TY - JOUR A1 - Reinkensmeier, Annika A1 - Bassler, Sara A1 - Schlueter, Oliver A1 - Rohn, Sascha A1 - Rawel, Harshadrai Manilal T1 - Characterization of individual proteins in pea protein isolates and air classified samples JF - Food research international N2 - Generally, pea proteins are extracted at comparatively acidic or basic pH values to provide a basis for protein isolate production. Such processing steps result in partial denaturation of the proteins rendering them in most cases insoluble at food processing pH conditions and limiting their application in food products. Here, the comparison of the solubility properties of pea proteins in protein enriched fractions deriving from air classification is reported. Protein content, solubility, and physicochemical parameters of different fractions of the pea (Pisum sativum) variety 'Salamanca' were investigated as a function of pH using SDS-PAGE and surface hydrophobicity. Whole pea flour (20% protein), air classified, protein-enriched pea flour (48% protein), pea flour made from hulls (2.8% protein), and pea protein isolate (81% protein) served as test materials. Fractionation and pH value affected the composition and surface hydrophobicity of the proteins as well as the content of trypsin inhibitors. All samples showed a high buffering capacity in the range of pH 4 to 10. The direct comparison documents the comparatively better protein quality of the air classified, protein enriched pea fraction. The solubility of the pea protein isolate can be improved by using selected additives, giving new possibilities for plant protein application. Relevant technofunctional properties were determined and compared with two commercially available pea-based products (whole pea flour and an isolate). Water binding capacity was highest for the commercially available pea flour followed by the pea hull flour. Fat binding capacity remained more or less unchanged. (C) 2015 Elsevier Ltd. All rights reserved. KW - Pea flour KW - Pea protein isolate KW - Extraction KW - Physicochemical properties KW - Technofunctional properties Y1 - 2015 U6 - https://doi.org/10.1016/j.foodres.2015.05.009 SN - 0963-9969 SN - 1873-7145 VL - 76 SP - 160 EP - 167 PB - Elsevier CY - Amsterdam ER - TY - JOUR A1 - Smith, Taylor A1 - Rheinwalt, Aljoscha A1 - Bookhagen, Bodo T1 - Determining the optimal grid resolution for topographic analysis on an airborne lidar dataset JF - Earth Surface Dynamics N2 - Digital elevation models (DEMs) are a gridded representation of the surface of the Earth and typically contain uncertainties due to data collection and processing. Slope and aspect estimates on a DEM contain errors and uncertainties inherited from the representation of a continuous surface as a grid (referred to as truncation error; TE) and from any DEM uncertainty. We analyze in detail the impacts of TE and propagated elevation uncertainty (PEU) on slope and aspect. Using synthetic data as a control, we define functions to quantify both TE and PEU for arbitrary grids. We then develop a quality metric which captures the combined impact of both TE and PEU on the calculation of topographic metrics. Our quality metric allows us to examine the spatial patterns of error and uncertainty in topographic metrics and to compare calculations on DEMs of different sizes and accuracies. Using lidar data with point density of ∼10 pts m−2 covering Santa Cruz Island in southern California, we are able to generate DEMs and uncertainty estimates at several grid resolutions. Slope (aspect) errors on the 1 m dataset are on average 0.3∘ (0.9∘) from TE and 5.5∘ (14.5∘) from PEU. We calculate an optimal DEM resolution for our SCI lidar dataset of 4 m that minimizes the error bounds on topographic metric calculations due to the combined influence of TE and PEU for both slope and aspect calculations over the entire SCI. Average slope (aspect) errors from the 4 m DEM are 0.25∘ (0.75∘) from TE and 5∘ (12.5∘) from PEU. While the smallest grid resolution possible from the high-density SCI lidar is not necessarily optimal for calculating topographic metrics, high point-density data are essential for measuring DEM uncertainty across a range of resolutions. KW - Digital Elevation Model KW - River Incision Model KW - Accuracy Asseessment KW - Landscape Response KW - Error KW - Slope KW - Uncertainties KW - Extraction KW - Expression KW - Patterns Y1 - 2019 U6 - https://doi.org/10.5194/esurf-7-475-2019 SN - 2196-6311 SN - 2196-632X VL - 7 SP - 475 EP - 489 PB - Copernicus Publ. CY - Göttingen ER - TY - JOUR A1 - Vargas-Ruiz, Salome A1 - Schulreich, Christoph A1 - Kostevic, Angelika A1 - Tiersch, Brigitte A1 - Koetz, Joachim A1 - Kakorin, Sergej A1 - von Klitzing, Regine A1 - Jung, Martin A1 - Hellweg, Thomas A1 - Wellert, Stefan T1 - Extraction of model contaminants from solid surfaces by environmentally compatible microemulsions JF - Journal of colloid and interface science N2 - In the present contribution, we evaluate the efficiency of eco-friendly microemulsions to decontaminate solid surfaces by monitoring the extraction of non-toxic simulants of sulfur mustard out of model surfaces. The extraction process of the non-toxic simulants has been monitored by means of spectroscopic and chromatographic techniques. The kinetics of the removal process was analyzed by different empirical models. Based on the analysis of the kinetics, we can assess the influence of the amounts of oil and water and the microemulsion structure on the extraction process. (C) 2016 Elsevier Inc. All rights reserved. KW - Microemulsions KW - Decontamination KW - Surface removal KW - Kinetic analysis KW - Extraction Y1 - 2016 U6 - https://doi.org/10.1016/j.jcis.2016.03.006 SN - 0021-9797 SN - 1095-7103 VL - 471 SP - 118 EP - 126 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Schwarze, Thomas A1 - Traeger, Juliane A1 - Kelling, Alexandra A1 - Schilde, Uwe A1 - Holdt, Hans-Jürgen T1 - Macrocyclic dithiomaleonitriles for an efficient PdCl2 coordination JF - Inorganica chimica acta : the international inorganic chemistry journal N2 - We have synthesized a set of new unsaturated macrocyclic dithioethers with an increasing number of flexible methylene units 1-7 (Scheme 2) to investigate the correlation between the ring size of these ligands, the chelation effect and the consequences for an efficient PdCl2 coordination. The dithioethers 1-7 and the complex [PdCl2(4)]center dot CHCl3 were characterized by X-ray diffraction analysis. The crystal structures of 1-7 show that 2-7 are better preorganized chelating ligands for an exocyclic PdCl2 coordination than 1. The chelation effect of 1-7, the orientation of the sulfur atoms and the S center dot center dot center dot S donor distances, are influenced by the flexibility of the methylene units. In this series the unsaturated macrocyclic ligands 5 and 6 are the best chelating ligands for an efficient PdCl2 coordination. Comparative solvent extraction experiments with mn-12S(2)O(2) (mn = maleonitrile) reveal that the low interface activity of the new ligands reduces the extraction rate. However, a comparison with open-chain dithiomaleonitriles shows the impact of the macrocyclic effect of 4 and 5 on the extraction yield. KW - Thioether ligands KW - Palladium KW - Synthesis KW - X-ray diffraction KW - Chelation effect KW - Extraction Y1 - 2013 U6 - https://doi.org/10.1016/j.ica.2013.08.020 SN - 0020-1693 SN - 1873-3255 VL - 408 IS - 2 SP - 53 EP - 58 PB - Elsevier CY - Lausanne ER -