TY - JOUR A1 - Do Thi Chinh, A1 - Bubeck, Philip A1 - Nguyen Viet Dung, A1 - Kreibich, Heidi T1 - The 2011 flood event in the Mekong Delta: preparedness, response, damage and recovery of private households and small businesses JF - Disasters : the journal of disaster studies, policy and management N2 - Floods frequently cause substantial economic and human losses, particularly in developing countries. For the development of sound flood risk management schemes that reduce flood consequences, detailed insights into the different components of the flood risk management cycle, such as preparedness, response, flood impact analyses and recovery, are needed. However, such detailed insights are often lacking: commonly, only (aggregated) data on direct flood damage are available. Other damage categories such as losses owing to the disruption of production processes are usually not considered, resulting in incomplete risk assessments and possibly inappropriate recommendations for risk management. In this paper, data from 858 face-to-face interviews among flood-prone households and small businesses in Can Tho city in the Vietnamese Mekong Delta are presented to gain better insights into the damage caused by the 2011 flood event and its management by households and businesses. KW - Can Tho KW - floods KW - flood damage KW - flood loss KW - flood risk management KW - Mekong Delta KW - Vietnam Y1 - 2016 U6 - https://doi.org/10.1111/disa.12171 SN - 0361-3666 SN - 1467-7717 VL - 40 SP - 753 EP - 778 PB - Wiley-Blackwell CY - Hoboken ER - TY - JOUR A1 - Schroeter, Kai A1 - Kreibich, Heidi A1 - Vogel, Kristin A1 - Riggelsen, Carsten A1 - Scherbaum, Frank A1 - Merz, Bruno T1 - How useful are complex flood damage models? JF - Water resources research N2 - We investigate the usefulness of complex flood damage models for predicting relative damage to residential buildings in a spatial and temporal transfer context. We apply eight different flood damage models to predict relative building damage for five historic flood events in two different regions of Germany. Model complexity is measured in terms of the number of explanatory variables which varies from 1 variable up to 10 variables which are singled out from 28 candidate variables. Model validation is based on empirical damage data, whereas observation uncertainty is taken into consideration. The comparison of model predictive performance shows that additional explanatory variables besides the water depth improve the predictive capability in a spatial and temporal transfer context, i.e., when the models are transferred to different regions and different flood events. Concerning the trade-off between predictive capability and reliability the model structure seem more important than the number of explanatory variables. Among the models considered, the reliability of Bayesian network-based predictions in space-time transfer is larger than for the remaining models, and the uncertainties associated with damage predictions are reflected more completely. KW - floods KW - damage KW - model validation KW - Bayesian networks KW - regression tree Y1 - 2014 U6 - https://doi.org/10.1002/2013WR014396 SN - 0043-1397 SN - 1944-7973 VL - 50 IS - 4 SP - 3378 EP - 3395 PB - American Geophysical Union CY - Washington ER - TY - JOUR A1 - Sultana, Zakia A1 - Sieg, Tobias A1 - Kellermann, Patric A1 - Müller, Meike A1 - Kreibich, Heidi T1 - Assessment of business interruption of flood-affected companies using random forests JF - Water N2 - Losses due to floods have dramatically increased over the past decades, and losses of companies, comprising direct and indirect losses, have a large share of the total economic losses. Thus, there is an urgent need to gain more quantitative knowledge about flood losses, particularly losses caused by business interruption, in order to mitigate the economic loss of companies. However, business interruption caused by floods is rarely assessed because of a lack of sufficiently detailed data. A survey was undertaken to explore processes influencing business interruption, which collected information on 557 companies affected by the severe flood in June 2013 in Germany. Based on this data set, the study aims to assess the business interruption of directly affected companies by means of a Random Forests model. Variables that influence the duration and costs of business interruption were identified by the variable importance measures of Random Forests. Additionally, Random Forest-based models were developed and tested for their capacity to estimate business interruption duration and associated costs. The water level was found to be the most important variable influencing the duration of business interruption. Other important variables, relating to the estimation of business interruption duration, are the warning time, perceived danger of flood recurrence and inundation duration. In contrast, the amount of business interruption costs is strongly influenced by the size of the company, as assessed by the number of employees, emergency measures undertaken by the company and the fraction of customers within a 50 km radius. These results provide useful information and methods for companies to mitigate their losses from business interruption. However, the heterogeneity of companies is relatively high, and sector-specific analyses were not possible due to the small sample size. Therefore, further sector-specific analyses on the basis of more flood loss data of companies are recommended. KW - business interruption KW - floods KW - Random Forests KW - companies KW - variable importance Y1 - 2018 U6 - https://doi.org/10.3390/w10081049 SN - 2073-4441 VL - 10 IS - 8 PB - MDPI CY - Basel ER -