TY - JOUR A1 - Tomiolo, Sara A1 - Metz, Johannes A1 - Blackwood, Christopher B. A1 - Djendouci, Karin A1 - Henneberg, Lorenz A1 - Mueller, Caroline A1 - Tielboerger, Katja T1 - Short-term drought and long-term climate legacy affect production of chemical defenses among plant ecotypes JF - Environmental and Experimental Botany N2 - Long and short-term climatic variation affect the ability of plants to simultaneously cope with increasing abiotic stress and biotic interactions. Specifically, ecotypes adapted to different climatic conditions (i.e., long-term legacy) may have to adjust their allocation to chemical defenses against enemies under acute drought (i.e., short-term response). Although several studies have addressed drought effects on chemical defense production, little is known about their intraspecific variation along resource gradients. Studying intraspecific variation is important for understanding how different environments select for defense strategies and how these may be affected directly and indirectly by changing climatic conditions. We conducted greenhouse experiments with the annual Biscutella didyma (Brassicaceae) to test the effects of long-term climatic legacy versus short-term drought stress on the concentrations of defense compounds (glucosinolates). To this aim, four ecotypes originating from a steep aridity gradient were exposed to contrasting water treatments. Concentrations of chemical defenses were measured separately in leaves of young (8 weeks) and old (14 weeks) plants, respectively. For young plants, ecotypes from the wettest climate (long-term legacy) as well as plants receiving high water treatments (short-term response) were better defended. A marginally significant interaction suggested that wetter ecotypes experienced a larger shift in defense production across water treatments. Older plants contained much lower glucosinolate concentrations and showed no differences between ecotypes and water treatments. Our results indicate that younger plants invest more resources into chemical defenses, possibly due to higher vulnerability to tissue loss compared to older plants. We propose that the strong response of wet ecotypes to water availability may be explained by a less pronounced adaptation to drought. KW - Plant chemical defense KW - Glucosinolates KW - Climatic legacy KW - Short-term drought KW - Brassicaceae KW - Gradients Y1 - 2017 U6 - https://doi.org/10.1016/j.envexpbot.2017.07.009 SN - 0098-8472 SN - 1873-7307 VL - 141 SP - 124 EP - 131 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Eldridge, Tilly A1 - Langowski, Lukasz A1 - Stacey, Nicola A1 - Jantzen, Friederike A1 - Moubayidin, Laila A1 - Sicard, Adrien A1 - Southam, Paul A1 - Kennaway, Richard A1 - Lenhard, Michael A1 - Coen, Enrico S. A1 - Ostergaard, Lars T1 - Fruit shape diversity in the Brassicaceae is generated by varying patterns of anisotropy JF - Development : Company of Biologists N2 - Fruits exhibit a vast array of different 3D shapes, from simple spheres and cylinders to more complex curved forms; however, the mechanism by which growth is oriented and coordinated to generate this diversity of forms is unclear. Here, we compare the growth patterns and orientations for two very different fruit shapes in the Brassicaceae: the heart-shaped Capsella rubella silicle and the near-cylindrical Arabidopsis thaliana silique. We show, through a combination of clonal and morphological analyses, that the different shapes involve different patterns of anisotropic growth during three phases. These experimental data can be accounted for by a tissue level model in which specified growth rates vary in space and time and are oriented by a proximodistal polarity field. The resulting tissue conflicts lead to deformation of the tissue as it grows. The model allows us to identify tissue-specific and temporally specific activities required to obtain the individual shapes. One such activity may be provided by the valve-identity gene FRUITFULL, which we show through comparative mutant analysis to modulate fruit shape during post-fertilisation growth of both species. Simple modulations of the model presented here can also broadly account for the variety of shapes in other Brassicaceae species, thus providing a simplified framework for fruit development and shape diversity. KW - Brassicaceae KW - Capsella KW - Arabidopsis KW - Fruit shape KW - Modelling KW - Anisotropic growth Y1 - 2016 U6 - https://doi.org/10.1242/dev.135327 SN - 0950-1991 SN - 1477-9129 VL - 143 SP - 3394 EP - 3406 PB - Company of Biologists Limited CY - Cambridge ER - TY - JOUR A1 - Errard, Audrey A1 - Baldermann, Susanne A1 - Kühne, Stefan A1 - Mewis, Inga A1 - Peterkin, John A1 - Ulrichs, Christian T1 - Interspecific Interactions Affect Pests Differently JF - Gesunde Pflanzen : Pflanzenschutz, Verbraucherschutz, Umweltschutz N2 - Spider mites, Tetranychus urticae Koch (Acari: Tetranychidae) and aphids, Myzus persicae (Sulzer) (Pterygota: Aphididae) share many host-plants, similar abiotic conditions and are world-wide distributed therefore, they often occur simultaneously in crops. However, the effects of interspecific interactions on the biology of these pests were poorly investigated. To test if they perform differently under intra- versus inter-specific interactions, host-plant acceptance, fecundity, survival, the total number of individuals and the rate of increase in the number of individuals were studied doing non-choice bioassays under laboratory conditions with leaf discs of tomato (Solanum lycopersicum L. 'Ailsa Craig'), pak choi (Brassica rapa L. var. chinensis 'Black Behi') and bean (Phaseolus vulgaris L. 'Saxa'). Alone, the pests differently accepted the host-plants. The acceptance of pak choi by spider mites was lower under interspecific interactions and higher on tomato for aphids. In general, spider mites' performance decreased when aphids were present; the fecundity, the number of individuals and the rate of increase being significantly lower on pak choi and bean. In contrast, aphids produced more offspring in the presence of spider mites, leading to a higher rate of increase in aphids individuals on tomato and pak choi. Thus, pest' responses to interspecific interactions is species-specific. KW - Tetranychus urticae KW - Myzus persicae KW - Multiple herbivory KW - Pest-pest interaction KW - Host-plant suitability KW - Pest infestation KW - Fabaceae KW - Solanaceae KW - Brassicaceae Y1 - 2015 U6 - https://doi.org/10.1007/s10343-015-0349-x SN - 0367-4223 SN - 1439-0345 VL - 67 IS - 4 SP - 183 EP - 190 PB - Springer CY - New York ER -