TY - GEN A1 - Beermann, Jan A1 - Westbury, Michael V. A1 - Hofreiter, Michael A1 - Hilgers, Leon A1 - Deister, Fabian A1 - Neumann, Hermann A1 - Raupach, Michael J. T1 - Cryptic species in a well-known habitat BT - applying taxonomics to the amphipod genus Epimeria (Crustacea, Peracarida) T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Taxonomy plays a central role in biological sciences. It provides a communication system for scientists as it aims to enable correct identification of the studied organisms. As a consequence, species descriptions should seek to include as much available information as possible at species level to follow an integrative concept of 'taxonomics'. Here, we describe the cryptic species Epimeria frankei sp. nov. from the North Sea, and also redescribe its sister species, Epimeria cornigera. The morphological information obtained is substantiated by DNA barcodes and complete nuclear 18S rRNA gene sequences. In addition, we provide, for the first time, full mitochondrial genome data as part of a metazoan species description for a holotype, as well as the neotype. This study represents the first successful implementation of the recently proposed concept of taxonomics, using data from high-throughput technologies for integrative taxonomic studies, allowing the highest level of confidence for both biodiversity and ecological research. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1059 KW - multiple sequence alignment KW - Oxidase Subunit-I KW - mitochondrial genome KW - control region KW - Ribosomal-RNA KW - asellota crustacea KW - gammarus crustacea KW - deep-sea KW - DNA KW - evolution Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-460792 SN - 1866-8372 IS - 1059 ER - TY - GEN A1 - Grau, José Horacio A1 - Hackl, Thomas A1 - Koepfli, Klaus-Peter A1 - Hofreiter, Michael T1 - Improving draft genome contiguity with reference-derived in silico mate-pair libraries T2 - GigaScience N2 - Background Contiguous genome assemblies are a highly valued biological resource because of the higher number of completely annotated genes and genomic elements that are usable compared to fragmented draft genomes. Nonetheless, contiguity is difficult to obtain if only low coverage data and/or only distantly related reference genome assemblies are available. Findings In order to improve genome contiguity, we have developed Cross-Species Scaffolding—a new pipeline that imports long-range distance information directly into the de novo assembly process by constructing mate-pair libraries in silico. Conclusions We show how genome assembly metrics and gene prediction dramatically improve with our pipeline by assembling two primate genomes solely based on ∼30x coverage of shotgun sequencing data. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 477 KW - genome assembly KW - mate-pairs KW - in silico KW - scaffolding KW - shotgun sequencing Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-419225 ER -