TY - JOUR A1 - Leto, Paolo A1 - Trigilio, C. A1 - Oskinova, Lida A1 - Ignace, R. A1 - Buemi, C. S. A1 - Umana, G. A1 - Ingallinera, A. A1 - Leone, Francesco A1 - Phillips, N. M. A1 - Agliozzo, Claudia A1 - Todt, Helge Tobias A1 - Cerrigone, L. T1 - A combined multiwavelength VLA/ALMA/Chandra study unveils the complex magnetosphere of the B-type star HR5907 JF - Monthly notices of the Royal Astronomical Society N2 - We present new radio/millimeter measurements of the hot magnetic star HR5907 obtained with the VLA and ALMA interferometers. We find that HR5907 is the most radio luminous early type star in the cm-mm band among those presently known. Its multi-wavelength radio light curves are strongly variable with an amplitude that increases with radio frequency. The radio emission can be explained by the populations of the non-thermal electrons accelerated in the current sheets on the outer border of the magnetosphere of this fast-rotating magnetic star. We classify HR5907 as another member of the growing class of strongly magnetic fast-rotating hot stars where the gyro-synchrotron emission mechanism efficiently operates in their magnetospheres. The new radio observations of HR5907 are combined with archival X-ray data to study the physical condition of its magnetosphere. The X-ray spectra of HR5907 show tentative evidence for the presence of non-thermal spectral component. We suggest that non-thermal X-rays originate a stellar X-ray aurora due to streams of non-thermal electrons impacting on the stellar surface. Taking advantage of the relation between the spectral indices of the X-ray power-law spectrum and the non-thermal electron energy distributions, we perform 3-D modelling of the radio emission for HR5907. The wavelength-dependent radio light curves probe magnetospheric layers at different heights above the stellar surface. A detailed comparison between simulated and observed radio light curves leads us to conclude that the stellar magnetic field of HR 5907 is likely non-dipolar, providing further indirect evidence of the complex magnetic field topology of HR5907. KW - stars: chemically peculiar KW - stars: early-type KW - stars: individual: HR 5907 KW - stars: magnetic field KW - radio continuum: stars KW - X-rays: stars Y1 - 2018 U6 - https://doi.org/10.1093/mnras/sty244 SN - 0035-8711 SN - 1365-2966 VL - 476 IS - 1 SP - 562 EP - 579 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Corcoran, Michael F. A1 - Nichols, Joy S. A1 - Pablo, Herbert A1 - Shenar, Tomer A1 - Pollock, Andy M. T. A1 - Waldron, Wayne L. A1 - Moffat, Anthony F. J. A1 - Richardson, Noel D. A1 - Russell, Christopher M. P. A1 - Hamaguchi, Kenji A1 - Huenemoerder, David P. A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Naze, Yael A1 - Ignace, Richard A1 - Evans, Nancy Remage A1 - Lomax, Jamie R. A1 - Hoffman, Jennifer L. A1 - Gayley, Kenneth A1 - Owocki, Stanley P. A1 - Leutenegger, Maurice A1 - Gull, Theodore R. A1 - Hole, Karen Tabetha A1 - Lauer, Jennifer A1 - Iping, Rosina C. T1 - A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. I. Overview of thr X-Ray spectrum JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present an overview of four deep phase-constrained Chandra HETGS X-ray observations of delta Ori A. Delta Ori A is actually a triple system that includes the nearest massive eclipsing spectroscopic binary, delta Ori Aa, the only such object that can be observed with little phase-smearing with the Chandra gratings. Since the fainter star, delta Ori Aa2, has a much lower X-ray luminosity than the brighter primary (delta Ori Aa1), delta Ori Aa provides a unique system with which to test the spatial distribution of the X-ray emitting gas around delta Ori Aa1 via occultation by the photosphere of, and wind cavity around, the X-ray dark secondary. Here we discuss the X-ray spectrum and X-ray line profiles for the combined observation, having an exposure time of nearly 500 ks and covering nearly the entire binary orbit. The companion papers discuss the X-ray variability seen in the Chandra spectra, present new space-based photometry and ground-based radial velocities obtained simultaneously with the X-ray data to better constrain the system parameters, and model the effects of X-rays on the optical and UV spectra. We find that the X-ray emission is dominated by embedded wind shock emission from star Aa1, with little contribution from the tertiary star Ab or the shocked gas produced by the collision of the wind of Aa1 against the surface of Aa2. We find a similar temperature distribution to previous X-ray spectrum analyses. We also show that the line half-widths are about 0.3-0.5 times the terminal velocity of the wind of star Aa1. We find a strong anti-correlation between line widths and the line excitation energy, which suggests that longer-wavelength, lower-temperature lines form farther out in the wind. Our analysis also indicates that the ratio of the intensities of the strong and weak lines of Fe XVII and Ne X are inconsistent with model predictions, which may be an effect of resonance scattering. KW - binaries: close KW - binaries: eclipsing KW - stars: early-type KW - stars: individual (Delta Ori) KW - stars: mass-loss KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/809/2/132 SN - 0004-637X SN - 1538-4357 VL - 809 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Shenar, Tomer A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Corcoran, Michael F. A1 - Moffat, Anthony F. J. A1 - Pablo, Herbert A1 - Richardson, Noel D. A1 - Waldron, Wayne L. A1 - Huenemoerder, David P. A1 - Maiz Apellaniz, Jesus A1 - Nichols, Joy S. A1 - Todt, Helge Tobias A1 - Naze, Yael A1 - Hoffman, Jennifer L. A1 - Pollock, Andy M. T. A1 - Negueruela, Ignacio T1 - A coordinated X-Ray and optical campaign of the nearest massive eclipsing binary, delta ORIONIS Aa. IV. A multiwavelength, non-lte spectroscopic analysis JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Eclipsing systems of massive stars allow one to explore the properties of their components in great detail. We perform a multi-wavelength, non-LTE analysis of the three components of the massive multiple system delta Ori A, focusing on the fundamental stellar properties, stellar winds, and X-ray characteristics of the system. The primary's distance-independent parameters turn out to be characteristic for its spectral type (O9.5 II), but usage of the Hipparcos parallax yields surprisingly low values for the mass, radius, and luminosity. Consistent values follow only if delta Ori lies at about twice the Hipparcos distance, in the vicinity of the sigma-Orionis cluster. The primary and tertiary dominate the spectrum and leave the secondary only marginally detectable. We estimate the V-band magnitude difference between primary and secondary to be Delta V approximate to 2.(m)8. The inferred parameters suggest that the secondary is an early B-type dwarf (approximate to B1 V), while the tertiary is an early B-type subgiant (approximate to B0 IV). We find evidence for rapid turbulent velocities (similar to 200 km s(-1)) and wind inhomogeneities, partially optically thick, in the primary's wind. The bulk of the X-ray emission likely emerges from the primary's stellar wind (logL(X)/L-Bol approximate to -6.85), initiating close to the stellar surface at R-0 similar to 1.1 R-*. Accounting for clumping, the mass-loss rate of the primary is found to be log (M) over dot approximate to -6.4 (M-circle dot yr(-1))., which agrees with hydrodynamic predictions, and provides a consistent picture along the X-ray, UV, optical, and radio spectral domains. KW - binaries: close KW - binaries: eclipsing KW - stars: early-type KW - stars: individual ([HD 36486]delta Ori A) KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/809/2/135 SN - 0004-637X SN - 1538-4357 VL - 809 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Naze, Yael A1 - Wang, Q. Daniel A1 - Chu, You-Hua A1 - Gruendl, Robert A1 - Oskinova, Lida T1 - A deep chandra observation of the giant HII region N11. I. x-ray sorces in the field JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - A very sensitive X-ray investigation of the giant HII region N11 in the Large Megallanic Cloud was performed using the Chandra X-ray Observatory. The 300 ks observation reveals X-ray sources with luminosities down to 10(32) erg s(-1), increasing the number of known point sources in the field by more than a factor of five. Among these detections are 13 massive stars (3 compact groups of massive stars, 9 O stars, and one early B star) with log(L-X/L-BOL) similar to -6.5 to -7, which may suggest that they are highly magnetic or colliding-wind systems. On the other hand, the stacked signal for regions corresponding to undetected O stars yields log(L-X/L-BOL) similar to -7.3, i.e., an emission level comparable to similar Galactic stars despite the lower metallicity. Other point sources coincide with 11 foreground stars, 6 late-B/A stars in N11, and many background objects. This observation also uncovers the extent and detailed spatial properties of the soft, diffuse emission regions, but the presence of some hotter plasma in their spectra suggests contamination by the unresolved stellar population. KW - galaxies: star clusters: general KW - ISM: individual objects (LMC N11) KW - Magellanic Clouds KW - X-rays: stars Y1 - 2014 U6 - https://doi.org/10.1088/0067-0049/213/2/23 SN - 0067-0049 SN - 1538-4365 VL - 213 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Naze, Yael A1 - Oskinova, Lida A1 - Gosset, Eric T1 - A detailed x-ray investigation of zeta puppis - II. the variability on short and long timescales JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - Stellar winds are a crucial component of massive stars, but their exact properties still remain uncertain. To shed some light on this subject, we have analyzed an exceptional set of X-ray observations of zeta Puppis, one of the closest and brightest massive stars. The sensitive light curves that were derived reveal two major results. On the one hand, a slow modulation of the X-ray flux (with a relative amplitude of up to 15% over 16 hr in the 0.3-4.0 keV band) is detected. Its characteristic timescale cannot be determined with precision, but amounts from one to several days. It could be related to corotating interaction regions, known to exist in zeta Puppis from UV observations. Hour-long changes, linked to flares or to the pulsation activity, are not observed in the last decade covered by the XMM observations; the 17 hr tentative period, previously reported in a ROSAT analysis, is not confirmed either and is thus transient, at best. On the other hand, short-term changes are surprisingly small (<1% relative amplitude for the total energy band). In fact, they are compatible solely with the presence of Poisson noise in the data. This surprisingly low level of short-term variability, in view of the embedded wind-shock origin, requires a very high fragmentation of the stellar wind, for both absorbing and emitting features (>10(5) parcels, comparing with a two-dimensional wind model). This is the first time that constraints have been placed on the number of clumps in an O-type star wind and from X-ray observations. KW - stars: early-type KW - stars: individual (zeta Pup) KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/763/2/143 SN - 0004-637X VL - 763 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Ignace, Richard A1 - Oskinova, Lida A1 - Massa, D. T1 - A report on the X-ray properties of the tau Sco-like stars JF - Monthly notices of the Royal Astronomical Society N2 - An increasing number of OB stars have been shown to possess magnetic fields. Although the sample remains small, it is surprising that the magnetic and X-ray properties of these stars appear to be far less correlated than expected. This contradicts model predictions, which generally indicate that the X-rays from magnetic stars are harder and more luminous than their non-magnetic counterparts. Instead, the X-ray properties of magnetic OB stars are quite diverse. tau Sco is one example where the expectations are better met. This bright main-sequence, early B star has been studied extensively in a variety of wavebands. It has a surface magnetic field of around 500 G, and Zeeman Doppler tomography has revealed an unusual field configuration. Furthermore, tau Sco displays an unusually hard X-ray spectrum, much harder than similar, non-magnetic OB stars. In addition, the profiles of its UV P Cygni wind lines have long been known to possess a peculiar morphology. Recently, two stars, HD 66665 and HD 63425, whose spectral types and UV wind line profiles are similar to those of tau Sco, have also been determined to be magnetic. In the hope of establishing a magnetic field - X-ray connection for at least a subset of the magnetic stars, we obtained XMM-Newton European Photon Imaging Camera spectra of these two objects. Our results for HD 66665 are somewhat inconclusive. No especially strong hard component is detected; however, the number of source counts is insufficient to rule out hard emission. Longer exposure is needed to assess the nature of the X-rays from this star. On the other hand, we do find that HD 63425 has a substantial hard X-ray component, thereby bolstering its close similarity to tau Sco. KW - stars: early-type KW - stars: individual: HD 63425 KW - stars: individual: HD 66665 KW - stars: magnetic field KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1093/mnras/sts358 SN - 0035-8711 VL - 429 IS - 1 SP - 516 EP - 522 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Bozzo, Enrico A1 - Ferrigno, Carlo A1 - Oskinova, Lida A1 - Ducci, Lorenzo T1 - Accretion of a clumped wind from a red supergiant donor on to a magnetar is suggested by the analysis of the XMM-Newton and NuSTAR observations of the X-ray binary 3A 1954+319 JF - Monthly notices of the Royal Astronomical Society N2 - 3A 1954+319 has been classified for a long time as a symbiotic X-ray binary, hosting a slowly rotating neutron star and an aged M red giant. Recently, this classification has been revised thanks to the discovery that the donor star is an M supergiant. This makes 3A 1954+319 a rare type of high-mass X-ray binary consisting of a neutron star and a red supergiant donor. In this paper, we analyse two archival and still unpublished XMM-Newton and NuSTAR observations of the source. We perform a detailed hardness ratio-resolved spectral analysis to search for spectral variability that could help investigating the structures of the inhomogeneous M supergiant wind from which the neutron star is accreting. We discuss our results in the context of wind-fed supergiant X-ray binaries and show that the newest findings on 3A 1954+319 reinforce the hypothesis that the neutron star in this system is endowed with a magnetar-like magnetic field strength (greater than or similar to 10(14) G). KW - accretion KW - stars: massive KW - stars: neutron KW - X-rays: binaries KW - X-rays: individual: 3A 1954+319 KW - X-rays: stars KW - accretion discs Y1 - 2021 U6 - https://doi.org/10.1093/mnras/stab3688 SN - 0035-8711 SN - 1365-2966 VL - 510 IS - 3 SP - 4645 EP - 4653 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Townsley, Leisa K. A1 - Broos, Patrick S. A1 - Corcoran, Michael F. A1 - Feigelson, Eric D. A1 - Gagne, Marc A1 - Montmerle, Thierry A1 - Oey, M. S. A1 - Smith, Nathan A1 - Garmire, Gordon P. A1 - Getman, Konstantin V. A1 - Povich, Matthew S. A1 - Evans, Nancy Remage A1 - Naze, Yael A1 - Parkin, E. R. A1 - Preibisch, Thomas A1 - Wang, Junfeng A1 - Wou, Scott J. A1 - Chu, You-Hua A1 - Cohen, David H. A1 - Gruendl, Robert A. A1 - Hamaguchi, Kenji A1 - King, Robert R. A1 - Mac Low, Mordecai-Mark A1 - McCaughrean, Mark J. A1 - Moffat, Anthony F. J. A1 - Oskinova, Lida A1 - Pittard, Julian M. A1 - Stassun, Keivan G. A1 - Ud-Doula, Asif A1 - Walborn, Nolan R. A1 - Waldron, Wayne L. A1 - Churchwell, Ed A1 - Nictiols, J. S. A1 - Owocki, Stanley P. A1 - Schulz, Norbert S. T1 - An introduction to the chandra carina complex project JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - The Great Nebula in Carina provides an exceptional view into the violent massive star formation and feedback that typifies giant H II regions and starburst galaxies. We have mapped the Carina star-forming complex in X-rays, using archival Chandra data and a mosaic of 20 new 60 ks pointings using the Chandra X-ray Observatory's Advanced CCD Imaging Spectrometer, as a testbed for understanding recent and ongoing star formation and to probe Carina's regions of bright diffuse X-ray emission. This study has yielded a catalog of properties of > 14,000 X-ray point sources;> 9800 of them have multiwavelength counterparts. Using Chandra's unsurpassed X-ray spatial resolution, we have separated these point sources from the extensive, spatially-complex diffuse emission that pervades the region; X-ray properties of this diffuse emission suggest that it traces feedback from Carina's massive stars. In this introductory paper, we motivate the survey design, describe the Chandra observations, and present some simple results, providing a foundation for the 15 papers that follow in this special issue and that present detailed catalogs, methods, and science results. KW - H II regions KW - stars: massive KW - stars: pre-main sequence KW - X-rays: individual (Carina) KW - X-rays: ISM KW - X-rays: stars Y1 - 2011 U6 - https://doi.org/10.1088/0067-0049/194/1/1 SN - 0067-0049 VL - 194 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Gagne, Marc A1 - Fehon, Garrett A1 - Savoy, Michael R. A1 - Cohen, David H. A1 - Townsley, Leisa K. A1 - Broos, Patrick S. A1 - Povich, Matthew S. A1 - Corcoran, Michael F. A1 - Walborn, Nolan R. A1 - Evans, Nancy Remage A1 - Moffat, Anthony F. J. A1 - Naze, Yael A1 - Oskinova, Lida T1 - Carina ob stars: x-ray signatures of wind shocks and magnetic FIELDS JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Supplement series N2 - The Chandra Carina Complex contains 200 known O- and B-type stars. The Chandra survey detected 68 of the 70 O stars and 61 of 127 known B0-B3 stars. We have assembled a publicly available optical/X-ray database to identify OB stars that depart from the canonical L-X/L-bol relation or whose average X-ray temperatures exceed 1 keV. Among the single O stars with high kT we identify two candidate magnetically confined wind shock sources: Tr16-22, O8.5 V, and LS 1865, O8.5 V((f)). The O4 III(fc) star HD 93250 exhibits strong, hard, variable X-rays, suggesting that it may be a massive binary with a period of > 30 days. The visual O2 If* binary HD 93129A shows soft 0.6 keV and hard 1.9 keV emission components, suggesting embedded wind shocks close to the O2 If* Aa primary and colliding wind shocks between Aa and Ab. Of the 11 known O-type spectroscopic binaries, the long orbital-period systems HD 93343, HD 93403, and QZ Car have higher shock temperatures than short-period systems such as HD 93205 and FO 15. Although the X-rays from most B stars may be produced in the coronae of unseen, low-mass pre-main-sequence companions, a dozen B stars with high L-X cannot be explained by a distribution of unseen companions. One of these, SS73 24 in the Treasure Chest cluster, is a new candidate Herbig Be star. KW - open clusters and associations: individual (Cl Bochum 10, Cl Bochum 11, Cl Collinder 228, Cl Trumpler 14, Cl Trumpler 15, Cl Trumpler 16) KW - stars: early-type KW - stars: individual (HD 93250, HD 93129A, HD 93403, HD 93205, HD 93343, QZ Car, SS73 24, FO 15, Cl Trumpler 16 22, CPD-59 2610, HD 93501) KW - X-rays: stars Y1 - 2011 U6 - https://doi.org/10.1088/0067-0049/194/1/5 SN - 0067-0049 VL - 194 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Massa, D. A1 - Oskinova, Lida A1 - Fullerton, A. W. A1 - Prinja, R. K. A1 - Bohlender, D. A. A1 - Morrison, N. D. A1 - Blake, M. A1 - Pych, W. T1 - CIR modulation of the X-ray flux from the O7.5 III(n)((f)) star xi Persei(a similar to...)? JF - Monthly notices of the Royal Astronomical Society N2 - We analyse a 162 ks high energy transmission grating Chandra observation of the O7.5 III(n)((f)) star xi Per, together with contemporaneous H alpha observations. The X-ray spectrum of this star is similar to other single O stars, and not pathological in any way. Its UV wind lines are known to display cyclical time variability, with a period of 2.086 d, which is thought to be associated with corotating interaction regions (CIRs). We examine the Chandra and H alpha data for variability on this time-scale. We find that the X-rays vary by similar to 15 per cent over the course of the observations and that this variability is out of phase with variable absorption on the blue wing of the H alpha profiles (assumed to be a surrogate for the UV absorption associated with CIRs). While not conclusive, both sets of data are consistent with models where the CIRs are either a source of X-rays or modulate them. KW - stars: early-type KW - stars: individual: xi Persei KW - stars: mass loss KW - stars: winds, outflows KW - X-rays: stars Y1 - 2014 U6 - https://doi.org/10.1093/mnras/stu565 SN - 0035-8711 SN - 1365-2966 VL - 441 IS - 3 SP - 2173 EP - 2180 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Oskinova, Lida A1 - Feldmeier, Achim A1 - Kretschmar, Peter T1 - Clumped stellar winds in supergiant high-mass X-ray binaries: X-ray variability and photoionization JF - Monthly notices of the Royal Astronomical Society N2 - The clumping of massive star winds is an established paradigm, which is confirmed by multiple lines of evidence and is supported by stellar wind theory. The purpose of this paper is to bridge the gap between detailed models of inhomogeneous stellar winds in single stars and the phenomenological description of donor winds in supergiant high-mass X-ray binaries (HMXBs). We use the results from time-dependent hydrodynamical models of the instability in the line-driven wind of a massive supergiant star to derive the time-dependent accretion rate on to a compact object in the BondiHoyleLyttleton approximation. The strong density and velocity fluctuations in the wind result in strong variability of the synthetic X-ray light curves. The model predicts a large-scale X-ray variability, up to eight orders of magnitude, on relatively short time-scales. The apparent lack of evidence for such strong variability in the observed HMXBs indicates that the details of the accretion process act to reduce the variability resulting from the stellar wind velocity and density jumps. KW - accretion, accretion discs KW - instabilities KW - stars: neutron KW - X-rays: binaries KW - X-rays: stars Y1 - 2012 U6 - https://doi.org/10.1111/j.1365-2966.2012.20507.x SN - 0035-8711 VL - 421 IS - 4 SP - 2820 EP - 2831 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Massa, Derck A1 - Oskinova, Lida A1 - Prinja, Raman A1 - Ignace, Richard T1 - Coordinated UV and X-Ray Spectroscopic Observations of the O-type Giant xi Per BT - the Connection between X-Rays and Large-scale Wind Structure JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present new, contemporaneous Hubble Space Telescope STIS and XMM-Newton observations of the O7. III(n) ((f)) star xi Per. We supplement the new data with archival IUE spectra, to analyze the variability of the wind lines and X-ray flux of xi Per. The variable wind of this star is known to have a 2.086-day periodicity. We use a simple, heuristic spot model that fits the low-velocity (near-surface) IUE wind line variability very well, to demonstrate that the low-velocity absorption in the new STIS spectra of N IV lambda 1718 and Si IV lambda 1402 vary with the same 2.086-day period. It is remarkable that the period and amplitude of the STIS data agree with those of the IUE spectra obtained 22 yr earlier. We also show that the time variability of the new XMM-Newton fluxes is also consistent with the 2.086-day period. Thus, our new, multiwavelength coordinated observations demonstrate that the mechanism that causes the UV wind line variability is also responsible for a significant fraction of the X-rays in single O stars. The sequence of events for the multiwavelength light-curve minima is Si IV lambda 1402, N IV lambda 1718, and X-ray flux, each separated by a phase of about 0.06 relative to the 2.086-day period. Analysis of the X-ray fluxes shows that they become softer as they weaken. This is contrary to expectations if the variability is caused by periodic excess absorption. Furthermore, the high-resolution X-ray spectra suggest that the individual emission lines at maximum are more strongly blueshifted. If we interpret the low-velocity wind line light curves in terms of our model, it implies that there are two bright regions, i.e., regions with less absorption, separated by 180 degrees, on the surface of the star. We note that the presence and persistence of two spots separated by 180 degrees suggest that a weak dipole magnetic field is responsible for the variability of the UV wind line absorption and X-ray flux in xi Per. KW - stars: activity KW - stars: early-type KW - stars: winds, outflows KW - ultraviolet: stars KW - X-rays: stars Y1 - 2019 U6 - https://doi.org/10.3847/1538-4357/ab0283 SN - 0004-637X SN - 1538-4357 VL - 873 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Hamaguchi, K. A1 - Oskinova, Lida A1 - Russell, C. M. P. A1 - Petre, R. A1 - Enoto, T. A1 - Morihana, K. A1 - Ishida, M. T1 - DISCOVERY OF RAPIDLY MOVING PARTIAL X-RAY ABSORBERS WITHIN GAMMA CASSIOPEIAE JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - detected six rapid X-ray spectral hardening events called "softness dips" in a similar to 100 ks observation in 2011. All the softness dip events show symmetric softness-ratio variations, and some of them have flat bottoms apparently due to saturation. The softness dip spectra are best described by either similar to 40% or similar to 70% partial covering absorption to kT similar to 12 keV plasma emission by matter with a neutral hydrogen column density of similar to(2-8) x 10(21) cm(-2), while the spectrum outside these dips is almost free of absorption. This result suggests the presence of two distinct X-ray-emitting spots in the.. Cas system, perhaps on a white dwarf (WD) companion with dipole mass accretion. The partial covering absorbers may be blobs in the Be stellar wind, the Be disk, or rotating around the WD companion. Weak correlations of the softness ratios to the hard X-ray flux suggest the presence of stable plasmas at kT similar to 0.9 and 5 keV, which may originate from the Be or WD winds. The formation of a Be star and WD binary system requires mass transfer between two stars; gamma Cas may have experienced such activity in the past. KW - blue stragglers KW - stars: emission-line, Be KW - stars: individual (gamma Cassiopeiae) KW - stars: winds, outflows KW - white dwarfs KW - X-rays: stars Y1 - 2016 U6 - https://doi.org/10.3847/0004-637X/832/2/140 SN - 0004-637X SN - 1538-4357 VL - 832 SP - 33 EP - 49 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Oskinova, Lida A1 - Sun, W. A1 - Evans, C. J. A1 - Henault-Brunet, V. A1 - Chu, Y.-H. A1 - Gallagher, J. S. A1 - Guerrero, Martín A. A1 - Gruendl, R. A. A1 - Güdel, M. A1 - Silich, S. A1 - Chen, Y. A1 - Naze, Y. A1 - Hainich, Rainer A1 - Reyes-Iturbide, J. T1 - Discovery of x-ray emission from young suns in the small magellanic cloud JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We report the discovery of extended X-ray emission within the young star cluster NGC 602a in the Wing of the Small Magellanic Cloud (SMC) based on observations obtained with the Chandra X-Ray Observatory. X-ray emission is detected from the cluster core area with the highest stellar density and from a dusty ridge surrounding the H II region. We use a census of massive stars in the cluster to demonstrate that a cluster wind or wind-blown bubble is unlikely to provide a significant contribution to the X-ray emission detected from the central area of the cluster. We therefore suggest that X-ray emission at the cluster core originates from an ensemble of low-and solar-mass pre-main-sequence (PMS) stars, each of which would be too weak in X-rays to be detected individually. We attribute the X-ray emission from the dusty ridge to the embedded tight cluster of the newborn stars known in this area from infrared studies. Assuming that the levels of X-ray activity in young stars in the low-metallicity environment of NGC 602a are comparable to their Galactic counterparts, then the detected spatial distribution, spectral properties, and level of X-ray emission are largely consistent with those expected from low-and solar-mass PMS stars and young stellar objects (YSOs). This is the first discovery of X-ray emission attributable to PMS stars and YSOs in the SMC, which suggests that the accretion and dynamo processes in young, low-mass objects in the SMC resemble those in the Galaxy. KW - Magellanic Clouds KW - ISM: bubbles KW - H II regions KW - stars: winds, outflows KW - stars: pre-main sequence KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/765/1/73 SN - 0004-637X VL - 765 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Oskinova, Lida A1 - Todt, Helge Tobias A1 - Ignace, Richard A1 - Brown, John C. A1 - Cassinelli, Joseph P. A1 - Hamann, Wolf-Rainer T1 - Early magnetic B-type stars X-ray emission and wind properties JF - Monthly notices of the Royal Astronomical Society N2 - We present a comprehensive study of X-ray emission by, and wind properties of, massive magnetic early B-type stars. Dedicated XMM-Newton observations were obtained for three early-type B-type stars, xi(1) CMa, V2052 Oph and zeta Cas, with recently discovered magnetic fields. We report the first detection of X-ray emission from V2052 Oph and zeta Cas. The latter is one the softest X-ray sources among the early-type stars, while the former is one of the X-ray faintest. The observations show that the X-ray spectra of our programme stars are quite soft with the bulk of X-ray emitting material having a temperature of about 1 MK. We compile the complete sample of early B-type stars with detected magnetic fields to date and existing X-ray measurements, in order to study whether the X-ray emission can be used as a general proxy for stellar magnetism. We find that the X-ray properties of early massive B-type magnetic stars are diverse, and that hard and strong X-ray emission does not necessarily correlate with the presence of a magnetic field, corroborating similar conclusions reached earlier for the classical chemically peculiar magnetic Bp-Ap stars. We analyse the ultraviolet (UV) spectra of five non-supergiant B stars with magnetic fields (tau Sco, beta Cep, xi(1) CMa, V2052 Oph and zeta Cas) by means of non-local thermodynamic equilibrium (non-LTE) iron-blanketed model atmospheres. The latter are calculated with the Potsdam Wolf-Rayet (PoWR) code, which treats the photosphere as well as the wind, and also accounts for X-rays. With the exception of t Sco, this is the first analysis of these stars by means of stellar wind models. Our models accurately fit the stellar photospheric spectra in the optical and the UV. The parameters of X-ray emission, temperature and flux are included in the model in accordance with observations. We confirm the earlier findings that the filling factors of X-ray emitting material are very high. Our analysis reveals that the magnetic early-type B stars studied here have weak winds with velocities not significantly exceeding upsilon(esc). The mass-loss rates inferred from the analysis of UV lines are significantly lower than predicted by hydrodynamically consistent models. We find that, although the X-rays strongly affect the ionization structure of the wind, this effect is not sufficient in reducing the total radiative acceleration. When the X-rays are accounted for at the intensity and temperatures observed, there is still sufficient radiative acceleration to drive a stronger mass-loss than we empirically infer from the UV spectral lines. KW - techniques: spectroscopic KW - stars: magnetic field KW - stars: massive KW - stars: mass loss KW - X-rays: stars Y1 - 2011 U6 - https://doi.org/10.1111/j.1365-2966.2011.19143.x SN - 0035-8711 VL - 416 IS - 2 SP - 1456 EP - 1474 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Foster, Mary Grace A1 - Poppenhäger, Katja A1 - Ilić Petković, Nikoleta A1 - Schwope, Axel T1 - Exoplanet X-ray irradiation and evaporation rates with eROSITA JF - Astronomy and astrophysics : an international weekly journal N2 - High-energy irradiation is a driver for atmospheric evaporation and mass loss in exoplanets. This work is based on data from eROSITA, the soft X-ray instrument on board the Spectrum Roentgen Gamma mission, as well as on archival data from other missions. We aim to characterise the high-energy environment of known exoplanets and estimate their mass-loss rates. We use X-ray source catalogues from eROSITA, XMM-Newton, Chandra, and ROSAT to derive X-ray luminosities of exoplanet host stars in the 0.2–2 keV energy band with an underlying coronal, that is, optically thin thermal spectrum. We present a catalogue of stellar X-ray and EUV luminosities, exoplanetary X-ray and EUV irradiation fluxes, and estimated mass-loss rates for a total of 287 exoplanets, 96 of which are characterised for the first time based on new eROSITA detections. We identify 14 first-time X-ray detections of transiting exoplanets that are subject to irradiation levels known to cause observable evaporation signatures in other exoplanets. This makes them suitable targets for follow-up observations. KW - stars: coronae KW - stars: activity KW - planet-star interactions KW - planets and KW - satellites: atmospheres KW - X-rays: stars Y1 - 2022 U6 - https://doi.org/10.1051/0004-6361/202141097 SN - 0004-6361 SN - 1432-0746 VL - 661 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Oskinova, Lida A1 - Schoeller, M. T1 - First detection of a magnetic field in the fast rotating runaway Oe star zeta Ophiuchi JF - Astronomische Nachrichten = Astronomical notes N2 - The star zeta Ophiuchi is one of the brightest massive stars in the northern hemisphere and was intensively studied in various wavelength domains. The currently available observational material suggests that certain observed phenomena are related to the presence of a magnetic field. We acquired spectropolarimetric observations of zeta Oph with FORS 1 mounted on the 8-m Kueyen telescope of the VLT to investigate if a magnetic field is indeed present in this star. Using all available absorption lines, we detect a mean longitudinal magnetic field < B(z)>(all) = 141 +/- 45 G, confirming the magnetic nature of this star. We review the X-ray properties of zeta Oph with the aim to understand whether the X-ray emission of zeta Oph is dominated by magnetic or by wind instability processes. KW - stars: mass-loss KW - stars: early-type KW - stars: magnetic field KW - stars: kinematics and dynamics KW - X-rays: stars KW - stars: individual: zeta Ophiuchi Y1 - 2011 U6 - https://doi.org/10.1002/asna.201111516 SN - 0004-6337 VL - 332 IS - 2 SP - 147 EP - 152 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Naze, Y. A1 - Broos, Patrick S. A1 - Oskinova, Lida A1 - Townsley, L. K. A1 - Cohen, David H. A1 - Corcoran, M. F. A1 - Evans, N. R. A1 - Gagne, M. A1 - Moffat, Anthony F. J. A1 - Pittard, J. M. A1 - Rauw, G. A1 - Ud-Doula, A. A1 - Walborn, N. R. T1 - GLOBAL X-RAY PROPERTIES OF THE O AND B STARS IN CARINA JF - ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES N2 - The key empirical property of the X-ray emission from O stars is a strong correlation between the bolometric and X-ray luminosities. In the framework of the Chandra Carina Complex Project, 129 O and B stars have been detected as X-ray sources; 78 of those, all with spectral type earlier than B3, have enough counts for at least a rough X-ray spectral characterization. This leads to an estimate of the L-X-L-BOL ratio for an exceptional number of 60 O stars belonging to the same region and triples the number of Carina massive stars studied spectroscopically in X-rays. The derived log(L-X/L-BOL) is -7.26 for single objects, with a dispersion of only 0.21 dex. Using the properties of hot massive stars listed in the literature, we compare the X-ray luminosities of different types of objects. In the case of O stars, the L-X-L-BOL ratios are similar for bright and faint objects, as well as for stars of different luminosity classes or spectral types. Binaries appear only slightly harder and slightly more luminous in X-rays than single objects; the differences are not formally significant (at the 1% level), except for the L-X-L-BOL ratio in the medium (1.0-2.5 keV) energy band. Weak-wind objects have similar X-ray luminosities but they display slightly softer spectra compared with "normal" O stars with the same bolometric luminosity. Discarding three overluminous objects, we find a very shallow trend of harder emission in brighter objects. The properties of the few B stars bright enough to yield some spectral information appear to be different overall (constant X-ray luminosities, harder spectra), hinting that another mechanism for producing X-rays, besides wind shocks, might be at work. However, it must be stressed that the earliest and X-ray brightest among these few detected objects are similar to the latest O stars, suggesting a possibly smooth transition between the two processes. KW - ISM: individual objects (Carina nebula) KW - stars: massive KW - X-rays: stars Y1 - 2011 U6 - https://doi.org/10.1088/0067-0049/194/1/7 SN - 0067-0049 VL - 194 IS - 1 PB - IOP PUBLISHING LTD CY - BRISTOL ER - TY - JOUR A1 - Poppenhäger, Katja T1 - Helium absorption in exoplanet atmospheres is connected to stellar coronal abundances JF - Monthly notices of the Royal Astronomical Society N2 - Transit observations in the helium triplet around 10 830 Angstrom are a successful tool to study exoplanetary atmospheres and their mass loss. Forming those lines requires ionization and recombination of helium in the exoplanetary atmosphere. This ionization is caused by stellar photons at extreme ultraviolet (EUV) wavelengths; however, no currently active telescopes can observe this part of the stellar spectrum. The relevant part of the stellar EUV spectrum consists of individual emission lines, many of them being formed by iron at coronal temperatures. The stellar iron abundance in the corona is often observed to be depleted for high-activity low-mass stars due to the first ionization potential (FIP) effect. I show that stars with high versus low coronal iron abundances follow different scaling laws that tie together their X-ray emission and the narrow-band EUV flux that causes helium ionization. I also show that the stellar iron to oxygen abundance ratio in the corona can be measured reasonably well from X-ray CCD spectra, yielding similar results to high-resolution X-ray observations. Taking coronal iron abundance into account, the currently observed large scatter in the relationship of EUV irradiation with exoplanetary helium transit depths can be reduced, improving the target selection criteria for exoplanet transmission spectroscopy. In particular, previously puzzling non-detections of helium for Neptunic exoplanets are now in line with expectations from the revised scaling laws. KW - planets and satellites: atmospheres KW - stars: abundances KW - stars: coronae KW - stars: late-type KW - ultraviolet: stars KW - X-rays: stars Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac507 SN - 0035-8711 SN - 1365-2966 VL - 512 IS - 2 SP - 1751 EP - 1764 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Shrader, C. R. A1 - Hamaguchi, K. A1 - Sturner, S. J. A1 - Oskinova, Lida A1 - Almeyda, T. A1 - Petre, R. T1 - Hifg-energy properties of the enigmatic be STAR gamma Cassiopeiae JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We present the results of a broadband X-ray study of the enigmatic Be star Gamma Cassiopeiae (herein gamma Cas) based on observations made with both the Suzaku and INTEGRAL observatories.. Cas has long been recognized as the prototypical example of a small subclass of Be stars with moderately strong X-ray emission dominated by a hot thermal component in the 0.5-12 keV energy range (L-x approximate to 10(32)-10(33) erg s(-1)). This places them at the high end of the known luminosity distribution for stellar emission, but several orders of magnitude below typical accretion-powered Be X-ray binaries. The INTEGRAL observations spanned an eight-year baseline and represent the deepest measurement to date at energies above similar to 50 keV. We find that the INTEGRAL data are consistent within statistics to a constant intensity source above 20 keV, with emission extending up to similar to 100 keV, and that searches for all of the previously reported periodicities of the system at lower energies led to null results. We further find that our combined Suzaku and INTEGRAL spectrum, which we suggest is the most accurate broadband X-ray measurement of gamma Cas to date, is fitted extremely well with a thermal plasma emission model with a single absorption component. We found no compelling need for an additional non-thermal high-energy component. We discuss these results in the context of a currently favored models for gamma Cas and its analogs. KW - gamma rays: stars KW - stars: emission-line, Be KW - stars: individual (gamma Cassiopeiae) KW - white dwarfs KW - X-rays: binaries KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1088/0004-637X/799/1/84 SN - 0004-637X SN - 1538-4357 VL - 799 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Oskinova, Lida A1 - Gayley, K. G. A1 - Hamann, Wolf-Rainer A1 - Huenemoerder, D. P. A1 - Ignace, R. A1 - Pollock, A. M. T. T1 - HIGH-RESOLUTION X-RAY SPECTROSCOPY REVEALS THE SPECIAL NATURE OF WOLF-RAYET STAR WINDS JF - ASTROPHYSICAL JOURNAL LETTERS N2 - We present the first high-resolutionX-ray spectrum of a putatively singleWolf-Rayet (WR) star. 400 ks observations of WR 6 by the XMM-Newton telescope resulted in a superb quality high-resolution X-ray spectrum. Spectral analysis reveals that the X-rays originate far out in the stellar wind, more than 30 stellar radii from the photosphere, and thus outside the wind acceleration zone where the line-driving instability (LDI) could create shocks. The X-ray emitting plasma reaches temperatures up to 50 MK and is embedded within the unshocked, "cool" stellar wind as revealed by characteristic spectral signatures. We detect a fluorescent Fe line at approximate to 6.4 keV. The presence of fluorescence is consistent with a two-component medium, where the cool wind is permeated with the hot X-ray emitting plasma. The wind must have a very porous structure to allow the observed amount of X-rays to escape. We find that neither the LDI nor any alternative binary scenario can explain the data. We suggest a scenario where X-rays are produced when the fast wind rams into slow "sticky clumps" that resist acceleration. Our new data show that the X-rays in single WR star are generated by some special mechanism different from the one operating in the O-star winds. KW - stars: individual (WR 6) KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - X-rays: stars Y1 - 2012 U6 - https://doi.org/10.1088/2041-8205/747/2/L25 SN - 2041-8205 VL - 747 IS - 2 PB - IOP PUBLISHING LTD CY - BRISTOL ER - TY - JOUR A1 - Sandin, C. A1 - Steffen, M. A1 - Schoenberner, D. A1 - Rühling, Ute T1 - Hot bubbles of planetary nebulae with hydrogen-deficient winds I. Heat conduction in a chemically stratified plasma JF - Frontiers in psychology N2 - Heat conduction has been found a plausible solution to explain discrepancies between expected and measured temperatures in hot bubbles of planetary nebulae (PNe). While the heat conduction process depends on the chemical composition, to date it has been exclusively studied for pure hydrogen plasmas in PNe. A smaller population of PNe show hydrogen-deficient and helium-and carbon-enriched surfaces surrounded by bubbles of the same composition; considerable differences are expected in physical properties of these objects in comparison to the pure hydrogen case. The aim of this study is to explore how a chemistry-dependent formulation of the heat conduction affects physical properties and how it affects the X-ray emission from PN bubbles of hydrogen-deficient stars. We extend the description of heat conduction in our radiation hydrodynamics code to work with any chemical composition. We then compare the bubble-formation process with a representative PN model using both the new and the old descriptions. We also compare differences in the resulting X-ray temperature and luminosity observables of the two descriptions. The improved equations show that the heat conduction in our representative model of a hydrogen-deficient PN is nearly as efficient with the chemistry-dependent description; a lower value on the diffusion coefficient is compensated by a slightly steeper temperature gradient. The bubble becomes somewhat hotter with the improved equations, but differences are otherwise minute. The observable properties of the bubble in terms of the X-ray temperature and luminosity are seemingly unaffected. KW - conduction KW - hydrodynamics KW - planetary nebulae: general KW - stars: AGB and post-AGB KW - stars: Wolf-Rayet KW - X-rays: stars Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527357 SN - 1432-0746 VL - 586 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Hubrig, Swetlana A1 - Schöller, Markus A1 - Kholtygin, Alexander F. A1 - Tsumura, Hiroki A1 - Hoshino, Akio A1 - Kitamoto, Shunji A1 - Oskinova, Lida A1 - Ignace, Richard A1 - Todt, Helge Tobias A1 - Ilyin, Ilya T1 - New multiwavelength observations of the Of?p star CPD-28 degrees 2561 JF - Monthly notices of the Royal Astronomical Society N2 - A rather strong mean longitudinal magnetic field of the order of a few hundred gauss was detected a few years ago in the Of?p star CPD -28 degrees 2561 using FORS2 (FOcal Reducer low dispersion Spectrograph 2) low-resolution spectropolarimetric observations. In this work, we present additional low-resolution spectropolarimetric observations obtained during several weeks in 2013 December using FORS 2 mounted at the 8-m Antu telescope of the Very Large Telescope (VLT). These observations cover a little less than half of the stellar rotation period of 73.41 d mentioned in the literature. The behaviour of the mean longitudinal magnetic field is consistent with the assumption of a single-wave variation during the stellar rotation cycle, indicating a dominant dipolar contribution to the magnetic field topology. The estimated polar strength of the surface dipole B-d is larger than 1.15 kG. Further, we compared the behaviour of the line profiles of various elements at different rotation phases associated with different magnetic field strengths. The strongest contribution of the emission component is observed at the phases when the magnetic field shows a negative or positive extremum. The comparison of the spectral behaviour of CPD -28 degrees 2561 with that of another Of?p star, HD 148937 of similar spectral type, reveals remarkable differences in the degree of variability between both stars. Finally, we present new X-ray observations obtained with the Suzaku X-ray Observatory. We report that the star is X-ray bright with log L-X/L-bol approximate to -5.7. The low-resolution X-ray spectra reveal the presence of a plasma heated up to 24 MK. We associate the 24 MK plasma in CPD -28 degrees 2561 with the presence of a kG strong magnetic field capable to confine stellar wind. KW - stars: atmospheres KW - stars: individual: CPD-28 degrees 2561 KW - stars: magnetic field KW - stars: mass-loss KW - stars: variables: general KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1093/mnras/stu2516 SN - 0035-8711 SN - 1365-2966 VL - 447 IS - 2 SP - 1885 EP - 1894 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Oskinova, Lida A1 - Huenemoerder, D. P. A1 - Hamann, Wolf-Rainer A1 - Shenar, Tomer A1 - Sander, Andreas Alexander Christoph A1 - Ignace, R. A1 - Todt, Helge Tobias A1 - Hainich, Rainer T1 - On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - The blue hypergiant Cyg OB2 12 (B3Ia(+)) is a representative member of the class of very massive stars in a poorly understood evolutionary stage. We obtained its high-resolution X-ray spectrum using the Chandra observatory. PoWR model atmospheres were calculated to provide realistic wind opacities and to establish the wind density structure. We find that collisional de-excitation is the dominant mechanism depopulating the metastable upper levels of the forbidden lines of the He-like ions Si XIV and Mg XII. Comparison between the model and observations reveals that X-ray emission is produced in a dense plasma, which could reside only at the photosphere or in a colliding wind zone between binary components. The observed X-ray spectra are well-fitted by thermal plasma models, with average temperatures in excess of 10 MK. The wind speed in Cyg OB2 12 is not high enough to power such high temperatures, but the collision of two winds in a binary system can be sufficient. We used archival data to investigate the X-ray properties of other blue hypergiants. In general, stars of this class are not detected as X-ray sources. We suggest that our new Chandra observations of Cyg OB2 12 can be best explained if Cyg OB2 12 is a colliding wind binary possessing a late O-type companion. This makes Cyg OB2 12 only the second binary system among the 16 known Galactic hypergiants. This low binary fraction indicates that the blue hypergiants are likely products of massive binary evolution during which they either accreted a significant amount of mass or already merged with their companions. KW - stars: individual (Cyg OB2 12) KW - stars: massive KW - stars: mass-loss KW - stars: winds, outflows KW - supergiants KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.3847/1538-4357/aa7e79 SN - 0004-637X SN - 1538-4357 VL - 845 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Hünemörder, David P. A1 - Oskinova, Lida A1 - Ignace, Richard A1 - Waldron, Wayne L. A1 - Todt, Helge Tobias A1 - Hamaguchi, Kenji A1 - Kitamoto, Shunji T1 - On the weak-wind problem in massive stars X-ray spectra reveal a massive hot wind in mu columbaea JF - The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters N2 - mu Columbae is a prototypical weak-wind O star for which we have obtained a high-resolution X-ray spectrum with the Chandra LETG/ACIS instrument and a low-resolution spectrum with Suzaku. This allows us, for the first time, to investigate the role of X-rays on the wind structure in a bona fide weak-wind system and to determine whether there actually is a massive hot wind. The X-ray emission measure indicates that the outflow is an order of magnitude greater than that derived from UV lines and is commensurate with the nominal wind-luminosity relationship for O stars. Therefore, the "weak-wind problem"-identified from cool wind UV/optical spectra-is largely resolved by accounting for the hot wind seen in X-rays. From X-ray line profiles, Doppler shifts, and relative strengths, we find that this weak-wind star is typical of other late O dwarfs. The X-ray spectra do not suggest a magnetically confined plasma-the spectrum is soft and lines are broadened; Suzaku spectra confirm the lack of emission above 2 keV. Nor do the relative line shifts and widths suggest any wind decoupling by ions. The He-like triplets indicate that the bulk of the X-ray emission is formed rather close to the star, within five stellar radii. Our results challenge the idea that some OB stars are "weak-wind" stars that deviate from the standard wind-luminosity relationship. The wind is not weak, but it is hot and its bulk is only detectable in X-rays. KW - stars: early-type KW - stars: individual (mu Col) KW - stars: mass-loss KW - X-rays: stars Y1 - 2012 U6 - https://doi.org/10.1088/2041-8205/756/2/L34 SN - 2041-8205 VL - 756 IS - 2 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Oskinova, Lida A1 - Todt, Helge Tobias A1 - Huenemoerder, David P. A1 - Hubrig, Swetlana A1 - Ignace, Richard A1 - Hamann, Wolf-Rainer A1 - Balona, Luis T1 - On X-ray pulsations in beta Cephei-type variables JF - Astronomy and astrophysics : an international weekly journal N2 - Context. beta Cep-type variables are early B-type stars that are characterized by oscillations observable in their optical light curves. At least one beta Cep-variable also shows periodic variability in X-rays. Aims. Here we study the X-ray light curves in a sample of beta Cep-variables to investigate how common X-ray pulsations are for this type of stars. Methods. We searched the Chandra and XMM-Newton X-ray archives and selected stars that were observed by these telescopes for at least three optical pulsational periods. We retrieved and analyzed the X-ray data for kappa Sco, beta Cru, and alpha Vir. The X-ray light curves of these objects were studied to test for their variability and periodicity. Results. While there is a weak indication for X-ray variability in beta Cru, we find no statistically significant evidence of X-ray pulsations in any of our sample stars. This might be due either to the insufficient data quality or to the physical lack of modulations. New, more sensitive observations should settle this question. KW - stars: massive KW - stars: variables: general KW - X-rays: stars Y1 - 2015 U6 - https://doi.org/10.1051/0004-6361/201525908 SN - 0004-6361 SN - 1432-0746 VL - 577 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Robrade, Jan A1 - Oskinova, Lida A1 - Schmitt, J. H. M. M. A1 - Leto, Paolo A1 - Trigilio, C. T1 - Outstanding X-ray emission from the stellar radio pulsar CU Virginis JF - Astronomy and astrophysics : an international weekly journal N2 - Context. Among the intermediate-mass magnetic chemically peculiar (MCP) stars, CU Vir is one of the most intriguing objects. Its 100% circularly polarized beams of radio emission sweep the Earth as the star rotates, thereby making this strongly magnetic star the prototype of a class of nondegenerate stellar radio pulsars. While CU Vir is well studied in radio, its high-energy properties are not known. Yet, X-ray emission is expected from stellar magnetospheres and confined stellar winds. Aims. Using X-ray data we aim to test CU Vir for intrinsic X-ray emission and investigate mechanisms responsible for its generation. Methods. We present X-ray observations performed with XMM-Newton and Chandra and study obtained X-ray images, light curves, and spectra. Basic X-ray properties are derived from spectral modelling and are compared with model predictions. In this context we investigate potential thermal and nonthermal X-ray emission scenarios. Results. We detect an X-ray source at the position of CU Vir. With LX approximate to 3 x 10(28) erg s(-1) it is moderately X-ray bright, but the spectrum is extremely hard compared to other Ap stars. Spectral modelling requires multi-component models with predominant hot plasma at temperatures of about T-X = 25MK or, alternatively, a nonthermal spectral component. Both types of model provide a virtually equivalent description of the X-ray spectra. The Chandra observation was performed six years later than those by XMM-Newton, yet the source has similar X-ray flux and spectrum, suggesting a steady and persistent X-ray emission. This is further confirmed by the X-ray light curves that show only mild X-ray variability. Conclusions. CU Vir is also an exceptional star at X-ray energies. To explain its full X-ray properties, a generating mechanism beyond standard explanations, like the presence of a low-mass companion or magnetically confined wind-shocks, is required. Magnetospheric activity might be present or, as proposed for fast-rotating strongly magnetic Bp stars, the X-ray emission of CU Vir is predominantly auroral in nature. KW - individual: CU Vir KW - stars: activity KW - stars: chemically peculiar KW - stars: magnetic field KW - X-rays: stars Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201833492 SN - 1432-0746 VL - 619 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Abramowski, Attila A1 - Aharonian, Felix A. A1 - Benkhali, Faical Ait A1 - Akhperjanian, A. G. A1 - Angüner, Ekrem Oǧuzhan A1 - Anton, Gisela A1 - Balenderan, Shangkari A1 - Balzer, Arnim A1 - Barnacka, Anna A1 - Becherini, Yvonne A1 - Tjus, J. Becker A1 - Bernlöhr, K. A1 - Birsin, E. A1 - Bissaldi, E. A1 - Biteau, Jonathan A1 - Boettcher, Markus A1 - Boisson, Catherine A1 - Bolmont, J. A1 - Bordas, Pol A1 - Brucker, J. A1 - Brun, Francois A1 - Brun, Pierre A1 - Bulik, Tomasz A1 - Carrigan, Svenja A1 - Casanova, Sabrina A1 - Cerruti, M. A1 - Chadwick, Paula M. A1 - Chalme-Calvet, R. A1 - Chaves, Ryan C. G. A1 - Cheesebrough, A. A1 - Chretien, M. A1 - Colafrancesco, Sergio A1 - Cologna, Gabriele A1 - Conrad, Jan A1 - Couturier, C. A1 - Dalton, M. A1 - Daniel, M. K. A1 - Davids, I. D. A1 - Degrange, B. A1 - Deil, C. A1 - deWilt, P. A1 - Dicldnson, H. J. A1 - Djannati-Ataï, A. A1 - Domainko, W. A1 - Dubus, G. A1 - Dutson, K. A1 - Dyks, J. A1 - Dyrda, M. A1 - Edwards, T. A1 - Egberts, Kathrin A1 - Eger, P. A1 - Espigat, P. A1 - Farnier, C. A1 - Fegan, S. A1 - Feinstein, F. A1 - Fernandes, M. V. A1 - Fernandez, D. A1 - Fiasson, A. A1 - Fontaine, G. A1 - Foerster, A. A1 - Fuessling, Matthias A1 - Gajdus, M. A1 - Gallant, Y. A. A1 - Garrigoux, T. A1 - Giebels, B. A1 - Glicenstein, J. F. A1 - Grondin, M-H A1 - Grudzinska, M. A1 - Haeffner, S. A1 - Hahn, J. A1 - Harris, J. A1 - Heinzelmann, G. A1 - Henri, G. A1 - Hermann, G. A1 - Hervet, O. A1 - Hillert, A. A1 - Hinton, James Anthony A1 - Hofmann, W. A1 - Hofverberg, P. A1 - Holler, Markus A1 - Horns, D. A1 - Jacholkowska, A. A1 - Jahn, C. A1 - Jamrozy, M. A1 - Janiak, M. A1 - Jankowsky, F. A1 - Jung, I. A1 - Kastendieck, M. A. A1 - Katarzynski, K. A1 - Katz, U. A1 - Kaufmann, S. A1 - Khelifi, B. A1 - Kieffer, M. A1 - Klepser, S. A1 - Klochkov, D. A1 - Kluzniak, W. A1 - Kneiske, T. A1 - Kolitzus, D. A1 - Komin, Nu A1 - Kosack, K. A1 - Krakau, S. A1 - Krayzel, F. A1 - Krueger, P. P. A1 - Laffon, H. A1 - Lamanna, G. A1 - Lefaucheur, J. A1 - Lemiere, A. A1 - Lemoine-Goumard, M. A1 - Lenain, J-P A1 - Lennarz, D. A1 - Lohse, T. A1 - Lopatin, A. A1 - Lu, C-C A1 - Marandon, V. A1 - Marcowith, Alexandre A1 - Marx, R. A1 - Maurin, G. A1 - Maxted, N. A1 - Mayer, M. A1 - McComb, T. J. L. A1 - Mehault, J. A1 - Menzler, U. A1 - Meyer, M. A1 - Moderski, R. A1 - Mohamed, M. A1 - Moulin, Emmanuel A1 - Murach, T. A1 - Naumann, C. L. A1 - de Naurois, M. A1 - Niemiec, J. A1 - Nolan, S. J. A1 - Oakes, L. A1 - Ohm, S. A1 - Wilhelmi, E. de Ona A1 - Opitz, B. A1 - Ostrowski, M. A1 - Oya, I. A1 - Panter, M. A1 - Parsons, R. D. A1 - Arribas, M. Paz A1 - Pekeur, N. W. A1 - Pelletier, G. A1 - Perez, J. A1 - Petrucci, P-O A1 - Peyaud, B. A1 - Pita, S. A1 - Poon, H. A1 - Puehlhofer, G. A1 - Punch, M. A1 - Quirrenbach, A. A1 - Raab, S. A1 - Raue, M. A1 - Reimer, A. A1 - Reimer, O. A1 - Renaud, M. A1 - de los Reyes, R. A1 - Rieger, F. A1 - Rob, L. A1 - Romoli, C. A1 - Rosier-Lees, S. A1 - Rowell, G. A1 - Rudak, B. A1 - Rulten, C. B. A1 - Sahakian, V. A1 - Sanchez, David M. A1 - Santangelo, A. A1 - Schlickeiser, R. A1 - Schuessler, F. A1 - Schulz, A. A1 - Schwanke, U. A1 - Schwarzburg, S. A1 - Schwemmer, S. A1 - Sol, H. A1 - Spengler, G. A1 - Spies, F. A1 - Stawarz, L. A1 - Steenkamp, R. A1 - Stegmann, Christian A1 - Stinzing, F. A1 - Stycz, K. A1 - Sushch, Iurii A1 - Szostek, A. A1 - Tam, P. H. T. A1 - Tavernet, J-P A1 - Tavernier, T. A1 - Taylor, A. M. A1 - Terrier, R. A1 - Tluczykont, M. A1 - Trichard, C. A1 - Valerius, K. A1 - van Eldik, C. A1 - Vasileiadis, G. A1 - Venter, C. A1 - Viana, A. A1 - Vincent, P. A1 - Voelk, H. J. A1 - Volpe, F. A1 - Vorster, M. A1 - Wagner, S. J. A1 - Wagner, P. A1 - Ward, M. A1 - Weidinger, M. A1 - Weitzel, Q. A1 - White, R. A1 - Wierzcholska, A. A1 - Willmann, P. A1 - Woernlein, A. A1 - Wouters, D. A1 - Zacharias, M. A1 - Zajczyk, A. A1 - Zdziarski, A. A. A1 - Zech, Alraune A1 - Zechlin, H-S T1 - Search for TeV Gamma-ray emission from GRB 100621A, an extremely bright GRB in X-rays, with HESS JF - Astronomy and astrophysics : an international weekly journal N2 - The long gamma-ray burst (GRB) 100621A, at the time the brightest X-ray transient ever detected by Swift-XRT in the 0.3-10 keV range, has been observed with the H.E.S.S. imaging air Cherenkov telescope array, sensitive to gamma radiation in the very-high-energy (VHE, >100 GeV) regime. Due to its relatively small redshift of z similar to 0.5, the favourable position in the southern sky and the relatively short follow-up time (<700 s after the satellite trigger) of the H.E.S.S. observations, this GRB could be within the sensitivity reach of the HESS. instrument. The analysis of the HESS. data shows no indication of emission and yields an integral flux upper limit above similar to 380 GeV of 4.2 x 10(-12) cm(-2) s(-1) s (95% confidence level), assuming a simple Band function extension model. A comparison to a spectral-temporal model, normalised to the prompt flux at sub-MeV energies, constraints the existence of a temporally extended and strong additional hard power law, as has been observed in the other bright X-ray GRB 130427A. A comparison between the HESS. upper limit and the contemporaneous energy output in X-rays constrains the ratio between the X-ray and VHE gamma-ray fluxes to be greater than 0.4. This value is an important quantity for modelling the afterglow and can constrain leptonic emission scenarios, where leptons are responsible for the X-ray emission and might produce VHE gamma rays. KW - gamma rays: general KW - gamma-ray burst: individual: GRB 100621A KW - gamma rays: stars KW - X-rays: stars Y1 - 2014 U6 - https://doi.org/10.1051/0004-6361/201322984 SN - 0004-6361 SN - 1432-0746 VL - 565 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Leto, Paolo A1 - Trigilio, C. A1 - Oskinova, Lida A1 - Ignace, R. A1 - Buemi, C. S. A1 - Umana, G. A1 - Ingallinera, A. A1 - Todt, Helge Tobias A1 - Leone, F. T1 - The detection of variable radio emission from the fast rotating magnetic hot B-star HR 7355 and evidence for its X-ray aurorae JF - Monthly notices of the Royal Astronomical Society N2 - In this paper, we investigate the multiwavelength properties of the magnetic early B-type star HR 7355. We present its radio light curves at several frequencies, taken with the Jansky Very Large Array, and X-ray spectra, taken with the XMM-Newton X-ray telescope. Modelling of the radio light curves for the Stokes I and V provides a quantitative analysis of the HR 7355 magnetosphere. A comparison between HR 7355 and a similar analysis for the Ap star CU Vir allows us to study how the different physical parameters of the two stars affect the structure of the respective magnetospheres where the non-thermal electrons originate. Our model includes a cold thermal plasma component that accumulates at high magnetic latitudes that influences the radio regime, but does not give rise to X-ray emission. Instead, the thermal X-ray emission arises from shocks generated by wind stream collisions close to the magnetic equatorial plane. The analysis of the X-ray spectrum of HR 7355 also suggests the presence of a non-thermal radiation. Comparison between the spectral index of the power-law X-ray energy distribution with the non-thermal electron energy distribution indicates that the non-thermal X-ray component could be the auroral signature of the non-thermal electrons that impact the stellar surface, the same non-thermal electrons that are responsible for the observed radio emission. On the basis of our analysis, we suggest a novel model that simultaneously explains the X-ray and the radio features of HR 7355 and is likely relevant for magnetospheres of other magnetic early-type stars. KW - stars: chemically peculiar KW - stars: early-type KW - stars: individual: HR 7355 KW - stars: magnetic field KW - radio continuum: stars KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx267 SN - 0035-8711 SN - 1365-2966 VL - 467 SP - 2820 EP - 2833 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Pillitteri, Ignazio A1 - Wolk, Scott J. A1 - Reale, Fabio A1 - Oskinova, Lida T1 - The early B-type star Rho Ophiuchi A is an X-ray lighthouse JF - Astronomy and astrophysics : an international weekly journal N2 - We present the results of a 140 ks XMM-Newton observation of the B2 star rho Oph A. The star has exhibited strong X-ray variability: a cusp-shaped increase of rate, similar to that which we partially observed in 2013, and a bright flare. These events are separated in time by about 104 ks, which likely correspond to the rotational period of the star (1.2 days). Time resolved spectroscopy of the X-ray spectra shows that the first event is caused by an increase of the plasma emission measure, while the second increase of rate is a major flare with temperatures in excess of 60 MK (kT similar to 5 keV). From the analysis of its rise, we infer a magnetic field of >= 300 G and a size of the flaring region of similar to 1.4-1.9 x 10(11) cm, which corresponds to similar to 25%-30% of the stellar radius. We speculate that either an intrinsic magnetism that produces a hot spot on its surface or an unknown low mass companion are the source of such X-rays and variability. A hot spot of magnetic origin should be a stable structure over a time span of >= 2.5 yr, and suggests an overall large scale dipolar magnetic field that produces an extended feature on the stellar surface. In the second scenario, a low mass unknown companion is the emitter of X-rays and it should orbit extremely close to the surface of the primary in a locked spin-orbit configuration, almost on the verge of collapsing onto the primary. As such, the X-ray activity of the secondary star would be enhanced by its young age, and the tight orbit as in RS Cvn systems. In both cases rho Oph would constitute an extreme system that is worthy of further investigation. KW - stars: activity KW - stars: individual: Rho Ophiuchi KW - stars: early-type KW - stars: magnetic field KW - starspots KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201630070 SN - 1432-0746 VL - 602 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Bozzo, Enrico A1 - Oskinova, Lida A1 - Lobel, A. A1 - Hamann, Wolf-Rainer T1 - The super-orbital modulation of supergiant high-mass X-ray binaries JF - Astronomy and astrophysics : an international weekly journal N2 - The long-term X-ray light curves of classical supergiant X-ray binaries and supergiant fast X-ray transients show relatively similar super-orbital modulations, which are still lacking a sound interpretation. We propose that these modulations are related to the presence of corotating interaction regions (CIRs) known to thread the winds of OB supergiants. To test this hypothesis, we couple the outcomes of three-dimensional (3D) hydrodynamic models for the formation of CIRs in stellar winds with a simplified recipe for the accretion onto a neutron star. The results show that the synthetic X-ray light curves are indeed modulated by the presence of the CIRs. The exact period and amplitude of these modulations depend on a number of parameters governing the hydrodynamic wind models and on the binary orbital configuration. To compare our model predictions with the observations, we apply the 3D wind structure previously shown to well explain the appearance of discrete absorption components in the UV time series of a prototypical B0.5I-type supergiant. Using the orbital parameters of IGRJ 16493-4348, which has the same B0.5I donor spectral type, the period and modulations in the simulated X-ray light curve are similar to the observed ones, thus providing support to our scenario. We propose that the presence of CIRs in donor star winds should be considered in future theoretical and simulation efforts of wind-fed X-ray binaries. KW - X-rays: stars KW - X-rays: binaries KW - gamma rays: stars KW - stars: massive KW - stars: neutron Y1 - 2017 U6 - https://doi.org/10.1051/0004-6361/201731930 SN - 1432-0746 VL - 606 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Bozzo, Enrico A1 - Romano, Patrizia A1 - Ferrigno, Carlo A1 - Oskinova, Lida T1 - The symbiotic X-ray binaries Sct X-1, 4U 1700+24, and IGR J17329-2731 JF - Monthly notices of the Royal Astronomical Society N2 - Symbiotic X-ray binaries are systems hosting a neutron star accreting form the wind of a late-type companion. These are rare objects and so far only a handful of them are known. One of the most puzzling aspects of the symbiotic X-ray binaries is the possibility that they contain strongly magnetized neutron stars. These are expected to be evolutionary much younger compared to their evolved companions and could thus be formed through the (yet poorly known) accretion induced collapse of a white dwarf. In this paper, we perform a broad-band X-ray and soft gamma-ray spectroscopy of two known symbiotic binaries, Sct X-1 and 4U 1700+24, looking for the presence of cyclotron scattering features that could confirm the presence of strongly magnetized NSs. We exploited available Chandra, Swift, and NuSTAR data. We find no evidence of cyclotron resonant scattering features (CRSFs) in the case of Sct X-1 but in the case of 4U 1700+24 we suggest the presence of a possible CRSF at similar to 16 keV and its first harmonic at similar to 31 keV, although we could not exclude alternative spectral models for the broad-band fit. If confirmed by future observations, 4U 1700+24 could be the second symbiotic X-ray binary with a highly magnetized accretor. We also report about our long-term monitoring of the last discovered symbiotic X-ray binary IGR J17329-2731 performed with Swift/XRT. The monitoring revealed that, as predicted, in 2017 this object became a persistent and variable source, showing X-ray flares lasting for a few days and intriguing obscuration events that are interpreted in the context of clumpy wind accretion. KW - accretion KW - accretion discs KW - stars: massive KW - stars: neutron KW - X-rays: binaries KW - X-rays: individual: SctX-1 KW - X-rays: individual: 4U1700+24; KW - X-rays: stars KW - X-rays: individual: IGRJ17329-2731 Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac907 SN - 0035-8711 SN - 1365-2966 VL - 513 IS - 1 SP - 42 EP - 54 PB - Oxford University Press CY - Oxford ER - TY - JOUR A1 - Gomez-Moran, Ada Nebot A1 - Oskinova, Lida T1 - The X-ray catalog of spectroscopically identified Galactic O stars Investigating the dependence of X-ray luminosity on stellar and wind parameters JF - Astronomy and astrophysics : an international weekly journal N2 - The X-ray emission of O-type stars was first discovered in the early days of the Einstein satellite. Since then many different surveys have confirmed that the ratio of X-ray to bolometric luminosity in O-type stars is roughly constant, but there is a paucity of studies that account for detailed information on spectral and wind properties of O-stars. Recently a significant sample of O stars within our Galaxy was spectroscopically identified and presented in the Galactic O-Star Spectroscopic Survey (GOSS). At the same time, a large high-fidelity catalog of X-ray sources detected by the XMM-Newton X-ray telescope was released. Here we present the X-ray catalog of O stars with known spectral types and investigate the dependence of their X-ray properties on spectral type as well as stellar and wind parameters. We find that, among the GOSS sample, 127 O-stars have a unique XMM-Newton source counterpart and a Gaia data release 2 (DR2) association. Terminal velocities are known for a subsample of 35 of these stars. We confirm that the X-ray luminosities of dwarf and giant O stars correlate with their bolometric luminosity. For the subsample of O stars with measure terminal velocities we find that the X-ray luminosities of dwarf and giant O stars also correlate with wind parameters. However, we find that these correlations break down for supergiant stars. Moreover, we show that supergiant stars are systematically harder in X-rays compared to giant and dwarf O-type stars. We find that the X-ray luminosity depends on spectral type, but seems to be independent of whether the stars are single or in a binary system. Finally, we show that the distribution of log(L-X/L-bol) in our sample stars is non-Gaussian, with the peak of the distribution at log(L-X/L-bol) approximate to -6.6. KW - stars: massive KW - X-rays: stars Y1 - 2018 U6 - https://doi.org/10.1051/0004-6361/201833453 SN - 1432-0746 VL - 620 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Ignace, Rico A1 - Gayley, Kenneth G. A1 - Hamann, Wolf-Rainer A1 - Huenemoerder, David P. A1 - Oskinova, Lida A1 - Pollock, Andy M. T. A1 - McFall, Michael T1 - THE XMM-NEWTON/EPIC X-RAY LIGHT CURVE ANALYSIS OF WR 6 JF - The astrophysical journal : an international review of spectroscopy and astronomical physics N2 - We obtained four pointings of over 100 ks each of the well-studied Wolf-Rayet star WR 6 with the XMM-Newton satellite. With a first paper emphasizing the results of spectral analysis, this follow-up highlights the X-ray variability clearly detected in all four pointings. However, phased light curves fail to confirm obvious cyclic behavior on the well-established 3.766 day period widely found at longer wavelengths. The data are of such quality that we were able to conduct a search for event clustering in the arrival times of X-ray photons. However, we fail to detect any such clustering. One possibility is that X-rays are generated in a stationary shock structure. In this context we favor a corotating interaction region (CIR) and present a phenomenological model for X-rays from a CIR structure. We show that a CIR has the potential to account simultaneously for the X-ray variability and constraints provided by the spectral analysis. Ultimately, the viability of the CIR model will require both intermittent long-term X-ray monitoring of WR 6 and better physical models of CIR X-ray production at large radii in stellar winds. KW - stars: individual (WR 6) KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - X-rays: stars Y1 - 2013 U6 - https://doi.org/10.1088/0004-637X/775/1/29 SN - 0004-637X VL - 775 IS - 1 PB - IOP Publ. Ltd. CY - Bristol ER - TY - JOUR A1 - Ilić Petković, Nikoleta A1 - Poppenhäger, Katja A1 - Hosseini, Seyede Marzieh T1 - Tidal star-planet interaction and its observed impact on stellar activity in planet-hosting wide binary systems JF - Monthly notices of the Royal Astronomical Society N2 - Tidal interaction between an exoplanet and its host star is a possible pathway to transfer angular momentum between the planetary orbit and the stellar spin. In cases where the planetary orbital period is shorter than the stellar rotation period, this may lead to angular momentum being transferred into the star's rotation, possibly counteracting the intrinsic stellar spin-down induced by magnetic braking. Observationally, detecting altered rotational states of single, cool field stars is challenging, as precise ages for such stars are rarely available. Here we present an empirical investigation of the rotation and magnetic activity of a sample of planet-hosting stars that are accompanied by wide stellar companions. Without needing knowledge about the absolute ages of the stars, we test for relative differences in activity and rotation of the planet hosts and their co-eval companions, using X-ray observations to measure the stellar activity levels. Employing three different tidal interaction models, we find that host stars with planets that are expected to tidally interact display elevated activity levels compared to their companion stars. We also find that those activity levels agree with the observed rotational periods for the host stars along the usual rotation-activity relationships, implying that the effect is indeed caused by a tidal interaction and not a purely magnetic interaction that would be expected to affect the stellar activity, but not necessarily the rotation. We conclude that massive, close-in planets have an impact on the stellar rotational evolution, while the smaller, more distant planets do not have a significant influence. KW - planet-star interactions KW - stars: activity KW - binaries: general KW - stars: KW - evolution KW - planets and satellites: general KW - X-rays: stars Y1 - 2022 U6 - https://doi.org/10.1093/mnras/stac861 SN - 0035-8711 SN - 1365-2966 VL - 513 IS - 3 SP - 4380 EP - 4404 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - De Becker, M. A1 - del Valle, Maria Victoria A1 - Romero, G. E. A1 - Peri, C. S. A1 - Benaglia, P. T1 - X- ray study of bow shocks in runaway stars JF - Monthly notices of the Royal Astronomical Society N2 - Massive runaway stars produce bow shocks through the interaction of their winds with the interstellar medium, with the prospect for particle acceleration by the shocks. These objects are consequently candidates for non-thermal emission. Our aim is to investigate the X-ray emission from these sources. We observed with XMM-Newton a sample of five bow shock runaways, which constitutes a significant improvement of the sample of bow shock runaways studied in X-rays so far. A careful analysis of the data did not reveal any X-ray emission related to the bow shocks. However, X-ray emission from the stars is detected, in agreement with the expected thermal emission from stellar winds. On the basis of background measurements we derive conservative upper limits between 0.3 and 10 keV on the bow shocks emission. Using a simple radiation model, these limits together with radio upper limits allow us to constrain some of the main physical quantities involved in the non-thermal emission processes, such as the magnetic field strength and the amount of incident infrared photons. The reasons likely responsible for the non-detection of non-thermal radiation are discussed. Finally, using energy budget arguments, we investigate the detectability of inverse Compton X-rays in a more extended sample of catalogued runaway star bow shocks. From our analysis we conclude that a clear identification of non-thermal X-rays from massive runaway bow shocks requires one order of magnitude (or higher) sensitivity improvement with respect to present observatories. KW - acceleration of particles KW - radiation mechanisms: non-thermal KW - stars: earlytype KW - X-rays: stars Y1 - 2017 U6 - https://doi.org/10.1093/mnras/stx1826 SN - 0035-8711 SN - 1365-2966 VL - 471 SP - 4452 EP - 4464 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Oskinova, Lida A1 - Hamann, Wolf-Rainer A1 - Cassinelli, Joseph P. A1 - Brown, John C. A1 - Todt, Helge Tobias T1 - X-ray emission from massive stars with magnetic fields JF - Astronomische Nachrichten = Astronomical notes N2 - We investigate the connections between the magnetic fields and the X-ray emission from massive stars. Our study shows that the X-ray properties of known strongly magnetic stars are diverse: while some comply to the predictions of the magnetically confined wind model, others do not. We conclude that strong, hard, and variable X-ray emission may be a sufficient attribute of magnetic massive stars, but it is not a necessary one. We address the general properties of X-ray emission from "normal" massive stars, especially the long standing mystery about the correlations between the parameters of X-ray emission and fundamental stellar properties. The recent development in stellar structure modeling shows that small-scale surface magnetic fields may be common. We suggest a "hybrid" scenario which could explain the X-ray emission from massive stars by a combination of magnetic mechanisms on the surface and shocks in the stellar wind. The magnetic mechanisms and the wind shocks are triggered by convective motions in sub-photospheric layers. This scenario opens the door for a natural explanation of the well established correlation between bolometric and X-ray luminosities. KW - stars: magnetic fields KW - stars: mass-loss KW - stars: winds, outflows KW - stars: Wolf-Rayet KW - techniques: spectroscopic KW - X-rays: stars Y1 - 2011 U6 - https://doi.org/10.1002/asna.201111602 SN - 0004-6337 VL - 332 IS - 9-10 SP - 988 EP - 993 PB - Wiley-Blackwell CY - Malden ER - TY - JOUR A1 - Parkin, E. R. A1 - Broos, Patrick S. A1 - Townsley, L. K. A1 - Pittard, J. M. A1 - Moffat, Anthony F. J. A1 - Naze, Y. A1 - Rauw, G. A1 - Oskinova, Lida A1 - Waldron, W. L. T1 - X-RAY EMISSION FROM THE DOUBLE-BINARY OB-STAR SYSTEM QZ CAR (HD 93206) JF - ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES N2 - X-ray observations of the double-binary OB-star system QZ Car (HD 93206) obtained with the Chandra X-ray Observatory over a period of roughly 2 years are presented. The respective orbits of systems A (O9.7 I+b2 v, P-A = 21 days) and B (O8 III+o9 v, P-B = 6 days) are reasonably well sampled by the observations, allowing the origin of the X-ray emission to be examined in detail. The X-ray spectra can be well fitted by an attenuated three-temperature thermal plasma model, characterized by cool, moderate, and hot plasma components at kT similar or equal to 0.2, 0.7, and 2 keV, respectively, and a circumstellar absorption of similar or equal to 0.2 x 10(22) cm(-2). Although the hot plasma component could be indicating the presence of wind-wind collision shocks in the system, the model fluxes calculated from spectral fits, with an average value of similar or equal to 7x10(-13) erg s(-1) cm(-2), do not show a clear correlation with the orbits of the two constituent binaries. A semi-analytical model of QZ Car reveals that a stable momentum balance may not be established in either system A or B. Yet, despite this, system B is expected to produce an observed X-ray flux well in excess of the observations. If one considers the wind of the O8 III star to be disrupted by mass transfer, the model and observations are in far better agreement, which lends support to the previous suggestion of mass transfer in the O8 III+o9 v binary. We conclude that the X-ray emission from QZ Car can be reasonably well accounted for by a combination of contributions mainly from the single stars and the mutual wind-wind collision between systems A and B. KW - hydrodynamics KW - stars: early-type KW - stars: individual (QZ Carinae) KW - stars: massive KW - stars: winds, outflows KW - X-rays: stars Y1 - 2011 U6 - https://doi.org/10.1088/0067-0049/194/1/8 SN - 0067-0049 VL - 194 IS - 1 PB - IOP PUBLISHING LTD CY - BRISTOL ER - TY - JOUR A1 - Poppenhäger, Katja A1 - Ketzer, Laura A1 - Mallonn, Matthias T1 - X-ray irradiation and evaporation of the four young planets around V1298 Tau JF - Monthly notices of the Royal Astronomical Society N2 - Planets around young stars are thought to undergo atmospheric evaporation due to the high magnetic activity of the host stars. Here we report on X-ray observations of V1298 Tau, a young star with four transiting exoplanets. We use X-ray observations of the host star with Chandra and ROSAT to measure the current high-energy irradiation level of the planets and employ a model for the stellar activity evolution together with exoplanetary mass-loss to estimate the possible evolution of the planets. We find that V1298 Tau is X-ray bright with log L-X [erg s(-1)] = 30.1 and has a mean coronal temperature of approximate to 9 MK. This places the star amongst the more X-ray luminous ones at this stellar age. We estimate the radiation-driven mass-loss of the exoplanets and find that it depends sensitively on the possible evolutionary spin-down tracks of the star as well as on the current planetary densities. Assuming the planets are of low density due to their youth, we find that the innermost two planets can lose significant parts of their gaseous envelopes and could be evaporated down to their rocky cores depending on the stellar spin evolution. However, if the planets are heavier and follow the mass-radius relation of older planets, then even in the highest XUV irradiation scenario none of the planets is expected to cross the radius gap into the rocky regime until the system reaches an age of 5 Gyr. KW - planets and satellites: atmospheres KW - planet-star interactions KW - stars: activity KW - stars: individual: V1298 Tau KW - X-rays: stars Y1 - 2020 U6 - https://doi.org/10.1093/mnras/staa1462 SN - 0035-8711 SN - 1365-2966 VL - 500 IS - 4 SP - 4560 EP - 4572 PB - Oxford Univ. Press CY - Oxford ER -