TY - JOUR A1 - Dalleau, Mayeul A1 - Kramer-Schadt, Stephanie A1 - Gangat, Yassine A1 - Bourjea, Jerome A1 - Lajoie, Gilles A1 - Grimm, Volker T1 - Modeling the emergence of migratory corridors and foraging hot spots of the green sea turtle JF - Ecology and evolution N2 - Environmental factors shape the spatial distribution and dynamics of populations. Understanding how these factors interact with movement behavior is critical for efficient conservation, in particular for migratory species. Adult female green sea turtles, Chelonia mydas, migrate between foraging and nesting sites that are generally separated by thousands of kilometers. As an emblematic endangered species, green turtles have been intensively studied, with a focus on nesting, migration, and foraging. Nevertheless, few attempts integrated these behaviors and their trade‐offs by considering the spatial configurations of foraging and nesting grounds as well as environmental heterogeneity like oceanic currents and food distribution. We developed an individual‐based model to investigate the impact of local environmental conditions on emerging migratory corridors and reproductive output and to thereby identify conservation priority sites. The model integrates movement, nesting, and foraging behavior. Despite being largely conceptual, the model captured realistic movement patterns which confirm field studies. The spatial distribution of migratory corridors and foraging hot spots was mostly constrained by features of the regional landscape, such as nesting site locations, distribution of feeding patches, and oceanic currents. These constraints also explained the mixing patterns in regional forager communities. By implementing alternative decision strategies of the turtles, we found that foraging site fidelity and nesting investment, two characteristics of green turtles' biology, are favorable strategies under unpredictable environmental conditions affecting their habitats. Based on our results, we propose specific guidelines for the regional conservation of green turtles as well as future research suggestions advancing spatial ecology of sea turtles. Being implemented in an easy to learn open‐source software, our model can coevolve with the collection and analysis of new data on energy budget and movement into a generic tool for sea turtle research and conservation. Our modeling approach could also be useful for supporting the conservation of other migratory marine animals. KW - connectivity KW - corridors KW - individual-based model KW - migration KW - movement KW - sea turtle Y1 - 2019 U6 - https://doi.org/10.1002/ece3.5552 SN - 2045-7758 VL - 9 IS - 18 SP - 10317 EP - 10342 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - de Figueiredo, Jose Vidal A1 - de Araujo, Jose Carlos A1 - Medeiros, Pedro Henrique Augusto A1 - Costa, Alexandre C. T1 - Runoff initiation in a preserved semiarid Caatinga small watershed, Northeastern Brazil JF - Hydrological processes N2 - This study analyses some hydrological driving forces and their interrelation with surface-flow initiation in a semiarid Caatinga basin (12km(2)), Northeastern Brazil. During the analysis period (2005 - 2014), 118 events with precipitation higher than 10mm were monitored, providing 45 events with runoff, 25 with negligible runoff and 49 without runoff. To verify the dominant processes, 179 on-site measurements of saturated hydraulic conductivity (Ksat) were conducted. The results showed that annual runoff coefficient lay below 0.5% and discharge at the outlet has only occurred four days per annum on average, providing an insight to the surface-water scarcity of the Caatinga biome. The most relevant variables to explain runoff initiation were total precipitation and maximum 60-min rainfall intensity (I-60). Runoff always occurred when rainfall surpassed 31mm, but it never occurred for rainfall below 14mm or for I-60 below 12mmh(-1). The fact that the duration of the critical intensity is similar to the basin concentration time (65min) and that the infiltration threshold value approaches the river-bank saturated hydraulic conductivity support the assumption that Hortonian runoff prevails. However, none of the analysed variables (total or precedent precipitation, soil moisture content, rainfall intensities or rainfall duration) has been able to explain the runoff initiation in all monitored events: the best criteria, e.g. failed to explain 27% of the events. It is possible that surface-flow initiation in the Caatinga biome is strongly influenced by the root-system dynamics, which changes macro-porosity status and, therefore, initial abstraction. Copyright (c) 2016 John Wiley & Sons, Ltd. KW - hydraulic conductivity KW - soil moisture KW - root system KW - semi-arid KW - Caatinga KW - connectivity Y1 - 2016 U6 - https://doi.org/10.1002/hyp.10801 SN - 0885-6087 SN - 1099-1085 VL - 30 SP - 2390 EP - 2400 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Selle, Benny A1 - Lange, Holger A1 - Lischeid, Gunnar A1 - Hauhs, Michael T1 - Transit times of water under steady stormflow conditions in the Gardsjon G1 catchment JF - Hydrological processes N2 - In this paper we report on a series of replicated tracer experiments with deuterium conducted under controlled, steady stormflow conditions at the Gardsjon G1 catchment in south-western Sweden. In five different years, these experiments were carried out in a subcatchment of G1. Deuterium was applied as a narrow pulse so that distributions of water transit times could be directly inferred from the observed tracer breakthrough curves. Significantly different transit times of water were observed under similar experimental conditions. Coefficients of variation for estimated mean transit times were greater than 60%, which can be understood as a measure of the interannual variability for this type of experiments. Implications for water transit times under more natural flow conditions as wells as for future experimentation are discussed. Copyright (c) 2015 John Wiley & Sons, Ltd. KW - travel time distribution KW - groundwater age KW - connectivity Y1 - 2015 U6 - https://doi.org/10.1002/hyp.10528 SN - 0885-6087 SN - 1099-1085 VL - 29 IS - 22 SP - 4657 EP - 4665 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Zimmermann, Beate A1 - Zimmermann, Alexander A1 - Turner, Benjamin L. A1 - Francke, Till A1 - Elsenbeer, Helmut T1 - Connectivity of overland flow by drainage network expansion in a rain forest catchment JF - Water resources research N2 - Soils in various places of the Panama Canal Watershed feature a low saturated hydraulic conductivity (K-s) at shallow depth, which promotes overland-flow generation and associated flashy catchment responses. In undisturbed forests of these areas, overland flow is concentrated in flow lines that extend the channel network and provide hydrological connectivity between hillslopes and streams. To understand the dynamics of overland-flow connectivity, as well as the impact of connectivity on catchment response, we studied an undisturbed headwater catchment by monitoring overland-flow occurrence in all flow lines and discharge, suspended sediment, and total phosphorus at the catchment outlet. We find that connectivity is strongly influenced by seasonal variation in antecedent wetness and can develop even under light rainfall conditions. Connectivity increased rapidly as rainfall frequency increased, eventually leading to full connectivity and surficial drainage of entire hillslopes. Connectivity was nonlinearly related to catchment response. However, additional information on factors such as overland-flow volume would be required to constrain relationships between connectivity, stormflow, and the export of suspended sediment and phosphorus. The effort to monitor those factors would be substantial, so we advocate applying the established links between rain event characteristics, drainage network expansion by flow lines, and catchment response for predictive modeling and catchment classification in forests of the Panama Canal Watershed and in similar regions elsewhere. KW - connectivity KW - overland flow KW - stormflow KW - suspended sediment KW - phosphorus KW - drainage network expansion Y1 - 2014 U6 - https://doi.org/10.1002/2012WR012660 SN - 0043-1397 SN - 1944-7973 VL - 50 IS - 2 SP - 1457 EP - 1473 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Mohr, Christian Heinrich A1 - Coppus, Ruben A1 - Iroume, Andres A1 - Huber, Anton A1 - Bronstert, Axel T1 - Runoff generation and soil erosion processes after clear cutting JF - Journal of geophysical research : Earth surface N2 - Timber harvesting by clear cutting is known to impose environmental impacts, including severe disturbance of the soil hydraulic properties which intensify the frequency and magnitude of surface runoff and soil erosion. However, it remains unanswered if harvest areas act as sources or sinks for runoff and soil erosion and whether such behavior operates in a steady state or evolves through time. For this purpose, 92 small-scale rainfall simulations of different intensities were carried out under pine plantation conditions and on two clear-cut harvest areas of different age. Nonparametrical Random Forest statistical models were set up to quantify the impact of environmental variables on the hydrological and erosion response. Regardless of the applied rainfall intensity, runoff always initiated first and yielded most under plantation cover. Counter to expectations, infiltration rates increased after logging activities. Once a threshold rainfall intensity of 20mm/h was exceeded, the younger harvest area started to act as a source for both runoff and erosion after connectivity was established, whereas it remained a sink under lower applied rainfall intensities. The results suggest that the impact of microtopography on surface runoff connectivity and water-repellent properties of the topsoil act as first-order controls for the hydrological and erosion processes in such environments. Fast rainfall-runoff response, sediment-discharge-hystereses, and enhanced postlogging groundwater recharge at catchment scale support our interpretation. At the end, we show the need to account for nonstationary hydrological and erosional behavior of harvest areas, a fact previously unappreciated in predictive models. KW - infiltration KW - runoff KW - erosion KW - connectivity KW - rainfall simulation KW - catchment Y1 - 2013 U6 - https://doi.org/10.1002/jgrf.20047 SN - 2169-9003 VL - 118 IS - 2 SP - 814 EP - 831 PB - American Geophysical Union CY - Washington ER -