TY - THES A1 - Ziege, Ricardo T1 - Growth dynamics and mechanical properties of E. coli biofilms T1 - Wachstumsdynamik und mechanische Eigenschaften von E. coli Biofilmen N2 - Biofilms are complex living materials that form as bacteria get embedded in a matrix of self-produced protein and polysaccharide fibres. The formation of a network of extracellular biopolymer fibres contributes to the cohesion of the biofilm by promoting cell-cell attachment and by mediating biofilm-substrate interactions. This sessile mode of bacteria growth has been well studied by microbiologists to prevent the detrimental effects of biofilms in medical and industrial settings. Indeed, biofilms are associated with increased antibiotic resistance in bacterial infections, and they can also cause clogging of pipelines or promote bio-corrosion. However, biofilms also gained interest from biophysics due to their ability to form complex morphological patterns during growth. Recently, the emerging field of engineered living materials investigates biofilm mechanical properties at multiple length scales and leverages the tools of synthetic biology to tune the functions of their constitutive biopolymers. This doctoral thesis aims at clarifying how the morphogenesis of Escherichia coli (E. coli) biofilms is influenced by their growth dynamics and mechanical properties. To address this question, I used methods from cell mechanics and materials science. I first studied how biological activity in biofilms gives rise to non-uniform growth patterns. In a second study, I investigated how E. coli biofilm morphogenesis and its mechanical properties adapt to an environmental stimulus, namely the water content of their substrate. Finally, I estimated how the mechanical properties of E. coli biofilms are altered when the bacteria express different extracellular biopolymers. On nutritive hydrogels, micron-sized E. coli cells can build centimetre-large biofilms. During this process, bacterial proliferation and matrix production introduce mechanical stresses in the biofilm, which release through the formation of macroscopic wrinkles and delaminated buckles. To relate these biological and mechanical phenomena, I used time-lapse fluorescence imaging to track cell and matrix surface densities through the early and late stages of E. coli biofilm growth. Colocalization of high cell and matrix densities at the periphery precede the onset of mechanical instabilities at this annular region. Early growth is detected at this outer annulus, which was analysed by adding fluorescent microspheres to the bacterial inoculum. But only when high rates of matrix production are present in the biofilm centre, does overall biofilm spreading initiate along the solid-air interface. By tracking larger fluorescent particles for a long time, I could distinguish several kinematic stages of E. coli biofilm expansion and observed a transition from non-linear to linear velocity profiles, which precedes the emergence of wrinkles at the biofilm periphery. Decomposing particle velocities to their radial and circumferential components revealed a last kinematic stage, where biofilm movement is mostly directed towards the radial delaminated buckles, which verticalize. The resulting compressive strains computed in these regions were observed to substantially deform the underlying agar substrates. The co-localization of higher cell and matrix densities towards an annular region and the succession of several kinematic stages are thus expected to promote the emergence of mechanical instabilities at the biofilm periphery. These experimental findings are predicted to advance future modelling approaches of biofilm morphogenesis. E. coli biofilm morphogenesis is further anticipated to depend on external stimuli from the environment. To clarify how the water could be used to tune biofilm material properties, we quantified E. coli biofilm growth, wrinkling dynamics and rigidity as a function of the water content of the nutritive substrates. Time-lapse microscopy and computational image analysis revealed that substrates with high water content promote biofilm spreading kinetics, while substrates with low water content promote biofilm wrinkling. The wrinkles observed on biofilm cross-sections appeared more bent on substrates with high water content, while they tended to be more vertical on substrates with low water content. Both wet and dry biomass, accumulated over 4 days of culture, were larger in biofilms cultured on substrates with high water content, despite extra porosity within the matrix layer. Finally, the micro-indentation analysis revealed that substrates with low water content supported the formation of stiffer biofilms. This study shows that E. coli biofilms respond to the water content of their substrate, which might be used for tuning their material properties in view of further applications. Biofilm material properties further depend on the composition and structure of the matrix of extracellular proteins and polysaccharides. In particular, E. coli biofilms were suggested to present tissue-like elasticity due to a dense fibre network consisting of amyloid curli and phosphoethanolamine-modified cellulose. To understand the contribution of these components to the emergent mechanical properties of E. coli biofilms, we performed micro-indentation on biofilms grown from bacteria of several strains. Besides showing higher dry masses, larger spreading diameters and slightly reduced water contents, biofilms expressing both main matrix components also presented high rigidities in the range of several hundred kPa, similar to biofilms containing only curli fibres. In contrast, a lack of amyloid curli fibres provides much higher adhesive energies and more viscoelastic fluid-like material behaviour. Therefore, the combination of amyloid curli and phosphoethanolamine-modified cellulose fibres implies the formation of a composite material whereby the amyloid curli fibres provide rigidity to E. coli biofilms, whereas the phosphoethanolamine-modified cellulose rather acts as a glue. These findings motivate further studies involving purified versions of these protein and polysaccharide components to better understand how their interactions benefit biofilm functions. All three studies depict different aspects of biofilm morphogenesis, which are interrelated. The first work reveals the correlation between non-uniform biological activities and the emergence of mechanical instabilities in the biofilm. The second work acknowledges the adaptive nature of E. coli biofilm morphogenesis and its mechanical properties to an environmental stimulus, namely water. Finally, the last study reveals the complementary role of the individual matrix components in the formation of a stable biofilm material, which not only forms complex morphologies but also functions as a protective shield for the bacteria it contains. Our experimental findings on E. coli biofilm morphogenesis and their mechanical properties can have further implications for fundamental and applied biofilm research fields. N2 - Biofilme sind komplexe lebende Materialien, die sich bilden, wenn Bakterien in eine Matrix aus selbstproduzierten Protein- und Polysaccharidfasern eingebettet werden. Die Bildung eines Netzwerks aus extrazellulären Biopolymerfasern trägt zum Zusammenhalt des Biofilms bei, indem sie die Zell-Zell-Anhaftung fördert und die Wechselwirkungen zwischen Biofilm und Substrat vermittelt. Diese sessile Form des Bakterienwachstums wurde von Mikrobiologen eingehend untersucht, um die schädlichen Auswirkungen von Biofilmen in der Medizin und Industrie zu verhindern. Biofilme werden nämlich mit einer erhöhten Antibiotikaresistenz bei bakteriellen Infektionen in Verbindung gebracht, und sie können auch zur Verstopfung von Rohrleitungen führen oder Biokorrosion fördern. Biofilme sind jedoch auch für die Biophysik von Interesse, da sie während ihres Wachstums komplexe morphologische Muster bilden können. In jüngster Zeit werden auf dem aufstrebenden Gebiet der künstlich hergestellten lebenden Materialien die mechanischen Eigenschaften von Biofilmen auf verschiedenen Längenskalen untersucht und die Werkzeuge der synthetischen Biologie genutzt, um die Funktionen ihrer konstitutiven Biopolymere zu beeinflussen. In dieser Doktorarbeit soll geklärt werden, wie die Morphogenese von Escherichia coli (E. coli)-Biofilmen durch deren Wachstumsdynamik und mechanische Eigenschaften beeinflusst wird. Um dieser Frage nachzugehen, habe ich Methoden aus der Zellmechanik und der Materialwissenschaft verwendet. Zunächst habe ich untersucht, wie die biologische Aktivität in Biofilmen zu ungleichmäßigen Wachstumsmustern führt. In einer zweiten Studie untersuchte ich, wie sich die Morphogenese von E. coli-Biofilmen und ihre mechanischen Eigenschaften an einen Umweltstimulus, nämlich den Wassergehalt des Substrats, anpassen. Schließlich habe ich abgeschätzt, wie sich die mechanischen Eigenschaften von E. coli-Biofilmen verändern, wenn die Bakterien verschiedene extrazelluläre Biopolymere exprimieren. Auf nährstoffhaltigen Hydrogelen können mikrometergroße E. coli-Zellen zentimetergroße Biofilme bilden. Während dieses Prozesses führen die bakterielle Vermehrung und die Matrixproduktion zu mechanischen Spannungen im Biofilm, die sich durch die Bildung von makroskopischen Falten und delaminierten Knicken entladen. Um diese biologischen und mechanischen Phänomene miteinander in Beziehung zu setzen, habe ich mit Hilfe von Zeitraffer-Fluoreszenzaufnahmen die Zell- und Matrixoberflächendichte in den frühen und späten Phasen des E. coli-Biofilmwachstums verfolgt. Die Kolokalisierung hoher Zell- und Matrixdichten an der Peripherie geht dem Auftreten mechanischer Instabilitäten in diesem ringförmigen Bereich voraus. An diesem äußeren Ring wird ein frühes Wachstum festgestellt, das durch Zugabe von fluoreszierenden Mikrokugeln zum bakteriellen Inokulum analysiert wurde. Aber nur wenn im Zentrum des Biofilms hohe Raten der Matrixproduktion vorhanden sind, beginnt die Ausbreitung des gesamten Biofilms entlang der Feststoff-Luft-Grenzfläche. Indem ich größere fluoreszierende Partikel über einen längeren Zeitraum verfolgte, konnte ich mehrere kinematische Stadien der E. coli-Biofilmexpansion unterscheiden und einen Übergang von nichtlinearen zu linearen Geschwindigkeitsprofilen beobachten, der dem Auftreten von Falten an der Biofilmperipherie vorausgeht. Die Zerlegung der Partikelgeschwindigkeiten in ihre radialen und umlaufenden Komponenten ergab ein letztes kinematisches Stadium, in dem die Bewegung des Biofilms hauptsächlich auf die radialen delaminierten Knicke gerichtet ist, die sich vertikalisieren. Die in diesen Regionen berechneten Druckspannungen verformen die darunter liegenden Agarsubstrate erheblich. Die gleichzeitige Ansammlung höherer Zell- und Matrixdichten in einer ringförmigen Region und die Abfolge mehrerer kinematischer Stadien dürften somit das Entstehen mechanischer Instabilitäten an der Biofilm-Peripherie fördern. Diese experimentellen Ergebnisse werden voraussichtlich zukünftige Modellierungsansätze der Biofilmmorphogenese voranbringen. Die Morphogenese des E. coli-Biofilms wird voraussichtlich auch von externen Stimuli aus der Umwelt abhängen. Um zu klären, wie das Wasser zur Einstellung der Materialeigenschaften von Biofilmen genutzt werden könnte, haben wir das Wachstum, die Faltenbildung und die Steifigkeit von E. coli-Biofilmen in Abhängigkeit vom Wassergehalt der Nährsubstrate quantifiziert. Zeitraffermikroskopie und computergestützte Bildanalyse zeigten, dass Substrate mit hohem Wassergehalt die Ausbreitungskinetik des Biofilms fördern, während Substrate mit niedrigem Wassergehalt die Faltenbildung des Biofilms begünstigen. Die auf Biofilm-Querschnitten beobachteten Falten erschienen auf Substraten mit hohem Wassergehalt stärker gebogen, während sie auf Substraten mit niedrigem Wassergehalt eher vertikal verliefen. Sowohl die feuchte als auch die trockene Biomasse, die während der 4-tägigen Kultur akkumuliert wurde, war in Biofilmen, die auf Substraten mit hohem Wassergehalt gezüchtet wurden, größer, trotz der zusätzlichen Porosität innerhalb der Matrixschicht. Schließlich ergab die Mikroindentationsanalyse, dass Substrate mit niedrigem Wassergehalt die Bildung von steiferen Biofilmen begünstigten. Diese Studie zeigt, dass E. coli-Biofilme auf den Wassergehalt ihres Substrats reagieren, was für die Abstimmung ihrer Materialeigenschaften im Hinblick auf weitere Anwendungen genutzt werden könnte. Die Materialeigenschaften von Biofilmen hängen außerdem von der Zusammensetzung und Struktur der Matrix aus extrazellulären Proteinen und Polysacchariden ab. Insbesondere wurde vermutet, dass E. coli-Biofilme aufgrund eines dichten Fasernetzwerks aus Amyloid-Curli und Phosphoethanolamin-modifizierter Cellulose eine gewebeähnliche Elastizität aufweisen. Um den Beitrag dieser Komponenten zu den entstehenden mechanischen Eigenschaften von E. coli-Biofilmen zu verstehen, führten wir an Biofilmen, die aus Bakterien verschiedener Stämme gewachsen waren, Mikroeindrücke durch. Biofilme, die beide Hauptmatrixkomponenten enthalten, wiesen nicht nur eine höhere Trockenmasse, einen größeren Ausbreitungsdurchmesser und einen leicht verringerten Wassergehalt auf, sondern auch eine hohe Steifigkeit im Bereich von mehreren hundert kPa, ähnlich wie Biofilme, die nur Curli-Fasern enthalten. Das Fehlen von Amyloid-Curli-Fasern führt dagegen zu deutlich höheren Adhäsionsenergien und einem viskoelastischeren, flüssigkeitsähnlichen Materialverhalten. Die Kombination von Amyloid-Curli-Fasern und Phosphoethanolamin-modifizierten Cellulosefasern impliziert daher die Bildung eines Verbundmaterials, bei dem die Amyloid-Curli-Fasern den E. coli-Biofilmen Steifigkeit verleihen, während die Phosphoethanolamin-modifizierte Cellulose eher als Klebstoff wirkt. Diese Ergebnisse motivieren zu weiteren Studien mit gereinigten Versionen dieser Protein- und Polysaccharidkomponenten, um besser zu verstehen, wie ihre Interaktionen die Funktionen des Biofilms unterstützen. Alle drei Studien zeigen verschiedene Aspekte der Biofilm-Morphogenese, die miteinander verbunden sind. Die erste Arbeit zeigt den Zusammenhang zwischen ungleichmäßigen biologischen Aktivitäten und dem Auftreten mechanischer Instabilitäten im Biofilm auf. Die zweite Arbeit bestätigt die Anpassungsfähigkeit der Morphogenese des E. coli-Biofilms und seiner mechanischen Eigenschaften an einen Umweltreiz, nämlich Wasser. Die letzte Studie schließlich zeigt die komplementäre Rolle der einzelnen Matrixkomponenten bei der Bildung eines stabilen Biofilmmaterials, das nicht nur komplexe Morphologien bildet, sondern auch als Schutzschild für die darin enthaltenen Bakterien fungiert. Unsere experimentellen Erkenntnisse über die Morphogenese von E. coli-Biofilmen und ihre mechanischen Eigenschaften können weitere Auswirkungen auf grundlegende und angewandte Biofilm-Forschungsbereiche haben. KW - biofilm KW - E. coli KW - living materials KW - mechanobiology KW - E. coli KW - Biofilm KW - lebende Materialien KW - Mechanobiologie Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-559869 ER - TY - THES A1 - Irmscher, Tobias T1 - Enzymatic remodelling of the exopolysaccharide stewartan network BT - implications for the diffusion of nano-sized objects BT - Implikationen für die Diffusion von nanogroßen Objekte N2 - In nature, bacteria are found to reside in multicellular communities encased in self-produced extracellular matrices. Indeed, biofilms are the default lifestyle of the bacteria which cause persistent infections in humans. The biofilm assembly protects bacterial cells from desiccation and limits the effectiveness of antimicrobial treatments. A myriad of biomolecules in the extracellular matrix, including proteins, exopolysaccharides, lipids, extracellular DNA and other, form a dense and viscoelastic three dimensional network. Many studies emphasized that a destabilization of the mechanical integrity of biofilm architectures potentially eliminates the protective shield and renders bacteria more susceptible to the immune system and antibiotics. Pantoea stewartii is a plant pathogen which infects monocotyledons such as maize and sweet corn. These bacteria produce dense biofilms in the xylem of infected plants which cause wilting of plants and crops. Stewartan is an exopolysaccharide which is produced by Pantoea stewartii and secreted as the major component to the extracellular matrix. It consists of heptasaccharide repeating units with a high degree of polymerization (2-4 MDa). In this work, the physicochemical properties of stewartan were investigated to understand the contributions of this exopolysaccharide to the mechanical integrity and cohesiveness of Pantoea stewartii biofilms. Therefore, a coarse-grained model of stewartan was developed with computational techniques to obtain a model for its three dimensional structural features. Here, coarse-grained molecular dynamic simulations revealed that the exopolysaccharide forms a hydrogel in which the exopolysaccharide chains arrange into a three dimensional mesh-like network. Simulations at different concentrations were used to investigate the influence of the water content on the network formation. Stewartan was further purified from 72 h grown Pantoea stewartii biofilms and the diffusion of bacteriophage and differently-sized nanoparticles (which ranged from 1.1 to 193 nm diameter) was analyzed in reconstituted stewartan solutions. Fluorescence correlation spectroscopy and single-particle tracking revealed that the stewartan network impeded the mobility of a set of differently-sized fluorescent particles in a size-dependent manner. Diffusion of these particles became more anomalous, as characterized by fitting the diffusion data to an anomalous diffusion model, with increasing stewartan concentrations. Further bulk and microrheological experiments were used to analyze the transitions in stewartan fluid behavior and stewartan chain entanglements were described. Moreover, it was noticed, that a small fraction of bacteriophage particles was trapped in small-sized pores deviating from classical random walks which highlighted the structural heterogeneity of the stewartan network. Additionally, the mobility of fluorescent particles also depended on the charge of the stewartan exopolysaccharide and a model of a molecular sieve for the stewartan network was proposed. The here reported structural features of the stewartan polymers were used to provide a detailed description of the mechanical properties of typically glycan-based biofilms such as the one from Pantoea stewartii. In addition, the mechanical properties of the biofilm architecture are permanently sensed by the embedded bacteria and enzymatic modifications of the extracellular matrix take place to address environmental cues. Hence, in this work the influence of enzymatic degradation of the stewartan exopolysaccharides on the overall exopolysaccharide network structure was analyzed to describe relevant physiological processes in Pantoea stewartii biofilms. Here, the stewartan hydrolysis kinetics of the tailspike protein from the ΦEa1h bacteriophage, which is naturally found to infect Pantoea stewartii cells, was compared to WceF. The latter protein is expressed from the Pantoea stewartii stewartan biosynthesis gene cluster wce I-III. The degradation of stewartan by the ΦEa1h tailspike protein was shown to be much faster than the hydrolysis kinetics of WceF, although both enzymes cleaved the β D GalIII(1→3)-α-D-GalI glycosidic linkage from the stewartan backbone. Oligosaccharide fragments which were produced during the stewartan cleavage, were analyzed in size-exclusion chromatography and capillary electrophoresis. Bioinformatic studies and the analysis of a WceF crystal structure revealed a remarkably high structural similarity of both proteins thus unveiling WceF as a bacterial tailspike-like protein. As a consequence, WceF might play a role in stewartan chain length control in Pantoea stewartii biofilms. N2 - In der Natur lagern sich Bakterien zu großen und komplexen Gemeinschaften zusammen, die als Biofilme bezeichnet werden. Diese multizellulären Biofilme sind der Ursprung vieler langlebiger und gefährlicher Infektionskrankheiten. Die bakteriellen Zellen produzieren und umgeben sich mit einen biofilm-spezifischen Schleim, der aus einer Unzahl von Biomolekülen, wie z.B. Exopolysaccharide, Lipide und extrazelluläre DNA, besteht. Diese Biofilmarchitektur schützt Bakterien vor Austrocknung und begrenzen die Wirksamkeit von antimikrobiellen Wirkstoffen (z.B. Antibiotika). Viele Studien haben gezeigt, dass die Destabilisierung der mechanischen Festigkeit des Biofilmapparates eine neue Behandlungsstrategie darstellt, in der das bakterielle Schutzschild eliminiert wird, sodass die Zellen wieder anfälliger gegenüber dem menschlichen Immunsystem oder Antibiotika werden. Pantoea stewartii ist ein Pflanzenpathogen, welches Mais und Süßmais befällt. Diese Bakterien produzieren Biofilme im Inneren der Pflanze, sodass der freie Wassertransport gestört wird. Daraufhin verwelken die Blätter und Früchte. In dieser Arbeit wurde das Exopolysaccharid Stewartan untersucht, welches lange Ketten ausbildet und als häufigste Komponente in den Biofilmen von Pantoea stewartii vorkommt. Dabei wurden die mechanischen Eigenschaften von Stewartan untersucht, um zu verstehen, wie diese den Biofilm beeinflussen. Dafür wurde eine Lösung aus mehreren Stewartan Molekülen computergestützt simuliert. Hierbei konnte beobachtet werden, dass die Stewartan Ketten ein dreidimensionales Netzwerk ausbilden, welches Poren aufweist. Außerdem wurde Stewartan aus Pantoea stewartii Biofilmen isoliert und die Diffusion von verschieden großen Nanopartikeln in dem Exopolysaccharidnetzwerk untersucht. Je höher die Stewartankonzentration war, desto mehr wurde die Diffusion der Nanopartikeln abgebremst. Außerdem wurden große Partikel stärker von dem Netzwerk zurückgehalten. Diese Untersuchungen wurden auf die Diffusion von Bakteriophagen, das sind Viren, die spezifisch Bakterien infizieren, ausgeweitet. Infolgedessen wurde gezeigt, dass Bakteriophagen in kleine Stewartanporen feststecken können. Die Diffusion all dieser Partikeln war aber auch abhängig von der Oberflächenladung des Partikels. Folglich bildet Stewartan ein Netzwerk aus, welches ganz spezifisch den Transport von Molekülen mit bestimmten Eigenschaften unterbindet. Außerdem ist bekannt, dass die Bakterien in der Lage sind, die mechanischen Eigenschaften des Biofilms zu modulieren, um sie an Veränderungen in der Umgebung anzupassen. Dies geschieht über bakterielle Enzyme. Daher wurde in dieser Arbeit der enzymatische Abbau von Stewartan untersucht, der eine dramatische Änderung der Eigenschaften des Biofilms zufolge haben kann. Dabei wurde die Stewartan Spaltung durch das Enzym WceF untersucht, welches von Pantoea stewartii produziert wird. Dieses Enzym spaltete die Stewartanketten nur sehr langsamen, sodass das Stewartannetzwerk erhalten blieb. Die Ergebnisse wurden mit dem tailspike Protein verglichen, welches von dem ΦEa1h Bakteriophagen produziert wird, dem natürlichen Feind des Bakteriums. Im Gegensatz zu WceF, baute das tailspike Protein Stewartan deutlich schneller ab und die gesamte mechanische Festigkeit des Netzwerkes wurde beseitigt. Beide Enzyme, trotz der unterschiedlichen Aktivität, besitzen eine sehr ähnliche Struktur, was vermuten lässt, dass sie von einem gleichen Vorgängerprotein abstammen. In dieser Arbeit wird vorgeschlagen, dass WceF möglicherweise in der Kettenlängekontrolle von Stewartan involviert ist. T2 - Enzymatische Remodellierung des Exopolysaccharid-Stewartan-Netzwerkes KW - biofilm KW - Pantoea stewartii KW - stewartan KW - exopolysaccharide KW - coarse grained molecular dynamics KW - microviscosity KW - Mikroviskosität KW - coarse grained Molekulardynamiken Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-472486 ER - TY - THES A1 - Kettner, Marie Therese T1 - Microbial colonization of microplastic particles in aquatic systems T1 - Mikrobielle Besiedlung von Mikroplastik-Partikeln in aquatischen Systemen N2 - The continuously increasing pollution of aquatic environments with microplastics (plastic particles < 5 mm) is a global problem with potential implications for organisms of all trophic levels. For microorganisms, trillions of these floating microplastics particles represent a huge surface area for colonization. Due to the very low biodegradability, microplastics remain years to centuries in the environment and can be transported over thousands of kilometers together with the attached organisms. Since also pathogenic, invasive, or otherwise harmful species could be spread this way, it is essential to study microplastics-associated communities. For this doctoral thesis, eukaryotic communities were analyzed for the first time on microplastics in brackish environments and compared to communities in the surrounding water and on the natural substrate wood. With Illumina MiSeq high-throughput sequencing, more than 500 different eukaryotic taxa were detected on the microplastics samples. Among them were various green algae, dinoflagellates, ciliates, fungi, fungal-like protists and small metazoans such as nematodes and rotifers. The most abundant organisms was a dinoflagellate of the genus Pfiesteria, which could include fish pathogenic and bloom forming toxigenic species. Network analyses revealed that there were numerous interaction possibilities among prokaryotes and eukaryotes in microplastics biofilms. Eukaryotic community compositions on microplastics differed significantly from those on wood and in water, and compositions were additionally distinct among the sampling locations. Furthermore, the biodiversity was clearly lower on microplastics in comparison to the diversity on wood or in the surrounding water. In another experiment, a situation was simulated in which treated wastewater containing microplastics was introduced into a freshwater lake. With increasing microplastics concentrations, the resulting bacterial communities became more similar to those from the treated wastewater. Moreover, the abundance of integrase I increased together with rising concentrations of microplastics. Integrase I is often used as a marker for anthropogenic environmental pollution and is further linked to genes conferring, e.g., antibiotic resistance. This dissertation gives detailed insights into the complexity of prokaryotic and eukaryotic communities on microplastics in brackish and freshwater systems. Even though microplastics provide novel microhabitats for various microbes, they might also transport toxigenic, pathogenic, antibiotic-resistant or parasitic organisms; meaning their colonization can pose potential threats to humans and the environment. Finally, this thesis explains the urgent need for more research as well as for strategies to minimize the global microplastic pollution. N2 - Die stetig steigende Verschmutzung der Gewässer mit Mikroplastik (Plastikteilchen < 5 mm) ist ein weltweites Umweltproblem und wirkt sich potentiell auf Organismen aller trophischen Ebenen aus. Für Mikroorganismen stellen Billionen dieser schwimmenden Mikroplastik-partikel eine riesige Fläche zur Besiedlung dar. Aufgrund der sehr schlechten Abbaubarkeit verbleibt Mikroplastik Jahre bis Jahrhunderte in der Umwelt und kann samt der angehefteten Organismen über mehrere Tausend Kilometer weit transportiert werden. Da sich darüber auch pathogene, invasive oder anderweitig gefährliche Arten verbreiten könnten, ist es essentiell, die Mikroplastik-assoziierten Gemeinschaften zu untersuchen. Im Rahmen dieser Doktorarbeit wurden erstmals die eukaryotischen Gemeinschaften auf Mikroplastik in Brackwasser-Habitaten analysiert und mit Gemeinschaften aus dem umgebenden Wasser und auf dem natürlichen Substrat Holz verglichen. Mit Illumina MiSeq Hochdurchsatz-Sequenzierungs-Verfahren wurde ermittelt, dass über 500 verschiedene eukaryotische Taxa auf den Mikroplastikproben vorkamen. Dazu gehörten unterschiedliche Grünalgen, Dinoflagellaten, Ciliaten, Pilze, pilz-ähnliche Protisten und kleine Metazoen wie Fadenwürmer oder Rädertierchen. Am häufigsten kamen Dinoflagellaten der Gattung Pfiesteria vor, zu der möglicherweise fischpathogene und toxische Algenblüten-bildende Arten gehören könnten. Netzwerk-Analysen zeigten, dass es auf Mikroplastik eine Vielzahl von Interaktionsmöglichkeiten zwischen den vorhandenen Eukaryoten und Prokaryoten gibt. Die Zusammensetzungen der Eukaryoten-Gemeinschaften auf Mikroplastik unterschieden sich signifikant von jenen auf Holz und im umgebenden Wasser, aber auch zwischen den verschiedenen Probenahme-Standorten. Die Mikroplastikproben wiesen im Vergleich zu Wasser und Holz die geringste Biodiversität auf. In einem weiteren Experiment wurde simuliert, dass Mikroplastik-haltiges Wasser aus dem Ablauf einer Kläranlage in einen See eingeleitet wird. Bei hohen Mikroplastikkonzentrationen reicherten sich besonders Bakterien aus dem Kläranlagenablauf an. Zudem hatten die Bakteriengemeinschaften auf Mikroplastik ein signifikant erhöhtes Vorkommen eines bestimmten genetischen Markers (Integrase I), welcher auf anthropogene Umweltverschmutzung hindeutet, sowie mit Genen verknüpft ist, die z. B. Antibiotika-Resistenzen übertragen können. Die Versuchsergebnisse dieser Doktorarbeit zeigen einerseits, wie komplex und vielseitig das mikrobielle Leben auf Mikroplastik sein kann, andererseits könnten diese Partikel aber auch Transportvehikel für toxische, pathogene, antibiotika-resistente oder parasitäre Organismen darstellen. Somit birgt ihre Besiedlung potentielle Gefahren für Mensch und Umwelt. Darüber hinaus weist diese Arbeit auf dringenden Forschungsbedarf hin und verdeutlicht die Notwendigkeit der Eindämmung der globalen Mikroplastik-Verschmutzung. KW - microplastics KW - eukaryotes KW - sequencing KW - fungi KW - biofilm KW - biodiversity KW - Biodiversität KW - Biofilm KW - Eukaryoten KW - Pilze KW - Mikroplastik KW - Sequenzierung Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-418854 ER - TY - THES A1 - Lerm, Stephanie T1 - Mikroorganismen in geothermischen Aquiferen : Einfluss mikrobieller Prozesse auf den Anlagenbetrieb T1 - Microorganisms in geothermal plants : influence of microbial processes on plant operation N2 - In Fluid-, Filter- und Sedimentproben von vier geothermischen Anlagen des Norddeutschen Beckens wurden mit molekulargenetischen Verfahren unterschiedliche mikrobielle Gemeinschaften nachgewiesen. Die mikrobielle Zusammensetzung in den Prozesswässern wurde dabei durch die Aquiferteufe, die Salinität, die Temperatur und den verfügbaren Elektronendonatoren und -akzeptoren beeinflusst. Die in den anoxischen Prozesswässern identifizierten Organismen zeichneten sich durch einen chemoheterotrophen oder chemoautotrophen Stoffwechsel aus, wobei Nitrat, Sulfat, Eisen (III) oder Bikarbonat als terminale Elektronenakzeptoren fungierten. Mikroorganismen beeinflussten den Betrieb von zwei Anlagen negativ. So reduzierten im Prozesswasser des Kältespeichers am Berliner Reichstag vorhandene Eisenoxidierer, nahe verwandt zu der Gattung Gallionella, die Injektivität der Bohrungen durch Eisenhydroxidausfällungen in den Filterschlitzen. Biofilme, die von schwefeloxidierenden Bakterien der Gattung Thiothrix in den Filtern der obertägigen Anlage gebildet wurden, führten ebenfalls zu Betriebsstörungen, indem sie die Injektion des Fluids in den Aquifer behinderten. Beim Wärmespeicher in Neubrandenburg waren Sulfatreduzierer vermutlich an der Bildung von Eisensulfidausfällungen in den obertägigen Filtern und im bohrlochnahen Bereich beteiligt und verstärkten Korrosionsprozesse an der Pumpe im Bohrloch der kalten Aquiferseite. Organische Säuren in den Fluiden sowie mineralische Ausfällungen in den Filtern der obertägigen Anlagen waren Belege für die Aktivität der in den verschiedenen Anlagen vorhandenen Mikroorganismen. Es wurde zudem deutlich, dass Mikroorganismen auf Grund der hohen Durchflussraten in den Anlagen chemische Veränderungen in den Prozesswässern deutlich sensitiver anzeigen als chemische Analyseverfahren. So deuteten Änderungen in der Zusammensetzung der mikrobiellen Biozönosen und speziell die Identifikation von Indikatororganismen wie Eisen- und Schwefeloxidierern, fermentativen Bakterien und Sulfatreduzierern auf eine erhöhte Verfügbarkeit von Elektronendonatoren oder akzeptoren in den Prozesswässern hin. Die Ursachen für die an den Geothermieanlagen auftretenden Betriebsstörungen konnten dadurch erkannt werden. N2 - Distinct microbial communities were found in fluid, filter, and sediment samples taken from four geothermal plants in the North German Basin by using molecular genetic techniques. The microbial composition in process fluids was influenced by aquifer depth, salinity, temperature, and available electron donors and acceptors. The organisms identified in the anoxic process fluids were closely related to chemoheterotrophs and chemoautotrophs that use nitrate, sulfate, ferric iron, and bicarbonate as the terminal electron acceptor. Microorganisms adversely affected operation of two geothermal plants. For example, Gallionella-related iron oxidizing bacteria, abundant in process fluids of the cold store at the Berliner Reichstag caused operation failures due to the formation of iron hydroxide scale that clogged the filter slots in the wells and led to a reduction of injectivity. In addition, biofilms formed by sulfur oxidizing Thiothrix sp. in filters of the topside facility drastically reduced injectivity. At the heat store in Neubrandenburg, sulfate reducing bacteria were probably involved in the formation of iron sulfides in filters of the topside facility and in the near wellbore area, and may have increased corrosion processes on the well pump at the cold side of the aquifer. Volatile fatty acids in process fluids and mineral scales in filters of the topside facility indicated the activity of microorganisms present in the different geothermal plants. In addition, it was shown that microorganisms react more sensitive than chemical analyses because of the high fluid flow in the plants, and thus indicate chemical changes in process fluids. Changes in the microbial community composition, and particularly the identification of indicator organisms, such as iron and sulfur oxidizer, fermentative, and sulfate reducing bacteria were suitable for the detection of increased availability of electron donors and acceptors. Thus, reasons for operation failures occurring at geothermal plants could be identified. KW - Mikroorganismen KW - Aquifer KW - Biofilme KW - Korrosion KW - genetisches Fingerprinting KW - Microorganisms KW - geothermal aquifer KW - biofilm KW - corrosion KW - genetic fingerprinting Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-63705 ER -