, the analysis of 30 years of Landsat archive imagery from 1986 to 2016 suggests a direct link between the prevailing wind direction, which heavily influences the Mackenzie River plume extent, and nearshore turbidity around HIQ. This discrepancy could be caused by the abnormal discharge behavior of the Mackenzie River in 2019. This dissertation has substantially advanced the understanding of suspended sediment processes in the Arctic nearshore zone and provided new monitoring tools for future studies. The presented results will help to understand the role of the Arctic nearshore zone in the carbon cycle under a changing climate. N2 - Der arktische Nahküstenbereich spielt eine wichtige Rolle im Kohlenstoffkreislauf. Küsten, die Permafrostböden aufweisen, sind sehr anfällig für Thermoerosion, wodurch Sediment und unzersetzte, organische Überreste in den Arktischen Ozean gelangen können. Durch den Klimawandel ist davon auszugehen, dass Thermoerosion in Zukunft größere Erosionsraten hervorrufen wird. Permafrostböden enthalten große Mengen organischer Überreste, die nach dem Auftauen von Mikroorganismen zersetzt werden, wodurch Treibhausgase in die Atmosphäre gelangen können. Erhöhte Sedimentmengen in den Küstengewässern verhindert außerdem das Eindringen elektromagnetischer Strahlung in die Wassersäule, wodurch die auf Photosynthese basierte Primärproduktion in tieferen Wasserschichten stark reduziert wird. Durch den Klimawandel transportieren Flüsse in der Arktis mehr Frischwasser und Sediment in die Nahküstenbereiche, und erhöhte Temperaturen verringern die Meereisausdehnung. All diese Prozesse können das Ökosystem des arktischen Nahküstenbereiches nachhaltig verändern, allerdings ist das Verständnis von Interaktionen untereinander und deren Resultate begrenzt, da sich die Datensammlung in arktischen Nahküstenbereichen sehr herausfordernd gestaltet. Fernerkundungsmethoden bieten die Möglichkeit der vergleichsweise unkomplizierten Datenaufnahme nur schwer erreichbarer Regionen wie dem arktischen Nahküstenbereich. Arktische Küstengewässer sind allerdings optisch komplex, und Wasserinhaltsstoffe wie Sediment, organische Überreste, gelöstes Material und Plankton erschweren genaue Analysen. Das Ziel dieser Dissertation ist es, Satellitenbilder zu analysieren und Sedimentdynamiken zu identifizieren, die die Wassertrübung beeinflussen. In einem empirischen Algorithmus wird die von der Wasseroberfläche reflektierte elektromagnetische Strahlung genutzt, um die Wassertrübung zu berechnen. Zusammen mit einer Sammlung von Wetterdaten und anderen Umwelteinflüssen wurden Mechanismen identifiziert, die die Wassertrübung arktischer Küstengewässer beeinflussen. Die Kalibrierung des Algorithmus zur Berechnung der Wassertrübung (ANTA) wurde mit Messungen aus den Küstengewässern in der Nähe von Herschel Island Qikiqtaruk (HIQ) auf dem Kanadischen Beaufortschelf durchgeführt. Seine Anwendung führt verglichen mit bereits existierenden Algorithmen zu besseren Ergebnissen, die für den weltweiten Gebrauch vorgesehen sind. Für die Kalibrierung dieser Algorithmen wurden keine Messungen arktischer Nahküstenbereiche genutzt, wodurch die optische Komplexität nur unzureichend wiedergegeben werden kann. Der ANTA ist besser geeignet, um Transportwege von Sediment an der Wasseroberfläche zu identifizieren, weil nahezu klare Gewässer mit höherer Genauigkeit klassifiziert werden. Messungen aus dem Adventfjord in Spitzbergen zeigen, dass der ANTA auch außerhalb der Kanadischen Beaufortsee akkurate Ergebnisse produziert, was ihn zu einem wichtigen Werkzeug zukünftiger Untersuchungen arktischer Nahküstenbereiche macht. Um Prozesse zu identifizieren, die die Wassertrübung in arktischen Küstengewässern beeinflussen, wurden ANTA-Ergebnisse aus dem Sommer 2019 von HIQ, Messungen der Wetterstation auf HIQ, Wetter- und Klimamodellierungen des Kanadischen Beaufortschelfes und Abflussdaten des Mackenzie genutzt. Die Wassertrübung korreliert linear mit der Windgeschwindigkeit, der Wellenhöhe und der Wellenperiodendauer. Es ist beachtenswert, dass die Wassertrübung nur mit der Windgeschwindigkeit auf dem Beaufortschelf, nicht aber mit der Windgeschwindigkeit auf HIQ korreliert. Dies zeigt, dass weit entfernte Prozesse großen Einfluss auf die Wassertrübung in arktischen Küstengewässern haben können, obwohl die Wassertrübung selber nur ein kleines Gebiet beeinflusst. Der große Einfluss von Wellenenergie aus die Wassertrübung unterstreicht sowohl die Wirksamkeit von Erosion als auch, dass kürzlich erodiertes Sediment einen erheblichen Anteil der Sedimentfracht im Nahküstenbereich ausmacht. Dies unterscheidet den Arktischen Ozean von den gemäßigten und tropischen Ozeanen, wo Gezeiten und Strömungen die größten Einflüsse auf die Wassertrübung im Nahküstenbereich sind. Die vom Mackenzie transportierten Sedimente haben keinen Einfluss auf die Wassertrübung um HIQ im Sommer 2019, allerdings zeigt die Analyse des dreißigjährigen Bildarchives der Landsat-Satelliten, dass die Windrichtung, welche maßgeblichen Einfluss auf die Verteilung der transportierten Sedimente nimmt, ein wichtiger Faktor sein kann. Diese Diskrepanz könnte jedoch auch dem untypischen Abflussverhalten des Mackenzie im Jahr 2019 geschuldet sein. Diese Dissertation hat maßgeblichen Anteil am derzeitigen Verständnis der Prozesse im dynamischen Nahküstenbereich des Arktischen Ozeans. Die vorgestellten Methoden und erlangten Ergebnisse werden helfen, in zukünftigen Studien die Rolle des arktischen Nahküstenbereiches im Kohlenstoffkreislauf zu analysieren und quantifizieren. KW - ocean color remote sensing KW - Arctic nearhore zone KW - turbidity modelling KW - arktischer Nahküstenbereich KW - Gewässerfernerkundung KW - Modellierung der Wassertrübung Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-576032 ER - TY - THES A1 - Patyniak, Magda T1 - Seismotectonic segmentation, paleoearthquakes and style of deformation along the Northern Pamir thrust system, South Kyrgyzstan T1 - Seismotektonische Segmentierung, Paläoerdbeben und Art der Deformation entlang des nördlichen Pamir-Überschiebungssystems, Südkirgisistan N2 - The Pamir Frontal Thrust (PFT) located in the Trans Alai range in Central Asia is the principal active fault of the intracontinental India-Eurasia convergence zone and constitutes the northernmost boundary of the Pamir orogen at the NW edge of this collision zone. Frequent seismic activity and ongoing crustal shortening reflect the northward propagation of the Pamir into the intermontane Alai Valley. Quaternary deposits are being deformed and uplifted by the advancing thrust front of the Trans Alai range. The Alai Valley separates the Pamir range front from the Tien Shan mountains in the north; the Alai Valley is the vestige of a formerly contiguous basin that linked the Tadjik Depression in the west with the Tarim Basin in the east. GNSS measurements across the Central Pamir document a shortening rate of ~25 mm/yr, with a dramatic decrease of ~10-15 mm over a short distance across the northernmost Trans Alai range. This suggests that almost half of the shortening in the greater Pamir – Tien Shan collision zone is absorbed along the PFT. The short-term (geodetic) and long-term (geologic) shortening rates across the northern Pamir appear to be at odds with an apparent slip-rate discrepancy along the frontal fault system of the Pamir. Moreover, the present-day seismicity and historical records have not revealed great Mw > 7 earthquakes that might be expected with such a significant slip accommodation. In contrast, recent and historic earthquakes exhibit complex rupture patterns within and across seismotectonic segments bounding the Pamir mountain front, challenging our understanding of fault interaction and the seismogenic potential of this area, and leaving the relationships between seismicity and the geometry of the thrust front not well understood. In this dissertation I employ different approaches to assess the seismogenic behavior along the PFT. Firstly, I provide paleoseismic data from five trenches across the central PFT segment (cPFT) and compute a segment-wide earthquake chronology over the past 16 kyr. This novel dataset provides important insights into the recurrence, magnitude, and rupture extent of past earthquakes along the cPFT. I interpret five, possibly six paleoearthquakes that have ruptured the Pamir mountain front since ∼7 ka and 16 ka, respectively. My results indicate that at least three major earthquakes ruptured the full-segment length and possibly crossed segment boundaries with a recurrence interval of ∼1.9 kyr and potential magnitudes of up to Mw 7.4. Importantly, I did not find evidence for great (i.e., Mw ≥8) earthquakes. Secondly, I combine my paleoseimic results with morphometric analyses to establish a segment-wide distribution of the cumulative vertical separation along offset fluvial terraces and I model a long-term slip rate for the cPFT. My investigations reveal discrepancies between the extents of slip and rupture during apparent partial segment ruptures in the western half of the cPFT. Combined with significantly higher fault scarp offsets in this sector of the cPFT, the observations indicate a more mature fault section with a potential for future fault linkage. I estimate an average rate of horizontal motion for the cPFT of 4.1 ± 1.5 mm/yr during the past ∼5 kyr, which does not fully match the GNSS-derived present-day shortening rate of ∼10 mm/yr. This suggests a complex distribution of strain accumulation and potential slip partitioning between the cPFT and additional faults and folds within the Pamir that may be associated with a partially locked regional décollement. The third part of the thesis provides new insights regarding the surface rupture of the 2008 Mw 6.6 Nura earthquake that ruptured along the eastern PFT sector. I explore this rupture in the context of its structural complexity by combining extensive field observations with high-resolution digital surface models. I provide a map of the rupture extent, net slip measurements, and updated regional geological observations. Based on this data I propose a tectonic model in this area associated with secondary flexural-slip faulting along steeply dipping bedding of folded Paleogene sedimentary strata that is related to deformation along a deeper blind thrust. Here, the strain release seems to be transferred from the PFT towards older inherited basement structures within the area of advanced Pamir-Tien Shan collision zone. The extensive research of my dissertation results in a paleoseismic database of the past 16 ~kyr, which contributes to the understanding of the seismogenic behavior of the PFT, but also to that of segmented thrust-fault systems in active collisional settings. My observations underscore the importance of combining different methodological approaches in the geosciences, especially in structurally complex tectonic settings like the northern Pamir. Discrepancy between GNSS-derived present-day deformation rates and those from different geological archives in the central part, as well as the widespread distribution of the deformation due to earthquake triggered strain transfer in the eastern part reveals the complexity of this collision zone and calls for future studies involving multi-temporal and interdisciplinary approaches. N2 - Die Pamir-Frontüberschiebung (PFT) des Trans-Alai-Gebirges in Zentralasien ist die wichtigste aktive Verwerfung der intrakontinentalen indisch-eurasischen Konvergenzzone und bildet die nördlichste Grenze des Pamir-Orogens am NW-Rand dieser Kollisionszone. Die intensive Seismizität und die fortschreitende Krustenverkürzung spiegeln die nach Norden gerichtete Verlagerung des Pamir in das intermontane Alai-Tal wider. Quartäre Ablagerungen werden durch die vorstoßende Überschiebungsfront des Trans-Alai-Gebirges sukzessive deformiert und angehoben. Das Alai-Tal trennt das Pamir-Gebirge vom Südrand des Tien Shan-Gebirges und verkörpert die Überreste eines ehemals zusammenhängenden Beckens, welches früher die Tadjik-Senke im Westen mit dem Tarim-Becken im Osten verband. GNSS-Messungen südlich der PFT im Bereich des Zentralpamirs dokumentieren eine Verkürzungsrate von 25 mm/Jahr, welche über eine kurze Strecke zur nördlichen Front des Trans-Alai-Gebirges hin drastisch um 10-15 mm abnimmt. Dies lässt darauf schließen, dass fast die Hälfte der Einengung entlang der PFT absorbiert wird, welche sich in der Kollisionszone zwischen dem Pamir und dem Tien Shan befindet. Eine offensichtliche Abweichung zwischen den kurzfristigen (geodätischen) und langfristigen (geologischen) Verkürzungsraten im nördlichen Pamir weist auf eine Diskrepanz in den Versatzraten entlang des nördlichen frontalen Verwerfungssystems hin. Darüber hinaus weisen weder die heutige Seismizität noch die historischen Aufzeichnungen auf große Erdbeben der Stärke Mw > 7 hin, wie sie bei einer solch signifikanten Verschiebung zu erwarten wären. Stattdessen zeigen rezente und historische Erdbeben komplexe Bruchmuster innerhalb und quer zu seismotektonisch definierten Segmenten, die die Pamir-Gebirgsfront begrenzen, was unser Verständnis der Verwerfungsinteraktion und des seismogenen Potenzials dieses Gebiets herausfordert. Die Wechselwirkungen zwischen Seismizität und der Geometrie der Überschiebungsfront sind somit nicht gut verstanden. In dieser Dissertation verwende ich verschiedene Verfahren, um das seismogene Verhalten entlang der PFT zu bestimmen. Dazu werden zunächst paläoseismische Daten aus fünf Schürfgräben entlang des zentralen Segmentes der PFT (cPFT) erhoben und eine segmentweite Erdbebenchronologie zusammengestellt. Dieser neue Datensatz liefert wichtige Erkenntnisse über die Häufigkeit, die Stärke und das Bruchausmaß vergangener Erdbeben entlang der cPFT. Darauf basierend wurden fünf bzw. sechs Paläoerdbeben interpretiert, die sich entlang der nördlichen Pamir-Gebirgsfront in den letzten ∼7 ka bzw. ~16 ka ereigneten. Meine Ergebnisse deuten darauf hin, dass davon mindestens drei große Erdbeben die gesamte Länge des zentralen Segments durchbrochen haben und der Bruch möglicherweise sogar die Segmentgrenzen überschritten hat, mit einem Wiederholungsintervall von ∼1,9 kyr und potenziellen Magnituden von bis zu Mw 7,4. Entscheidend an dieser Stelle ist, dass ich keine Hinweise auf sehr große (d.h. Mw ≥ 8) Erdbeben gefunden habe. Meine paläoseismischen Ergebnisse werden anschließend mit morphometrischen Analysen entlang des zentralen PFT-Segmentes verknüpft, um eine segmentweite Verteilung der kumulativ versetzten Geländestufe entlang fluvialer Terrassen zu ermitteln. Aus dieser Verteilung wird eine langzeitliche Versatzrate für die cPFT modelliert. In der westlichen Hälfte der cPFT zeigen meine Untersuchungen deutliche Unstimmigkeiten zwischen dem Versatz und der Ausdehnung des Oberflächenbruchs auf. In Anbetracht der deutlich höheren Geländestufen im westlichen Bereich deuten die Beobachtungen auf einen reiferen Verwerfungsabschnitt hin. Somit besteht Potenzial für zukünftige Verbindung der Segmente und potenziell stärke Erdbeben. Mit meinen Daten konnte ich eine mittlere horizontale Bewegungsrate von 4,1 ± 1,5 mm/Jahr während der letzten ∼5 kyr für die cPFT ermitteln, welche nicht vollständig mit der von GNSS abgeleiteten heutigen Verkürzungsrate von ∼10 mm/Jahr übereinstimmt. Dies deutet auf eine komplexe Verteilung des Spannungsaufbaus und eine potenzielle Aufteilung dieser Spannungen zwischen der cPFT und den übrigen Verwerfungen und Falten innerhalb des Pamirs hin, welche möglicherweise mit einem teilweise blockierten regionalen Décollement einhergehen. Der letzte Teil der Arbeit liefert neue Erkenntnisse über den Oberflächenbruch des Nura-Erdbebens der Stärke 6,6 (Mw) aus dem Jahr 2008, das sich entlang der östlichen PFT ereignete. Ich untersuche diesen Bruch im Hinblick auf seine strukturelle Komplexität, indem ich umfangreiche Feldbeobachtungen mit hochauflösenden digitalen Oberflächenmodellen verknüpfe. Ich erstelle eine Karte der Bruchausdehnung, des gemessenen Gesamtversatzes und aktualisiere regionale geologische Beobachtungen. Auf der Grundlage dieser Daten entwickle ich für dieses Gebiet Szenarien für ein tektonisches Modell, das mit Biegegleitfalten in mesozoischen und känozoischen Sedimentschichten im Zusammenhang steht. Ich zeige, dass diese Formen mit älteren, kumulativ versetzten seismogenen Strukturen übereinzustimmen scheinen und auf eine wiederkehrende, langfristige Deformationsgeschichte entlang dieses Sektors der nördlichen Pamir-Gebirgsfront hinweisen. Die umfangreichen Forschungsarbeiten meiner Dissertation resultieren in einer paleoseismischen Datenbasis der letzten ~16,000 Jahre, welche zum Verständnis des seismogenen Verhaltens der PFT, aber auch zu dem von segmentierten Überschiebungssystemen in aktiven Kollisionsgebieten beitragen. Meine Beobachtungen unterstreichen, wie wichtig die Kombination verschiedener methodischer Ansätze in den Geowissenschaften ist, insbesondere in strukturell komplexen tektonischen Gebieten wie dem nördlichen Pamir. Die Diskrepanz zwischen den von GNSS abgeleiteten heutigen Deformationsraten und denen aus verschiedenen geologischen Archiven im zentralen Teil, und die weite Verbreitung der Deformation durch erdbebenbedingten Dehnungstransfer im östlichen Teil offenbart die Komplexität dieser Kollisionszone und erfordert künftige Studien mit multitemporalen und interdisziplinären Ansätzen. KW - paleoseismology KW - Paleoseismologie KW - Neotektonik KW - Strukturgeologie KW - quartäre Geochronologie KW - Zentral Asien Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-577141 ER - TY - THES A1 - Siegmund, Nicole T1 - Wind driven soil particle uptake Quantifying drivers of wind erosion across the particle size spectrum T1 - Partikelaufwirbelung durch Wind - Über die Quantifizierung von Winderosion über das ganze Partikel-Größenspektrum N2 - Among the multitude of geomorphological processes, aeolian shaping processes are of special character, Pedogenic dust is one of the most important sources of atmospheric aerosols and therefore regarded as a key player for atmospheric processes. Soil dust emissions, being complex in composition and properties, influence atmospheric processes and air quality and has impacts on other ecosystems. In this because even though their immediate impact can be considered low (exceptions exist), their constant and large-scale force makes them a powerful player in the earth system. dissertation, we unravel a novel scientific understanding of this complex system based on a holistic dataset acquired during a series of field experiments on arable land in La Pampa, Argentina. The field experiments as well as the generated data provide information about topography, various soil parameters, the atmospheric dynamics in the very lower atmosphere (4m height) as well as measurements regarding aeolian particle movement across a wide range of particle size classes between 0.2μm up to the coarse sand. The investigations focus on three topics: (a) the effects of low-scale landscape structures on aeolian transport processes of the coarse particle fraction, (b) the horizontal and vertical fluxes of the very fine particles and (c) the impact of wind gusts on particle emissions. Among other considerations presented in this thesis, it could in particular be shown, that even though the small-scale topology does have a clear impact on erosion and deposition patterns, also physical soil parameters need to be taken into account for a robust statistical modelling of the latter. Furthermore, specifically the vertical fluxes of particulate matter have different characteristics for the particle size classes. Finally, a novel statistical measure was introduced to quantify the impact of wind gusts on the particle uptake and its application on the provided data set. The aforementioned measure shows significantly increased particle concentrations during points in time defined as gust event. With its holistic approach, this thesis further contributes to the fundamental understanding of how atmosphere and pedosphere are intertwined and affect each other. N2 - Unter der Vielzahl geomorphologischer Prozesse nehmen äolische Formgebungsprozesse eine besondere Stellung ein, denn obwohl ihre unmittelbaren Auswirkungen als gering einzuschätzen sind (Ausnahmen existieren), sind sie aufgrund ihrer konstanten und großen Kraft ein mächtiger Akteur im Erdsystem. Pedogener Staub ist eine der wichtigsten Quellen atmosphärischer Aerosole und kann daher als Schlüsselfaktor für atmosphärische Prozesse angesehen werden. Bodenstaubemissionen, die in Zusammensetzung und Eigenschaften komplex sind, beeinflussen atmosphärische Prozesse und Luftqualität und haben Auswirkungen auf andere Ökosysteme. Um zum wissenschaftlichen Verständnis dieses komplexen Systems beizutragen, dokumentiert diese Arbeit eine Reihe von Veröffentlichungen, die alle auf einem ganzheitlichen Datensatz basieren, die während einer Reihe von Feldexperimenten auf Ackerland in La Pampa, Argentinien, gewonnen wurden. Die Feldexperimente sowie die generierten Daten liefern Informationen über Topographie, verschiedene Bodenparameter, die atmosphärische Dynamik in der unteren Atmosphäre (4 m Höhe) sowie Messungen zur äolischen Partikelbewegung über einen weiten Bereich von Partikelgrößenklassen zwischen 0,2μm und groben Sand. Die Untersuchungen konzentrieren sich auf drei Themen: Die Auswirkungen kleinräumiger Landschaftsstrukturen auf äolische Transportprozesse der groben Partikelfraktion, die horizontalen und vertikalen Strömungen der sehr feinen Partikel und der Einfluss von Windböen auf die Partikelemissionen. Neben anderen in dieser Arbeit vorgestellten Überlegungen konnte insbesondere gezeigt werden, dass, obwohl die kleinräumige Topologie einen deutlichen Einfluss auf Erosions- und Ablagerungsmuster hat, auch physikalische Bodenparameter für eine robuste statistische Modellierung berücksichtigt werden müssen. Darüber hinaus weisen speziell die vertikalen Feinstaubflüsse unterschiedliche Eigenschaften für die Partikelgrößenklassen auf. Schließlich wurde ein neuartiges statistisches Maß eingeführt, um den Einfluss von Windböen auf die Partikelkonzentration der Luft zu quantifizieren, und seine Anwendung auf den bereitgestellten Datensatz zeigt signifikant erhöhte Partikelkonzentrationen zu Zeitpunkten, die als Böen definiert wurden. Mit ihrem ganzheitlichen Ansatz trägt diese Arbeit weiter zum grundlegenden Verständnis bei, wie Atmosphäre und Pedosphäre miteinander verflochten sind und sich gegenseitig beeinflussen. KW - Winderosion KW - winderosion KW - PM10, PM2, PM1 KW - Horizontal flux KW - horizontaler Fluss KW - Vertical flux KW - vertikaler Fluss KW - Argentina KW - Argentinien KW - wind gusts KW - Windböen Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-574897 ER - TY - GEN A1 - Schmidt, Lena Katharina A1 - Francke, Till A1 - Rottler, Erwin A1 - Blume, Theresa A1 - Schöber, Johannes T1 - Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria T2 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Glaciated high-alpine areas are fundamentally altered by climate change, with well-known implications for hydrology, e.g., due to glacier retreat, longer snow-free periods, and more frequent and intense summer rainstorms. While knowledge on how these hydrological changes will propagate to suspended sediment dynamics is still scarce, it is needed to inform mitigation and adaptation strategies. To understand the processes and source areas most relevant to sediment dynamics, we analyzed discharge and sediment dynamics in high temporal resolution as well as their patterns on several spatial scales, which to date few studies have done. We used a nested catchment setup in the Upper Ötztal in Tyrol, Austria, where high-resolution (15 min) time series of discharge and suspended sediment concentrations are available for up to 15 years (2006–2020). The catchments of the gauges in Vent, Sölden and Tumpen range from 100 to almost 800 km2 with 10 % to 30 % glacier cover and span an elevation range of 930 to 3772 m a.s.l. We analyzed discharge and suspended sediment yields (SSY), their distribution in space, their seasonality and spatial differences therein, and the relative importance of short-term events. We complemented our analysis by linking the observations to satellite-based snow cover maps, glacier inventories, mass balances and precipitation data. Our results indicate that the areas above 2500 m a.s.l., characterized by glacier tongues and the most recently deglaciated areas, are crucial for sediment generation in all sub-catchments. This notion is supported by the synchronous spring onset of sediment export at the three gauges, which coincides with snowmelt above 2500 m but lags behind spring discharge onsets. This points at a limitation of suspended sediment supply as long as the areas above 2500 m are snow-covered. The positive correlation of annual SSY with glacier cover (among catchments) and glacier mass balances (within a catchment) further supports the importance of the glacier-dominated areas. The analysis of short-term events showed that summer precipitation events were associated with peak sediment concentrations and yields but on average accounted for only 21 % of the annual SSY in the headwaters. These results indicate that under current conditions, thermally induced sediment export (through snow and glacier melt) is dominant in the study area. Our results extend the scientific knowledge on current hydro-sedimentological conditions in glaciated high-alpine areas and provide a baseline for studies on projected future changes in hydro-sedimentological system dynamics. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1296 Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-576564 SN - 1866-8372 IS - 1296 SP - 653 EP - 669 ER -