TY - JOUR A1 - Sachse, Rene A1 - Petzoldt, Thomas A1 - Blumstock, Maria A1 - Moreira, Santiago A1 - Paetzig, Marlene A1 - Ruecker, Jacqueline A1 - Janse, Jan H. A1 - Mooij, Wolf M. A1 - Hilt, Sabine T1 - Extending one-dimensional models for deep lakes to simulate the impact of submerged macrophytes on water quality JF - Environmental modelling & software with environment data news N2 - Submerged macrophytes can stabilise clear water conditions in shallow lakes. However, many existing models for deep lakes neglect their impact. Here, we tested the hypothesis that submerged macrophytes can affect the water clarity in deep lakes. A one-dimensional, vertically resolved macrophyte model was developed based on PCLake and coupled to SALMO-1D and GOTM hydrophysics and validated against field data. Validation showed good coherence in dynamic growth patterns and colonisation depths. In our simulations the presence of submerged macrophytes resulted in up to 50% less phytoplankton biomass in the shallowest simulated lake (11 m) and still 15% less phytoplankton was predicted in 100 m deep oligotrophic lakes. Nutrient loading, lake depth, and lake shape had a strong influence on macrophyte effects. Nutrient competition was found to be the strongest biological interaction. Despite a number of limitations, the derived dynamic lake model suggests significant effects of submerged macrophytes on deep lake water quality. (C) 2014 Elsevier Ltd. All rights reserved. KW - Lake model KW - Macrophytes KW - Water quality Y1 - 2014 U6 - https://doi.org/10.1016/j.envsoft.2014.05.023 SN - 1364-8152 SN - 1873-6726 VL - 61 SP - 410 EP - 423 PB - Elsevier CY - Oxford ER -