TY - JOUR A1 - Garcin, Yannick A1 - Deschamps, Pierre A1 - Menot, Guillemette A1 - de Saulieu, Geoffroy A1 - Schefuss, Enno A1 - Sebag, David A1 - Dupont, Lydie M. A1 - Oslisly, Richard A1 - Brademann, Brian A1 - Mbusnum, Kevin G. A1 - Onana, Jean-Michel A1 - Ako, Andrew A. A1 - Epp, Laura Saskia A1 - Tjallingii, Rik A1 - Strecker, Manfred A1 - Brauer, Achim A1 - Sachse, Dirk T1 - Early anthropogenic impact on Western Central African rainforests 2,600 y ago JF - Proceedings of the National Academy of Sciences of the United States of America N2 - A potential human footprint on Western Central African rainforests before the Common Era has become the focus of an ongoing controversy. Between 3,000 y ago and 2,000 y ago, regional pollen sequences indicate a replacement of mature rainforests by a forest-savannah mosaic including pioneer trees. Although some studies suggested an anthropogenic influence on this forest fragmentation, current interpretations based on pollen data attribute the "rainforest crisis" to climate change toward a drier, more seasonal climate. A rigorous test of this hypothesis, however, requires climate proxies independent of vegetation changes. Here we resolve this controversy through a continuous 10,500-y record of both vegetation and hydrological changes from Lake Barombi in Southwest Cameroon based on changes in carbon and hydrogen isotope compositions of plant waxes. delta C-13-inferred vegetation changes confirm a prominent and abrupt appearance of C-4 plants in the Lake Barombi catchment, at 2,600 calendar years before AD 1950 (cal y BP), followed by an equally sudden return to rainforest vegetation at 2,020 cal y BP. delta D values from the same plant wax compounds, however, show no simultaneous hydrological change. Based on the combination of these data with a comprehensive regional archaeological database we provide evidence that humans triggered the rainforest fragmentation 2,600 y ago. Our findings suggest that technological developments, including agricultural practices and iron metallurgy, possibly related to the large-scale Bantu expansion, significantly impacted the ecosystems before the Common Era. KW - Western Central Africa KW - late Holocene KW - rainforest crisis KW - paleohydrology KW - human activity Y1 - 2018 U6 - https://doi.org/10.1073/pnas.1715336115 SN - 0027-8424 VL - 115 IS - 13 SP - 3261 EP - 3266 PB - National Acad. of Sciences CY - Washington ER - TY - THES A1 - van der Veen, Iris T1 - Defining moisture sources and (palaeo)environmental conditions using isotope geochemistry in the NW Himalaya N2 - Anthropogenic climate change alters the hydrological cycle. While certain areas experience more intense precipitation events, others will experience droughts and increased evaporation, affecting water storage in long-term reservoirs, groundwater, snow, and glaciers. High elevation environments are especially vulnerable to climate change, which will impact the water supply for people living downstream. The Himalaya has been identified as a particularly vulnerable system, with nearly one billion people depending on the runoff in this system as their main water resource. As such, a more refined understanding of spatial and temporal changes in the water cycle in high altitude systems is essential to assess variations in water budgets under different climate change scenarios. However, not only anthropogenic influences have an impact on the hydrological cycle, but changes to the hydrological cycle can occur over geological timescales, which are connected to the interplay between orogenic uplift and climate change. However, their temporal evolution and causes are often difficult to constrain. Using proxies that reflect hydrological changes with an increase in elevation, we can unravel the history of orogenic uplift in mountain ranges and its effect on the climate. In this thesis, stable isotope ratios (expressed as δ2H and δ18O values) of meteoric waters and organic material are combined as tracers of atmospheric and hydrologic processes with remote sensing products to better understand water sources in the Himalayas. In addition, the record of modern climatological conditions based on the compound specific stable isotopes of leaf waxes (δ2Hwax) and brGDGTs (branched Glycerol dialkyl glycerol tetraethers) in modern soils in four Himalayan river catchments was assessed as proxies of the paleoclimate and (paleo-) elevation. Ultimately, hydrological variations over geological timescales were examined using δ13C and δ18O values of soil carbonates and bulk organic matter originating from sedimentological sections from the pre-Siwalik and Siwalik groups to track the response of vegetation and monsoon intensity and seasonality on a timescale of 20 Myr. I find that Rayleigh distillation, with an ISM moisture source, mainly controls the isotopic composition of surface waters in the studied Himalayan catchments. An increase in d-excess in the spring, verified by remote sensing data products, shows the significant impact of runoff from snow-covered and glaciated areas on the surface water isotopic values in the timeseries. In addition, I show that biomarker records such as brGDGTs and δ2Hwax have the potential to record (paleo-) elevation by yielding a significant correlation with the temperature and surface water δ2H values, respectively, as well as with elevation. Comparing the elevation inferred from both brGDGT and δ2Hwax, large differences were found in arid sections of the elevation transects due to an additional effect of evapotranspiration on δ2Hwax. A combined study of these proxies can improve paleoelevation estimates and provide recommendations based on the results found in this study. Ultimately, I infer that the expansion of C4 vegetation between 20 and 1 Myr was not solely dependent on atmospheric pCO2, but also on regional changes in aridity and seasonality from to the stable isotopic signature of the two sedimentary sections in the Himalaya (east and west). This thesis shows that the stable isotope chemistry of surface waters can be applied as a tool to monitor the changing Himalayan water budget under projected increasing temperatures. Minimizing the uncertainties associated with the paleo-elevation reconstructions were assessed by the combination of organic proxies (δ2Hwax and brGDGTs) in Himalayan soil. Stable isotope ratios in bulk soil and soil carbonates showed the evolution of vegetation influenced by the monsoon during the late Miocene, proving that these proxies can be used to record monsoon intensity, seasonality, and the response of vegetation. In conclusion, the use of organic proxies and stable isotope chemistry in the Himalayas has proven to successfully record changes in climate with increasing elevation. The combination of δ2Hwax and brGDGTs as a new proxy provides a more refined understanding of (paleo-)elevation and the influence of climate. N2 - Die Auswirkungen des menschgemachten Klimawandels wirken sich auch auf den Wasserkreislauf aus. Während manche Regionen höhere Niederschlagsmengen zu erwarten haben, werden andere mit stärkeren und häufigeren Trockenperioden zu konfrontiert sein. Diese Veränderungen haben einen unmittelbaren Einfluss auf Evaporation, Langzeit-Wasserreservoire, Grundwasserbildung, Schneefall und Gletscher. Da Gebirge und Hochplateaus überdurchschnittlich von den Auswirkungen des Klimawandels betroffen sind, ist die Wasserversorgung der Menschen entlang der dort entspringenden Flüsse gefährdet. Insbesondere der Himalaya gilt als instabile Region, dessen Abflüsse die Wasserversorgung von annähernd einer Milliarde Menschen gewährleisten. Um zu erwartende Veränderungen des Wasserbudgets in Abhängigkeit von verschiedenen möglichen Klimawandelszenarien abschätzen zu können, ist ein detaillierteres Verständnis des Wasserkreislaufs in Hochgebirgen und -plateaus erforderlich. Neben dem globalen Klimawandel gibt es weitere Faktoren, die sich auf den Wasserkreislauf auswirken. Das Wechselspiel zwischen Gebirgsbildung und klimatischen Bedingungen beeinflusst den Wasserkreislauf auf geologischen Zeitskalen. Entsprechende Veränderungen und ihre Auswirkungen lassen sich jedoch nur eingeschränkt bestimmen. Mittels geeigneter Proxies für höhenbedingte Änderungen der Hydrologie lassen sich der Orogeneseverlauf sowie dessen klimatische Auswirkungen allerdings genauer rekonstruieren. In der vorliegenden Arbeit werden die Verhältnisse stabiler Isotope (als δ2H und δ18O ausgedrückt) von meteorischen Wassern sowie von organischem Material mit Methoden der Satellitenfernerkundung als Indikator für atmosphärische und hydrologische Prozesse kombiniert, um ein besseres Verständnis der verschiedenen Wasserquellen des Himalaya zu erlangen. Darüber hinaus wurde der Link zwischen modernen klimatischen Bedingungen und verbindungsspezifischen stabilen Isotopen von Blattwachsen (δ2Hwax) sowie von brGDGTs (branched Glycerol dialkyl glycerol tetraethers) rezenter Bodenproben aus den Einzugsgebieten vierer Flüsse des Himalaya hergestellt, um sie als Paläo-Klima- und Paläo-Höhenproxy verwenden zu können. Zu guter Letzt wurden hydrologische Veränderungen auf einer Zeitskala von 20 Mio. Jahren anhand von δ13C- and δ18O-Werten von Bodencarbonat und organischem Material aus Sedimentschnitten der pre-Siwalik und Siwalik-Einheiten nachvollzogen. Die Erkenntnisse dieser tragen zu einer deutlich genaueren Rekonstruktion von Vegetationsänderungen und der Entwicklung der Monsun-Intensität sowie -Saisonalität bei. Die Isotopenzusammensetzung der Oberflächenwasser der untersuchten Flüsse wird hauptsächlich durch Rayleigh-Destillation der im Wesentlichen vom Indischen Sommer Monsun eingetragenen Feuchtigkeit bestimmt. Der durch Satellitenfernerkundungsdaten bestätigte Anstieg des Deuterium-Exzesses (d-excess) im Frühjahr verdeutlicht den signifikanten Einfluss von Schnee- und Gletscherschmelze, der auch in Zeitreihen von Oberflächenwasserproben erkennbar ist. Sowohl brGDGT als auch δ2Hwax können potentiell die absolute Höhe zum Zeitpunkt ihrer Synthese abbilden, da sie stark mit der Lufttemperatur, bzw. mit Oberflächenwasser δ2H und somit indirekt auch mit der Höhe korreliert sind. Im direkten Vergleich der mittels brGDGT und δ2Hwax rekonstruierten Höhen ergaben sich insbesondere in ariden Teilen der Höhenprofile große Unterschiede. Diese sind hauptsächlich auf verstärkte Evapotranspiration und deren Auswirkung auf Pflanzenwasser und -wachse zurückzuführen. Basierend auf den Erkenntnissen der vorliegenden Arbeit können weitere vergleichende Untersuchungen beider Proxies genauere Paläo-Höhenstudien ermöglichen. Diese Arbeit zeigt, dass die Isotopie von Oberflächenwassern genutzt werden kann, um den sich ändernden Wasserhaushalt des Himalya im Kontext voraussichtlich weiter ansteigender Temperaturen zu beobachten. Unsicherheiten bei der Rekonstruktion von Paläo-Höhen konnten durch eine vergleichende Analyse zweier organischer Proxies (δ2Hwax and brGDGTs) aus Paläo-Bodenproben des Himalayas minimiert werden. Verhältnisse stabiler Isotope von Blattwachsen aus diesen Bodenproben spiegeln die Entwicklung der Vegetation unter dem Einfluss des Monsuns im späten Miozän wider. Zusammenfassend wurde erfolgreich gezeigt, dass organische Proxies und stabile Isotope höhenabhängige Änderungen des Klimas im Himalaya aufzeichnen können. Die Kombination von δ2Hwax and brGDGTs als neuer Proxy ermöglicht eine deutlich differenziertere Betrachtung von rekonstruierten Paläo-Höhen sowie Paläo-Klima. KW - stable isotope KW - Himalaya KW - n-alkanes KW - d-excess KW - biomarker KW - paleohydrology KW - GDGT KW - GDGT KW - Himalaya KW - Biomarker KW - Deuterium Exzesses KW - n-alkane KW - Paläohydrologie KW - stabilen Isotopen Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-514397 ER -