TY - JOUR A1 - Richter, Marina Juliane A1 - Schulz, Alexander A1 - Subkowski, Thomas A1 - Böker, Alexander T1 - Adsorption and rheological behavior of an amphiphilic protein at oil/water interfaces JF - Journal of colloid and interface science N2 - Hydrophobins are highly surface active proteins which self-assemble at hydrophilic-hydrophobic interfaces into amphipathic membranes. We investigate hydrophobin self-assembly at oil/water interfaces to deepen the understanding of protein behavior in order to improve our biomimetic synthesis. Therefore, we carried out pendant drop measurements of hydrophobin stabilized oil/water systems determining the time-dependent IFT and the dilatational rheology with additional adaptation to the Serrien protein model. We show that the class I hydrophobin H*Protein B adsorbs at an oil/water interface where it forms a densely-packed interfacial protein layer, which dissipates energy during droplet oscillation. Furthermore, the interfacial protein layer exhibits shear thinning behavior. (C) 2016 Elsevier Inc. All rights reserved. KW - Hydrophobin KW - Self-assembly KW - Pendant drop tensiometry KW - IFT KW - Rheology Y1 - 2016 U6 - https://doi.org/10.1016/j.jcis.2016.06.062 SN - 0021-9797 SN - 1095-7103 VL - 479 SP - 199 EP - 206 PB - Elsevier CY - San Diego ER -