TY - JOUR A1 - Steeples, Elliot A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Esposito, Davide T1 - Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki-Miyaura couplings JF - New journal of chemistry N2 - In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium-NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki-Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water. Y1 - 2016 U6 - https://doi.org/10.1039/c5nj03337c SN - 1144-0546 SN - 1369-9261 VL - 40 SP - 4922 EP - 4930 PB - Royal Society of Chemistry CY - Cambridge ER - TY - GEN A1 - Steeples, Elliot A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Esposito, Davide T1 - Amino acid-derived N-heterocyclic carbene palladium complexes for aqueous phase Suzuki–Miyaura couplings N2 - In this work, three ligands produced from amino acids were synthesized and used to produce five bis- and PEPPSI-type palladium–NHC complexes using a novel synthesis route from sustainable starting materials. Three of these complexes were used as precatalysts in the aqueous-phase Suzuki–Miyaura coupling of various substrates displaying high activity. TEM and mercury poisoning experiments provide evidence for Pd-nanoparticle formation stabilized in water. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 319 KW - transition-metal-complexes KW - imidazolium salts KW - green chemistry KW - water KW - catalysts KW - nhc KW - hydrogenation KW - isomerization KW - nanoparticles KW - precatalysts Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-394488 SP - 4922 EP - 4930 ER - TY - JOUR A1 - Kirchhecker, Sarah A1 - Tröger-Müller, Steffen A1 - Bake, Sebastian A1 - Antonietti, Markus A1 - Taubert, Andreas A1 - Esposito, Davide T1 - Renewable pyridinium ionic liquids from the continuous hydrothermal decarboxylation of furfural-amino acid derived pyridinium zwitterions JF - Green chemistry : an international journal and green chemistry resource N2 - Fully renewable pyridinium ionic liquids were synthesised via the hydrothermal decarboxylation of pyridinium zwitterions derived from furfural and amino acids in flow. The functionality of the resulting ionic liquid (IL) can be tuned by choice of different amino acids as well as different natural carboxylic acids as the counter-ions. A representative member of this new class of ionic liquids was successfully used for the synthesis of ionogels and as a solvent for the Heck coupling. Y1 - 2015 U6 - https://doi.org/10.1039/c5gc00913h SN - 1463-9262 SN - 1463-9270 VL - 17 IS - 8 SP - 4151 EP - 4156 PB - Royal Society of Chemistry CY - Cambridge ER -