TY - THES A1 - Cheng, Chaojie T1 - Transient permeability in porous and fractured sandstones mediated by fluid-rock interactions T1 - Permeabilitätsveränderungen in porösen und geklüfteten Sandsteinen als Folge von Fluid-Gesteins-Wechselwirkungen N2 - Understanding the fluid transport properties of subsurface rocks is essential for a large number of geotechnical applications, such as hydrocarbon (oil/gas) exploitation, geological storage (CO2/fluids), and geothermal reservoir utilization. To date, the hydromechanically-dependent fluid flow patterns in porous media and single macroscopic rock fractures have received numerous investigations and are relatively well understood. In contrast, fluid-rock interactions, which may permanently affect rock permeability by reshaping the structure and changing connectivity of pore throats or fracture apertures, need to be further elaborated. This is of significant importance for improving the knowledge of the long-term evolution of rock transport properties and evaluating a reservoir’ sustainability. The thesis focuses on geothermal energy utilization, e.g., seasonal heat storage in aquifers and enhanced geothermal systems, where single fluid flow in porous rocks and rock fracture networks under various pressure and temperature conditions dominates. In this experimental study, outcrop samples (i.e., Flechtinger sandstone, an illite-bearing Lower Permian rock, and Fontainebleau sandstone, consisting of pure quartz) were used for flow-through experiments under simulated hydrothermal conditions. The themes of the thesis are (1) the investigation of clay particle migration in intact Flechtinger sandstone and the coincident permeability damage upon cyclic temperature and fluid salinity variations; (2) the determination of hydro-mechanical properties of self-propping fractures in Flechtinger and Fontainebleau sandstones with different fracture features and contrasting mechanical properties; and (3) the investigation of the time-dependent fracture aperture evolution of Fontainebleau sandstone induced by fluid-rock interactions (i.e., predominantly pressure solution). Overall, the thesis aims to unravel the mechanisms of the instantaneous reduction (i.e., direct responses to thermo-hydro-mechanical-chemical (THMC) conditions) and progressively-cumulative changes (i.e., time-dependence) of rock transport properties. Permeability of intact Flechtinger sandstone samples was measured under each constant condition, where temperature (room temperature up to 145 °C) and fluid salinity (NaCl: 0 ~ 2 mol/l) were stepwise changed. Mercury intrusion porosimetry (MIP), electron microprobe analysis (EMPA), and scanning electron microscopy (SEM) were performed to investigate the changes of local porosity, microstructures, and clay element contents before and after the experiments. The results indicate that the permeability of illite-bearing Flechtinger sandstones will be impaired by heating and exposure to low salinity pore fluids. The chemically induced permeability variations prove to be path-dependent concerning the applied succession of fluid salinity changes. The permeability decay induced by a temperature increase and a fluid salinity reduction operates by relatively independent mechanisms, i.e., thermo-mechanical and thermo-chemical effects. Further, the hydro-mechanical investigations of single macroscopic fractures (aligned, mismatched tensile fractures, and smooth saw-cut fractures) illustrate that a relative fracture wall offset could significantly increase fracture aperture and permeability, but the degree of increase depends on fracture surface roughness. X-ray computed tomography (CT) demonstrates that the contact area ratio after the pressure cycles is inversely correlated to the fracture offset. Moreover, rock mechanical properties, determining the strength of contact asperities, are crucial so that relatively harder rock (i.e., Fontainebleau sandstone) would have a higher self-propping potential for sustainable permeability during pressurization. This implies that self-propping rough fractures with a sufficient displacement are efficient pathways for fluid flow if the rock matrix is mechanically strong. Finally, two long-term flow-through experiments with Fontainebleau sandstone samples containing single fractures were conducted with an intermittent flow (~140 days) and continuous flow (~120 days), respectively. Permeability and fluid element concentrations were measured throughout the experiments. Permeability reduction occurred at the beginning stage when the stress was applied, while it converged at later stages, even under stressed conditions. Fluid chemistry and microstructure observations demonstrate that pressure solution governs the long-term fracture aperture deformation, with remarkable effects of the pore fluid (Si) concentration and the structure of contact grain boundaries. The retardation and the cessation of rock fracture deformation are mainly induced by the contact stress decrease due to contact area enlargement and a dissolved mass accumulation within the contact boundaries. This work implies that fracture closure under constant (pressure/stress and temperature) conditions is likely a spontaneous process, especially at the beginning stage after pressurization when the contact area is relatively small. In contrast, a contact area growth yields changes of fracture closure behavior due to the evolution of contact boundaries and concurrent changes in their diffusive properties. Fracture aperture and thus permeability will likely be sustainable in the long term if no other processes (e.g., mineral precipitations in the open void space) occur. N2 - Die Kenntnis von Gesteinstransporteigenschaften und das Verständnis ihrer zeitlichen Veränderungen sind für eine Vielzahl von geotechnischen Anwendungen von herausragender Bedeutung. Als Beispiele seien genannt: die Gewinnung von Kohlenwasserstoffen (Öl/Gas), die stoffliche geologische Speicherung (CO2/Fluide) und die geothermische Energiegewinnung. Die hydromechanischen Strömungseigenschaften von Fluiden in porösen Gesteinen und solchen mit einzelnen, makroskopischen Rissen sind mittlerweile vergleichsweise gut verstanden. Im Gegensatz dazu besteht im Hinblick auf Fluid-Gesteins-Wechselwirkungen, welche durch eine Veränderung der Struktur und Verbundenheit des Porenraums bzw. der Rissöffnungsweiten die Gesteinspermeabilität permanent beeinflussen können, entscheidender Forschungsbedarf. Dies ist insbesondere für eine verbesserte Kenntnis der langzeitlichen Entwicklung der (hydraulischen) Gesteinstransporteigenschaften sowie eine Evaluierung der Nachhaltigkeit einer Nutzung geologischer Reservoire von großer Bedeutung und Gegenstand der vorliegenden Dissertation. Anwendungsaspekt dieser Arbeit ist insbesondere die geothermische Technologieentwicklung, d.h. die saisonale Wärmespeicherung in Aquiferen sowie sogenannte „Enhanced Geothermal Systems“, in der die Nutzung einphasiger Fluide in porösen Gesteinen bzw. Rissnetzwerken im Vordergrund steht. In dieser experimentellen Arbeit wurden mit Gesteinsproben aus Aufschlüssen (unterpermischer, illitreicher Flechtinger Sandstein sowie quarzreicher Fontainebleau Sandstein) Durchflussexperimente bei simulierten hydrothermalen Reservoirbedingungen durchgeführt. Themenschwerpunkte der Dissertation sind hierbei (1) die Untersuchung einer Tonpartikelmigration in intakten Proben des Flechtinger Sandsteins und eine damit verbundene Permeabilitätsschädigung durch zyklische Temperaturveränderungen sowie Variationen der Fluidsalinität, (2) die Bestimmung der hydromechanischen Eigenschaften selbststützender Risse in Flechtinger und Fontainbleau Sandsteinen mit unterschiedlichen Rissmorphologien und mechanischen Kennwerten und (3) die Untersuchung einer zeitlichen Veränderung der Rissöffnungsweiten in Fontainebleau Sandstein, welche durch Fluid-Gesteins-Wechselwirkungen (insbesondere Drucklösung) induziert wird. Zusammenfassend hat diese Dissertation zum Ziel, die Mechanismen sowohl unmittelbarer als auch zeitabhängiger, durch veränderte thermisch-hydraulisch-mechanisch-chemische Bedingungen hervorgerufene, Veränderungen von Gesteinstransporteigenschaften herauszuarbeiten. Die Permeabilität intakter Proben Flechtinger Sandsteins wurde systematisch bei stufenweise veränderten Temperaturen (von Raumtemperatur bis 145 °C) und Fluidsalinitäten (NaCl: 0 ~ 2 mol/l) gemessen. Quecksilberporosimetrie, Elektronenstrahlmikroanalyse und Rasterelektronenmikroskopie wurden angewandt, um Veränderungen der lokalen Porosität, der Gesteinsmikrostruktur sowie des Tongehalts nach Abschluss des Experiments im Vergleich zum Ausgangszustand zu bestimmen. Es zeigte sich, dass die Permeabilität des illitreichen Flechtinger Sandsteins durch eine Temperaturerhöhung sowie eine Verringerung der Salinität des Porenfluids geschädigt wird. Die chemisch induzierten Permeabilitätsveränderungen sind pfadabhängig von der Abfolge der Salinitätsveränderungen. Die Mechanismen einer durch Temperaturerhöhung oder Salinitätsreduktion induzierten Permeabilitätsschädigung arbeiten hierbei weitestgehend unabhängig voneinander, als thermo-mechanische bzw. thermo-chemische Prozesse. Die hydromechanischen Untersuchungen an makroskopischen Einzelrissen (Scherrisse ohne und mit Versatz sowie gesägte Proben) zeigen, dass ein relativer Versatz der beiden Rissflächen eine erhebliche Erhöhung der Rissöffnungsweite und damit der Gesteinspermeabilität bewirken kann, deren Grad aber stark von der Oberflächenrauigkeit abhängt. Computertomographische Aufnahmen des Gesteins zeigen, dass das Kontaktflächenverhältnis nach den erfolgten Druckzyklen invers mit dem Scherversatz korreliert. Darüber hinaus haben die mechanischen Eigenschaften des jeweiligen Gesteins, welche die Festigkeit der Kontaktpunkte innerhalb des Risses bestimmen, einen entscheidenden Einfluss auf die Selbststützungsfähigkeit des Risses bei einer Druckerhöhung. Diese ist damit (höhere Festigkeit) bei Fontainebleau Sandstein gegenüber Flechtinger Sandstein verbessert. Insgesamt stellen selbststützende raue Risse mit ausreichendem Scherversatz in einem Gestein hoher Festigkeit effiziente Fließwege für Geofluide dar. Die zwei Langzeitexperimente an geklüftetem Fontainebleau Sandstein wurden mit intermittierender (~140 Tage) bzw. kontinuierlicher (~120 Tage) Durchströmung durchgeführt und die Permeabilität des Gesteins sowie der Fluidchemismus über die Dauer des jeweiligen Experiments bestimmt. Eine Permeabilitätsreduktion war insbesondere am Anfang der Messung zu beobachten, nachdem die Spannung erstmalig auf das Gestein aufgebracht wurde, und nahm dann im weiteren Verlauf des Experiments progressiv ab. Fluidchemische und mikrostrukturelle Beobachtungen zeigen, dass Drucklösung die langzeitliche Deformation des Risses kontrolliert, wobei die Porenfluidkonzentration (Si) und die Mikrostruktur der Kontaktpunkte eine herausragende Rolle spielen. Die Verlangsamung bzw. das Abklingen der Rissdeformation werden insbesondere durch die Verringerung der Kontaktspannung aufgrund einer Kontaktflächenvergrößerung sowie die Anreicherung gelöster Spezies in den Kontakten bestimmt. Ergebnis dieser Arbeit ist auch die Erkenntnis, dass eine Rissschließung bei konstanten Druck/Spannungs- und Temperaturbedingungen sehr wahrscheinlich ein spontan ablaufender Prozess ist, insbesondere zu Beginn einer Druckbeaufschlagung, wenn die Kontaktfläche noch relativ klein ist. Eine Vergrößerung der Kontaktfläche führt zu einem veränderten Rissschließungsverhalten, da die Kontaktpunkte einer strukturellen Entwicklung unterworfen sind und sich damit ihre diffusiven Eigenschaften ändern. Über längere Zeiträume werden die Rissöffnungsweite und damit die Gesteinspermeabilität in einem geologischen Reservoir insbesondere dann nachhaltig sein, wenn keine zusätzlichen, entgegenwirkenden Prozesse (z.B. Mineralfällung innerhalb des Risses) in dem Gestein ablaufen. KW - permeability KW - rock fracture KW - fluid-rock interactions KW - pressure solution KW - sandstones KW - fluid flow KW - Fluidströmung KW - Fluid-Gesteinswechselwirkungen KW - Permeabilität KW - Riss KW - Sandstein KW - Drucklösungsprozesse Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-510124 ER - TY - THES A1 - Codeco, Marta Sofia Ferreira T1 - Constraining the hydrology at Minas da Panasqueira W-Sn-Cu deposit, Portugal T1 - Bestimmung der Hydrologie der W-Sn-Cu Lagerstätte in der Miene Panasqueira, Portugal T1 - Considerações sobre a hidrologia do depósito de W-Sn-Cu da Panasqueira, Portugal N2 - This dissertation combines field and geochemical observations and analyses with numerical modeling to understand the formation of vein-hosted Sn-W ore in the Panasqueira deposit of Portugal, which is among the ten largest worldwide. The deposit is located above a granite body that is altered by magmatic-hydrothermal fluids in its upper part (greisen). These fluids are thought to be the source of metals, but that was still under debate. The goal of this study is to determine the composition and temperature of hydrothermal fluids at Panasqueira, and with that information to construct a numerical model of the hydrothermal system. The focus is on analysis of the minerals tourmaline and white mica, which formed during mineralization and are widespread throughout the deposit. Tourmaline occurs mainly in alteration zones around mineralized veins and is less abundant in the vein margins. White mica is more widespread. It is abundant in vein margins as well as alteration zones, and also occurs in the granite greisen. The laboratory work involved in-situ microanalysis of major- and trace elements in tourmaline and white mica, and boron-isotope analysis in both minerals by secondary ion mass spectrometry (SIMS). The boron-isotope composition of tourmaline and white mica suggests a magmatic source. Comparison of hydrothermally-altered and unaltered rocks from drill cores shows that the ore metals (W, Sn, Cu, and Zn) and As, F, Li, Rb, and Cs were introduced during the alteration. Most of these elements are also enriched in tourmaline and mica, which confirms their potential value as exploration guides to Sn-W ores elsewhere. The thermal evolution of the hydrothermal system was estimated by B-isotope exchange thermometry and the Ti-in-quartz method. Both methods yielded similar temperatures for the early hydrothermal phase: 430° to 460°C for B-isotopes and 503° ± 24°C for Ti-in-quartz. Mineral pairs from a late fault zone yield significantly lower median temperatures of 250°C. The combined results of thermometry with variations in chemical and B-isotope composition of tourmaline and mica suggest that a similar magmatic-hydrothermal fluid was active at all stages of mineralization. Mineralization in the late stage shows the same B-isotope composition as in the main stage despite a ca. 250°C cooling, which supports a multiple injection model of magmatic-hydrothermal fluids. Two-dimensional numerical simulations of convection in a multiphase NaCl hydrothermal system were conducted: (a) in order to test a new approach (lower dimensional elements) for flow through fractures and faults and (b) in order to identify conditions for horizontal fluid flow as observed in the flat-lying veins at Panasqueira. The results show that fluid flow over an intrusion (heat and fluid source) develops a horizontal component if there is sufficient fracture connectivity. Late, steep fault zones have been identified in the deposit area, which locally contain low-temperature Zn-Pb mineralization. The model results confirm that the presence of subvertical faults with enhanced permeability play a crucial role in the ascent of magmatic fluids to the surface and the recharge of meteoric waters. Finally, our model results suggest that recharge of meteoric fluids and mixing processes may be important at later stages, while flow of magmatic fluids dominate the early stages of the hydrothermal fluid circulation. N2 - In dieser Dissertation werden Feldbeobachtungen und geochemische Analysen mit numerischer Modellierung kombiniert, um die Bildung von Sn-W-Cu- Mineralisation in der Erzlagerstätte Panasqueira in Portugal zu verstehen. Panasqueira gehört zu den 10 größten Sn-W Lagerstätten weltweit, sie befindet sich oberhalb eines Granitkörpers, der im oberen Bereich durch magmatisch-hydrothermale Fluide alteriert ist (Greisenbildung). Es wird postuliert, dass magmatisch Fluide die Quelle für Metalle sind, das wurde aber bislang nicht eindeutig bestätigt. Das Ziel dieser Arbeiten ist es, die Zusammensetzung und Temperatur der hydrothermalen Fluide in Panasqueira zu bestimmen und mit diesen Informationen ein numerisches Modell des hydrothermalen Systems zu erstellen. Der Schwerpunkt liegt auf der Untersuchung von Turmalin und Hellglimmer, welche bei der Mineralisation gebildet wurden und in der gesamten Lagerstätte weit verbreitet sind. Turmalin kommt hauptsächlich in Alterationszonen um die vererzten Quarzgänge vor, sowie weniger häufig im Randbereich der Gänge. Hellglimmer dagegen ist stärker verbreitet. Es kommt sowohl in Quarzgangrändern und Alterationszonen vor als auch im Greisenkörper. Die Laborarbeiten umfassten in-situ Mikroanalytik der Haupt- und Spurenelementgehalte von Turmalin und Hellglimmer sowie die Analyse der Bor-isotopen in beiden Mineralen mittels Sekundärionen-Massenspektrometrie (SIMS). Die Bor-Isotopenzusammensetzung von Turmalin und Hellglimmer deuten auf eine magmatische Quelle hin. Der Vergleich von hydrothermal-überprägten mit unveränderten Gesteinsproben aus Bohrkernen zeigt, dass die Erzmetalle (W, Sn, Cu, Zn) sowie As, F, Li, Rb und Cs während der Alteration hinzugefügt wurden. Die meisten dieser Elemente sind auch in Turmalin und Glimmer angereichert, womit ihre Nützlichkeit als Explorationshilfe für Sn-W-Erze in anderen Gebieten bestätigt wird. Die thermische Entwicklung des Hydrothermalsystems wurde durch B-Isotopenaustausch-Thermometrie sowie durch die Ti-in-Quarz- Methode bestimmt. Beide Methoden ergaben für die frühe Hydrothermalphase ähnliche Temperaturen: 430° - 460°C für B-Isotope und 503° ± 24°C für Ti-in-Quarz. Mineral Paare aus einer späten Verwerfungszone ergaben deutlich niedrigere B-Isotopentemperaturen von durchschnittlich 250°C. Die Kombination der Thermometrie mit den chemischen und B-Isotopenvariationen in Turmalin und Glimmer deutet darauf hin, dass ein ähnliches magmatisch-hydrothermales Fluid in allen Mineralisierungsstufen beteiligt war. Die Mineralisierung im späten Stadium zeigt dieselbe B-Isotopenzusammensetzung wie die Hauptphase trotz der Abkühlung um ca. 250°C, was ein Mehrfachinjektionsmodell des magmatisch-hydrothermalen Fluids unterstützt. Zwei-dimensionale numerische Simulationen der Konvektion in einem mehrphasen NaCl System wurden durchgeführt um: a) eine neue Methode (lower dimensional elements) für hydrothermales Fließen durch Brüche und Störungszonen zu testen und b) die Voraussetzungen für die in Panasqueira dominierende horizontale Fluidbewegung in den flach liegenden Gängen zu identifizieren. Die Ergebnisse zeigen, dass Fluidströmungen immer dann eine starke horizontale Komponente haben wenn ausreichende Bruchverbindungen im Gestein vorhanden sind. Späte, steile Bruchzonen sind in der Umgebung der Lagerstätte identifiziert worden, welche lokal niedrig-temperierte Zn-Pb Mineralisierungen führen. Die Modellergebnisse bestätigen, dass das Vorhandensein subvertikaler Störungszonen mit höherer Permeabilität eine entscheidende Rolle für den Aufstieg magmatischer Fluide zur Oberfläche und das Eindringen von meteorischen Fluiden spielen. Schließlich schlagen unsere Simulationsergebnisse vor, dass das Eindringen meteorischer Fluide und Mischungsprozesse in späteren Phasen der hydrothermalen Zirkulation wichtig sind, während magmatische Fluide in frühen Phasen dominieren. N2 - O estudo apresentado na presente dissertação combina análises e observações campo e geoquímica (e.g. multi-elementar, mineral, isotópica) com modelação numérica por forma a compreender a evolução do sistema hidrotermal da Panasqueira e a formação dos filões sub-horizontais. O jazigo filoniano da Panasqueira, localizado em Portugal, encontra-se entre os dez maiores depósitos do tipo a nível mundial e é o maior produtor de W na União Europeia. O depósito desenvolveu-se a topo de um granito Varisco do tipo S, cuja cúpula se encontra greisenizada devido a circulação de fluidos de carácter magmato-hidrotermal. Pensa-se que estes fluidos sejam a fonte dos metais para a génese do jazigo, contudo esta questão tem constituído matéria de grande debate. Por forma, a compreender a evolução hidrotermal e construir um modelo numérico capaz de simular a hidrologia do sistema hidrotermal da Panasqueira, este trabalho envolveu a determinação da composição e temperatura dos fluidos hidrotermais. Para o efeito, este estudo concentrou-se na caracterização geoquímica e isotópica de turmalina e mica branca, as quais se formaram durante os processos iniciais de alteração hidrotermal e/ou mineralização, ocorrendo em diversos contextos. A turmalina ocorre essencialmente nos halos de alteração hidrotermal que encerram os veios mineralizados e está predominantemente associada aos estádios pré-mineralização. Em contraste, a mica branca ocorre em diversos contextos: greisen, filões (salbandas), e halos de alteração hidrotermal, estando associada quer aos estádios precoces, quer aos estádios principais de mineralização. O trabalho laboratorial envolveu análises in-situ de elementos maiores e traço em turmalina e mica, e análises isotópicas (isótopos de boro) em ambas as fases minerais através de espectrometria de massa por iões secundários (SIMS). As composições isotópicas da turmalina e mica branca sugerem uma fonte magmática para os fluidos hidrotermais. A comparação dos dados de litogeoquímica dos metassedimentos alterados e não alterados mostra que os metais (W, Sn, Cu e Zn), assim como em As, F, Li, Rb e Cs foram introduzidos durante o processo de alteração hidrotermal. Parte substancial destes elementos encontram-se também enriquecidos na mica e turmalina, o que confirma o seu potencial valor como vectores de prospecção mineral para os depósitos de W-Sn. A evolução térmica do sistema hidrotermal da Panasqueira foi estimada utilizando geotermómetros minerais. O geotermómetro do quartzo (Ti-in-quartz) indica temperaturas de 503° ± 24°C para a alteração precoce das rochas encaixantes, o que é consistente com as temperaturas médias de 430° a 460°C} obtidas através da geotermometria isotópica de boro em turmalina e mica branca nas salbandas micáceas. As zonas de falha estudadas através da utilização de pares-minerais indicam temperaturas médias substancialmente mais baixas (250°C). A combinação dos estudos de geotermometria mineral com as variações químicas e isotópicas obtidas para a turmalina e mica sugerem que um fluido magmático-hidrotermal relativamente homogéneo esteve activo durante todos os estádios de mineralização. Durante estádios tardios, a os fluidos mineralizantes possuem as mesmas composições isotópicas obtidas para os estádios principais, embora que registando um arrefecimento de ca. 250°C, o que suporta um modelo dinâmico com múltiplas injecções de fluidos magmático-hidrotermais. Simulações numéricas bidimensionais da convecção num sistema hidrotermal multifásico salino foram conduzidas: (i) para testar uma nova metodologia (“lower dimensional elements”) capaz de traduzir o fluxo de fluidos através de fracturas e falhas e, (ii) para identificar as condições do fluxo horizontal observado nos filões sub-horizontais da Panasqueira. Os resultados mostram que o escoamento dos fluidos em associação com uma intrusão (fonte de calor e fluidos) desenvolve uma componente horizontal, desde que haja conectividade suficiente. Falhas tardias inclinadas identificadas na área contem localmente mineralização de Zn e Pb de baixa temperatura. Os resultados dos modelos numéricos confirmam que a presença de falhas sub-verticais de permeabilidade acrescida tem um papel crucial na ascensão de fluidos magmáticos até a superfície e na infiltração de águas meteóricas. Por fim, os resultados das simulações sugerem que a infiltração de águas meteóricas e processos de mistura de fluidos possam ser importantes durantes os estádios tardios, enquanto os fluidos de carácter magmático dominam os estádios iniciais da circulação hidrotermal dos fluidos. KW - Panasqueira KW - tourmaline KW - muscovite KW - Boron isotopes KW - tungsten-tin deposits KW - magmatic-hydrothermal systems KW - LA-ICP-MS KW - SIMS KW - numerical simulation KW - fluid flow KW - fracture-controlled KW - alteration geochemistry KW - Panasqueira KW - Turmalin KW - Muscovit KW - Bor-isotopen KW - Wofram-Zinn Lagerstätte KW - magmatisch-hydrothermale Systeme KW - LA-ICP-MS KW - SIMS KW - numerische Modellierung KW - Fluid-strömungen KW - strukturelle Kontrolle KW - Alterationsgeochemie KW - Panasqueira KW - turmalina KW - muscovite KW - Isótopos de Boro KW - depósitos de volfrâmio-estanho KW - sistemas magmático-hidrotermais KW - LA-ICP-MS KW - SIMS KW - simulações numéricas KW - fluxo de fluidos KW - controlo estrutural KW - geoquímica da alteração hidrotermal Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-429752 ER -