TY - JOUR A1 - Sobczyk, Artur A1 - Sobel, Edward A1 - Georgieva, Viktoria T1 - Meso-Cenozoic cooling and exhumation history of the Orlica-snie(z) over dotnik Dome (Sudetes, NE Bohemian Massif, Central Europe) BT - insights from apatite fission-track thermochronometry JF - Terra nova N2 - This study presents the first suite of apatite fission-track (AFT) ages from the SE part of the Western Sudetes. AFT cooling ages from the Orlica-snie(z) over dotnik Dome and the Upper Nysa Klodzka Graben range from Late Cretaceous (84 Ma) to Early Palaeocene-Middle Eocene (64-45 Ma). The first stage of basin evolution (similar to 100-90 Ma) was marked by the formation of a local extensional depocentre and disruption of the Mesozoic planation surface. Subsequent far-field convergence of European microplates resulted in Coniacian-Santonian (similar to 89-83 Ma) thrust faulting. AFT data from both metamorphic basement and Mesozoic sedimentary cover indicate homogenous Late Cretaceous burial of the entire Western Sudetes. Thermal history modeling suggests that the onset of cooling could be constrained between 89 and 63 Ma with a climax during the Palaeocene-Middle Eocene basin inversion phase. Y1 - 2019 U6 - https://doi.org/10.1111/ter.12449 SN - 0954-4879 SN - 1365-3121 VL - 32 IS - 2 SP - 122 EP - 133 PB - Wiley CY - Hoboken ER - TY - JOUR A1 - Blayney, Tamsin A1 - Dupont-Nivet, Guillaume A1 - Najman, Yani A1 - Proust, Jean-Noel A1 - Meijer, Niels A1 - Roperch, Pierrick A1 - Sobel, Edward A1 - Millar, Ian A1 - Guo, Zhaojie T1 - Tectonic Evolution of the Pamir Recorded in the Western Tarim Basin (China) BT - Sedimentologic and Magnetostratigraphic Analyses of the Aertashi Section JF - Tectonics N2 - The northward indentation of the Pamir salient into the Tarim basin at the western syntaxis of the India-Asia collision zone is the focus of controversial models linking lithospheric to surface and atmospheric processes. Here we report on tectonic events recorded in the most complete and best-dated sedimentary sequences from the western Tarim basin flanking the eastern Pamir (the Aertashi section), based on sedimentologic, provenance, and magnetostratigraphic analyses. Increased tectonic subsidence and a shift from marine to continental fluvio-deltaic deposition at 41Ma indicate that far-field deformation from the south started to affect the Tarim region. A sediment accumulation hiatus from 24.3 to 21.6Ma followed by deposition of proximal conglomerates is linked to fault propagation into the Tarim basin. From 21.6 to 15.0Ma, increasing accumulation rates of fining upward clastics is interpreted as the expression of a major dextral transtensional system linking the Kunlun to the Tian Shan ahead of the northward Pamir indentation. At 15.0Ma, the appearance of North Pamir-sourced conglomerates followed at 11Ma by Central Pamir-sourced volcanics coincides with a shift to E-W compression, clockwise vertical-axis rotations and the onset of growth strata associated with the activation of the local east vergent Qimugen thrust wedge. Together, this enables us to interpret that Pamir indentation into Tarim had started by 24.3Ma, reached the study location by 15.0Ma and had passed it by 11Ma, providing kinematic constraints on proposed tectonic models involving intracontinental subduction and delamination. KW - India-Asia collision KW - Tarim basin KW - Pamir KW - Cenozoic KW - paleomagnetism KW - sedimentology Y1 - 2019 U6 - https://doi.org/10.1029/2018TC005146 SN - 0278-7407 SN - 1944-9194 VL - 38 IS - 2 SP - 492 EP - 515 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Zhang, Peng A1 - Najman, Yani A1 - Mei, Lianfu A1 - Millar, Ian A1 - Sobel, Edward A1 - Carter, Andrew A1 - Barfod, Dan A1 - Dhuime, Bruno A1 - Garzanti, Eduardo A1 - Govin, Gwladys A1 - Vezzoli, Giovanni A1 - Hu, Xiaolin T1 - Palaeodrainage evolution of the large rivers of East Asia, and Himalayan-Tibet tectonics JF - Earth science reviews N2 - A number of sedimentary provenance studies have been undertaken in order to determine whether the palaeo-Red River was once a river of continental proportions into which the upper reaches of the Yangtze, Salween, Mekong, Irrawaddy, and Yarlung drained. We have assessed the evidence that the Yarlung originally flowed into the palaeo-Red river, and then sequentially into the Irrawaddy and Brahmaputra, connecting to the latter first via the Lohit and then the Siang. For this river system, we have integrated our new data from the Paleogene-Recent Irrawaddy drainage basin (detrital zircon U-Pb with Hf and fission track, rutile U-Pb, mica Ar-Ar, bulk rock Sr-Nd, and petrography) with previously published data, to produce a palaeodrainage model that is consistent with all datasets. In our model, the Yarlung never flowed into the Irrawaddy drainage: during the Paleogene, the Yarlung suture zone was an internally drained basin, and from Neogene times onwards the Yarlung drained into the Brahmaputra in the Bengal Basin. The Central Myanmar Basin, through which the Irrawaddy River flows today, received predominantly locally-derived detritus until the Middle Eocene, the Irrawaddy initiated as a through-going river draining the Mogok Metamorphic Belt and Bomi-Chayu granites to the north sometime in the Late Eocene to Early Oligocene, and the river was dominated by a stable MMB-dominated drainage throughout the Neogene to present day. Existing evidence does not support any connection between the Yarlung and the Red River in the past, but there is a paucity of suitable palaeo-Red River deposits with which to make a robust comparison. We argue that this limitation also precludes a robust assessment of a palaeo-connection between the Yangtze/ Salween/Mekong and the Red River; it is difficult to unequivocally interpret the recorded provenance changes as the result of specific drainage reorganisations. We highlight the palaeo-Red River deposits of the Hanoi Basin as a potential location for future research focus in view of the near-complete Cenozoic record of palaeo-Red River deposits at this location. A majority of previous studies consider that if a major continental-scale drainage ever existed at all, it fragmented early in the Cenozoic. Such a viewpoint would agree with the growing body of evidence from palaeoaltitude studies that large parts of SE Tibet were uplifted by this period. This then leads towards the intriguing question as to the mechanisms which caused the major period of river incision in the Miocene in this region. KW - Eastern Tibet KW - Palaeodrainage KW - Red River KW - Irrawaddy River KW - Yarlung Tsangpo KW - Central Myanmar Basin Y1 - 2019 U6 - https://doi.org/10.1016/j.earscirev.2019.02.003 SN - 0012-8252 SN - 1872-6828 VL - 192 SP - 601 EP - 630 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Chen, Xinwei A1 - Chen, Hanlin A1 - Sobel, Edward A1 - Lin, Xiubin A1 - Cheng, Xiaogan A1 - Yan, Jiakai A1 - Yang, Shaomei T1 - Convergence of the Pamir and the South Tian Shan in the late Cenozoic BT - Insights from provenance analysis in the Wuheshalu section at the convergence area JF - Lithosphere N2 - In response to collision and convergence between India and Asia during the Cenozoic, convergence took place between the Pamir and South Tian Shan. Here we present new detrital zircon U-Pb ages coupled with conglomerate clast counting and sedimentary data from the late Cenozoic Wuheshalu section in the convergence zone, to shed light on the convergence process of the Pamir and South Tian Shan. Large Triassic zircon U-Pb age populations in all seven samples suggest that Triassic igneous rocks from the North Pamir were the major source area for the late Cenozoic Wuheshalu section. In the Miocene, large populations of the North Pamir component supports rapid exhumation in the North Pamir and suggest that topography already existed there since the early Miocene. Exhumation of the South Tian Shan was relatively less important in the Miocene and its detritus could only reach a limited area in the foreland area. Gradually increasing sediment loading and convergence of the Pamir and South Tian Shan caused rapid subsidence in the convergence area. Since ca. 6-5.3 Ma, the combination of a major North Pamir component and a minor South Tian Shan component at the Wuheshalu section is consistent with active deformation of the South Tian Shan and the North Pamir. During deposition of the upper Atushi Formation, a larger proportion of North Pamir-derived sediments was deposited in the Wuheshalu section, maybe because faulting and northward propagation of the North Pamir caused northward displacement of the depocenter to north of the Wuheshalu section. Y1 - 2019 U6 - https://doi.org/10.1130/L1028.1 SN - 1941-8264 SN - 1947-4253 VL - 11 IS - 4 SP - 507 EP - 523 PB - American Institute of Physics CY - Boulder ER - TY - JOUR A1 - Zapata, Sebastian Henao A1 - Sobel, Edward A1 - Papa, Cecilia Eugenia del A1 - Muruaga, Claudia A1 - Zhou, R. T1 - Miocene fragmentation of the Central Andean foreland basins between 26 and 28 degrees S JF - Journal of South American earth sciences N2 - We present new U-Pb LA-ICP-MS data from the Central Andean foreland basins combined with new and published stratigraphic information in order to reconstruct the Miocene fragmentation of the Andean foreland between 26 and 28 degrees S. The disruption of this foreland basin and the subsequent development of elevated intermountain basins have been the focus of several studies. However, the absence of temporal constraints in the Miocene to Pliocene sedimentary record of the low elevation Choromoro and Tucuman foreland basins has presented an obstacle for precise paleogeographic reconstructions. We describe 11 discontinuous stratigraphic sections and use the U-Pb LA-ICP-MS method to date 10 pyroclastic-bearing sediments in order to reconstruct the stratigraphic evolution of the Choromoro and Tucuman basins. We combine our results with published strati graphic and thermochronologic data from adjacent basins to present a refined Miocene paleogeographic model. In a first stage, a continuous Early Miocene foreland lacustrine basin developed, filling up the preexisting Paleogene topography. The second stage is characterized by basin unroofing around similar to 12 Ma; the easily eroded sedimentary cover was removed, leading to the uplift of the underlying basement rocks and the segmentation of the lacustrine system. In the third stage, relief increase took place after similar to 6 Ma due to the low erodibility of the basement blocks; as a result, stable fluvial systems developed. Progressive relief development caused pronounced unconformities in the basins and the development of proximal fluvial-gravitational depositional systems after 3 Ma. This model emphasizes on the relations between tectonics, climate, and erodibility, and their control on the evolution of the depositional systems and relief. KW - Foreland basin fragmentation KW - Andean retroarc KW - Mountain building Y1 - 2019 U6 - https://doi.org/10.1016/j.jsames.2019.102238 SN - 0895-9811 VL - 94 PB - Elsevier CY - Oxford ER -