TY - GEN A1 - Rolfs, Martin A1 - Laubrock, Jochen A1 - Kliegl, Reinhold T1 - Shortening and Prolongation of Saccade Latencies Following Microsaccades N2 - When the eyes fixate at a point in a visual scene, small saccades rapidly shift the image on the retina. The effect of these microsaccades on the latency of subsequent large-scale saccades may be twofold. First, microsaccades are associated with an enhancement of visual perception. Their occurrence during saccade target perception should, thus, decrease saccade latencies. On the other hand, microsaccades likely indicate activity in fixation-related oculomotor neurons. These represent competitors to saccade-related cells in the interplay of gaze holding and shifting. Consequently, an increase in saccade latencies after microsaccades would be expected. Here, we present evidence for both aspects of microsaccadic impact on saccade latency. In a delayed response task, participants made saccades to visible or memorized targets. First, microsaccade occurrence up to 50 ms before target disappearance correlated with 18 ms (or 8%) faster saccades to memorized targets. Second, if microsaccades occurred shortly (i.e., < 150 ms) before a saccade was required, saccadic reaction times in visual and memory trials were increased by about 40 ms (or 16%). Hence, microsaccades can have opposite consequences for saccade latencies, pointing at a differential role of these fixational eye movements in preparation of motor programs. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 242 KW - Fixational eye movements KW - Memory-guided saccades KW - Visually-guided saccades Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-57012 ER - TY - GEN A1 - Rolfs, Martin A1 - Engbert, Ralf A1 - Kliegl, Reinhold T1 - Crossmodal coupling of oculomotor controland spatial attention in vision and audition N2 - Fixational eye movements occur involuntarily during visual fixation of stationary scenes. The fastest components of these miniature eye movements are microsaccades, which can be observed about once per second. Recent studies demonstrated that microsaccades are linked to covert shifts of visual attention [e.g., Engbert & Kliegl (2003), Vision Res 43:1035-1045]. Here,we generalized this finding in two ways. First, we used peripheral cues, rather than the centrally presented cues of earlier studies. Second, we spatially cued attention in vision and audition to visual and auditory targets. An analysis of microsaccade responses revealed an equivalent impact of visual and auditory cues on microsaccade-rate signature (i.e., an initial inhibition followed by an overshoot and a final return to the pre-cue baseline rate). With visual cues or visual targets,microsaccades were briefly aligned with cue direction and then opposite to cue direction during the overshoot epoch, probably as a result of an inhibition of an automatic saccade to the peripheral cue. With left auditory cues and auditory targets microsaccades oriented in cue direction. Thus, microsaccades can be used to study crossmodal integration of sensory information and to map the time course of saccade preparation during covert shifts of visual and auditory attention. T3 - Zweitveröffentlichungen der Universität Potsdam : Humanwissenschaftliche Reihe - paper 234 KW - Microsaccades KW - Covert orienting KW - Fixational eye movements KW - Multisensory Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-56804 ER -