TY - GEN A1 - Machens, Fabian A1 - Balazadeh, Salma A1 - Müller-Röber, Bernd A1 - Messerschmidt, Katrin T1 - Synthetic Promoters and Transcription Factors for Heterologous Protein Expression in Saccharomyces cerevisiae N2 - Orthogonal systems for heterologous protein expression as well as for the engineering of synthetic gene regulatory circuits in hosts like Saccharomyces cerevisiae depend on synthetic transcription factors (synTFs) and corresponding cis-regulatory binding sites. We have constructed and characterized a set of synTFs based on either transcription activator-like effectors or CRISPR/Cas9, and corresponding small synthetic promoters (synPs) with minimal sequence identity to the host’s endogenous promoters. The resulting collection of functional synTF/synP pairs confers very low background expression under uninduced conditions, while expression output upon induction of the various synTFs covers a wide range and reaches induction factors of up to 400. The broad spectrum of expression strengths that is achieved will be useful for various experimental setups, e.g., the transcriptional balancing of expression levels within heterologous pathways or the construction of artificial regulatory networks. Furthermore, our analyses reveal simple rules that enable the tuning of synTF expression output, thereby allowing easy modification of a given synTF/synP pair. This will make it easier for researchers to construct tailored transcriptional control systems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 393 KW - JUB1 KW - chimeric transcription factors KW - dead Cas9 KW - gene expression KW - synthetic biology KW - synthetic circuits KW - transcriptional regulation Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-403804 ER - TY - GEN A1 - Lukan, Tjaša A1 - Machens, Fabian A1 - Coll, Anna A1 - Baebler, Špela A1 - Messerschmidt, Katrin A1 - Gruden, Kristina T1 - Plant X-tender BT - an extension of the AssemblX system for the assembly and expression of multigene constructs in plants T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scarfree and sequence-independent multigene assembly strategy AssemblX,based on overlapdepended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster introduction of synthetic biology into plant science. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 990 KW - ligation cloning extract KW - DNA cloning KW - synthetic biology KW - multiple genes KW - vector system KW - transformation KW - recombination KW - protein KW - RNA KW - Methylation Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-446281 SN - 1866-8372 IS - 990 ER - TY - GEN A1 - Göthel, Markus A1 - Listek, Martin A1 - Messerschmidt, Katrin A1 - Schlör, Anja A1 - Hönow, Anja A1 - Hanack, Katja T1 - A New Workflow to Generate Monoclonal Antibodies against Microorganisms T2 - Mathematisch-Naturwissenschaftliche Reihe N2 - Monoclonal antibodies are used worldwide as highly potent and efficient detection reagents for research and diagnostic applications. Nevertheless, the specific targeting of complex antigens such as whole microorganisms remains a challenge. To provide a comprehensive workflow, we combined bioinformatic analyses with novel immunization and selection tools to design monoclonal antibodies for the detection of whole microorganisms. In our initial study, we used the human pathogenic strain E. coli O157:H7 as a model target and identified 53 potential protein candidates by using reverse vaccinology methodology. Five different peptide epitopes were selected for immunization using epitope-engineered viral proteins. The identification of antibody-producing hybridomas was performed by using a novel screening technology based on transgenic fusion cell lines. Using an artificial cell surface receptor expressed by all hybridomas, the desired antigen-specific cells can be sorted fast and efficiently out of the fusion cell pool. Selected antibody candidates were characterized and showed strong binding to the target strain E. coli O157:H7 with minor or no cross-reactivity to other relevant microorganisms such as Legionella pneumophila and Bacillus ssp. This approach could be useful as a highly efficient workflow for the generation of antibodies against microorganisms. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 1174 KW - monoclonal antibody KW - antibody producing cell selection KW - hybridoma KW - epitope prediction Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-523341 SN - 1866-8372 IS - 20 ER -