TY - JOUR A1 - Foti, Sebastiano A1 - Hollender, Fabrice A1 - Garofalo, Flora A1 - Albarello, Dario A1 - Asten, Michael A1 - Bard, Pierre-Yves A1 - Comina, Cesare A1 - Cornou, Cecile A1 - Cox, Brady A1 - Di Giulio, Giuseppe A1 - Forbriger, Thomas A1 - Hayashi, Koichi A1 - Lunedei, Enrico A1 - Martin, Antony A1 - Mercerat, Diego A1 - Ohrnberger, Matthias A1 - Poggi, Valerio A1 - Renalier, Florence A1 - Sicilia, Deborah A1 - Socco, Valentina T1 - Guidelines for the good practice of surface wave analysis BT - a product of the InterPACIFIC project JF - Bulletin of earthquake engineering : official publication of the European Association for Earthquake Engineering N2 - Surface wave methods gained in the past decades a primary role in many seismic projects. Specifically, they are often used to retrieve a 1D shear wave velocity model or to estimate the V-s,V-30 at a site. The complexity of the interpretation process and the variety of possible approaches to surface wave analysis make it very hard to set a fixed standard to assure quality and reliability of the results. The present guidelines provide practical information on the acquisition and analysis of surface wave data by giving some basic principles and specific suggestions related to the most common situations. They are primarily targeted to non-expert users approaching surface wave testing, but can be useful to specialists in the field as a general reference. The guidelines are based on the experience gained within the InterPACIFIC project and on the expertise of the participants in acquisition and analysis of surface wave data. KW - Rayleigh waves KW - MASW KW - Ambient vibration analysis KW - Site characterization KW - Shear wave velocity KW - V-S,V-30 Y1 - 2017 U6 - https://doi.org/10.1007/s10518-017-0206-7 SN - 1570-761X SN - 1573-1456 VL - 16 IS - 6 SP - 2367 EP - 2420 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Garofalo, F. A1 - Foti, S. A1 - Hollender, F. A1 - Bard, Pierre-Yves A1 - Cornou, C. A1 - Cox, B. R. A1 - Ohrnberger, Matthias A1 - Sicilia, D. A1 - Asten, M. A1 - Di Giulio, G. A1 - Forbriger, T. A1 - Guillier, B. A1 - Hayashi, K. A1 - Martin, A. A1 - Matsushima, Satoru A1 - Mercerat, D. A1 - Poggi, V. A1 - Yamanaka, H. T1 - InterPACIFIC project: Comparison of invasive and non-invasive methods for seismic site characterization. Part I: Intra-comparison of surface wave methods JF - Soil Dynamics and Earthquake Engineering N2 - The main scope of the InterPACIFIC (Intercomparison of methods for site parameter and velocity profile characterization) project is to assess the reliability of in-hole and surface-wave methods, used for estimating shear wave velocity. Three test-sites with different subsurface conditions were chosen: a soft soil, a stiff soil and a rock outcrop. This paper reports the surface-wave methods results. Specifically 14 teams of expert users analysed the same experimental surface-wave datasets, consisting of both passive and active data. Each team adopted their own strategy to retrieve the dispersion curve and the shear-wave velocity profile at each site. Despite different approaches, the dispersion curves are quite in agreement with each other. Conversely, the shear-wave velocity profiles show a certain variability that increases in correspondence of major stratigraphic interfaces. This larger variability is mainly due to non-uniqueness of the solution and lateral variability. As expected, the observed variability in V-s,V-30 estimatesis small, as solution non-uniqueness plays a limited role. (C) 2015 Elsevier Ltd. All rights reserved. KW - Surface-wave methods KW - Dispersion curve KW - Inversion KW - V-s,V-30 KW - Site characterization KW - MASW KW - Microtremors KW - Rayleigh waves KW - Geophysical methods Y1 - 2016 U6 - https://doi.org/10.1016/j.soildyn.2015.12.010 SN - 0267-7261 SN - 1879-341X VL - 82 SP - 222 EP - 240 PB - Elsevier CY - Oxford ER -