TY - GEN A1 - Radbruch, Moritz A1 - Pischon, Hannah A1 - Ostrowski, Anja A1 - Volz, Pierre A1 - Brodwolf, Robert A1 - Neumann, Falko A1 - Unbehauen, Michael A1 - Kleuser, Burkhard A1 - Haag, Rainer A1 - Ma, Nan A1 - Alexiev, Ulrike A1 - Mundhenk, Lars A1 - Gruber, Achim D. T1 - Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin T2 - Postprints der Universität Potsdam Mathematisch-Naturwissenschaftliche Reihe N2 - Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e. g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment. Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection. Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis. Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 724 KW - CMS KW - skin KW - topical treatment KW - dermal delivery KW - atopic dermatitis KW - oxazolone KW - fluorescence lifetime imaging microscopy KW - nanomaterials KW - multi-domain nanoparticles KW - penetration enhancement Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-430136 SN - 1866-8372 IS - 724 ER - TY - GEN A1 - Neffe, Axel T. A1 - von Rüsten-Lange, Maik A1 - Braune, Steffen A1 - Lützow, Karola A1 - Roch, Toralf A1 - Richau, Klaus A1 - Krüger, Anne A1 - Becherer, Tobias A1 - Thünemann, Andreas F. A1 - Jung, Friedrich A1 - Haag, Rainer A1 - Lendlein, Andreas T1 - Multivalent grafting of hyperbranched oligo- and polyglycerols shielding rough membranes to mediate hemocompatibility N2 - Hemocompatible materials are needed for internal and extracorporeal biomedical applications, which should be realizable by reducing protein and thrombocyte adhesion to such materials. Polyethers have been demonstrated to be highly efficient in this respect on smooth surfaces. Here, we investigate the grafting of oligo- and polyglycerols to rough poly(ether imide) membranes as a polymer relevant to biomedical applications and show the reduction of protein and thrombocyte adhesion as well as thrombocyte activation. It could be demonstrated that, by performing surface grafting with oligo- and polyglycerols of relatively high polydispersity (>1.5) and several reactive groups for surface anchoring, full surface shielding can be reached, which leads to reduced protein adsorption of albumin and fibrinogen. In addition, adherent thrombocytes were not activated. This could be clearly shown by immunostaining adherent proteins and analyzing the thrombocyte covered area. The presented work provides an important strategy for the development of application relevant hemocompatible 3D structured materials. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 285 Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-99444 ER -