TY - JOUR A1 - Ketenoglu, Didem A1 - Spiekermann, Georg A1 - Harder, Manuel A1 - Oz, Erdinc A1 - Koz, Cevriye A1 - Yagci, Mehmet C. A1 - Yilmaz, Eda A1 - Yin, Zhong A1 - Sahle, Christoph J. A1 - Detlefs, Blanka A1 - Yavas, Hasan T1 - X-ray Raman spectroscopy of lithium-ion battery electrolyte solutions in a flow cell JF - Journal of synchrotron radiation N2 - The effects of varying LiPF6 salt concentration and the presence of lithium bis(oxalate)borate additive on the electronic structure of commonly used lithium-ion battery electrolyte solvents (ethylene carbonate-dimethyl carbonate and propylene carbonate) have been investigated. X-ray Raman scattering spectroscopy (a non-resonant inelastic X-ray scattering method) was utilized together with a closed-circle flow cell. Carbon and oxygen K-edges provide characteristic information on the electronic structure of the electrolyte solutions, which are sensitive to local chemistry. Higher Li+ ion concentration in the solvent manifests itself as a blue-shift of both the pi* feature in the carbon edge and the carbonyl pi* feature in the oxygen edge. While these oxygen K-edge results agree with previous soft X-ray absorption studies on LiBF4 salt concentration in propylene carbonate, carbon K-edge spectra reveal a shift in energy, which can be explained with differing ionic conductivities of the electrolyte solutions. KW - non-resonant inelastic X-ray scattering KW - lithium-ion battery electrolyte KW - C and O K-edge spectra Y1 - 2018 U6 - https://doi.org/10.1107/S1600577518001662 SN - 0909-0495 SN - 1600-5775 VL - 25 SP - 537 EP - 542 PB - International Union of Crystallography CY - Chester ER -