TY - JOUR A1 - Schwarze, Thomas A1 - Riemer, Janine T1 - Highly K+ selective probes with fluorescence emission wavelengths higher than 500 nm in water JF - ChemistrySelect N2 - Herein, we report on the synthesis of highly K+/Na+ selective fluorescent probes in a feasible number of synthetic steps. These K+ selective fluorescent probes, so called fluoroionophores, 1 and 2 consists of different highly K+/Na+ selective building blocks the alkoxy-substituted N-phenylaza-18-crown-6 lariat ethers (ionophores) and "green" (cf. coumarin unit in 1) or "red" (cf. nile red unit in 2) fluorescent moieties (fluorophores). The fluorescent probes 1 and 2 show K+ induced fluorescence enhancement factors of 4.1 for 1 and 1.9 for 2 and dissociation constants for the corresponding K+ complexes of 43 mM (1+K+) and 18 mM (2+K+) in buffered aqueous solution. The fluorescence signal of 1 and 2 is changed by less than 5 % by pH values in the range of 6.8 to 8.8. Thus, 1 and 2 are capable fluorescent tools to determine extracellular K+ levels by fluorescence enhancements at wavelengths higher than 500 nm. KW - potassium KW - sodium KW - fluorescence KW - selectivity KW - probes Y1 - 2020 U6 - https://doi.org/10.1002/slct.202003785 SN - 2365-6549 VL - 5 IS - 42 SP - 13174 EP - 13178 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Schwarze, Thomas A1 - Sprenger, Tobias A1 - Riemer, Janine T1 - 1,2,3-Triazol-1,4-diyl-Fluoroionophores for Zn2+, Mg2+ and Ca2+ based on Fluorescence Intensity Enhancements in Water JF - ChemistrySelect N2 - Herein, we represent cation-responsive fluorescent probes for the divalent cations Zn2+, Mg2+ and Ca2+, which show cation-induced fluorescence enhancements (FE) in water. The Zn2+-responsive probes Zn1, Zn2, Zn3 and Zn4 are based on o-aminoanisole-N,N-diacetic acid (AADA) derivatives and show in the presence of Zn2+ FE factors of 11.4, 13.9, 6.1 and 8.2, respectively. Most of all, Zn1 and Zn2 show higher Zn2+ induced FE than the regioisomeric triazole linked fluorescent probes Zn3 and Zn4, respectively. In this set, ZN2 is the most suitable probe to detect extracellular Zn2+ levels. For the Mg2+-responsive fluorescent probes Mg1, Mg2 and Mg3 based on o-aminophenol-N,N,O-triacetic acid (APTRA) derivatives, we also found that the regioisomeric linkage influences the fluorescence responds towards Mg2+ (Mg1+100 mM Mg2+ (FEF=13.2) and Mg3+100 mM Mg2+ (FEF=2.1)). Mg2 shows the highest Mg2+-induced FE by a factor of 25.7 and an appropriate K-d value of 3 mM to measure intracellular Mg2+ levels. Further, the Ca2+-responsive fluorescent probes Ca1 and Ca2 equipped with a 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) derivative show high Ca2+-induced FEs (Ca1 (FEF=22.1) and Ca2 (FEF=23.0)). Herein, only Ca1 (K-d=313 nM) is a suitable Ca2+ fluorescent indicator to determine intracellular Ca2+ levels. KW - calcium KW - fluorescence KW - magnesium KW - probes KW - zinc Y1 - 2020 U6 - https://doi.org/10.1002/slct.202003695 SN - 2365-6549 VL - 5 IS - 41 SP - 12727 EP - 12735 PB - Wiley-VCH CY - Weinheim ER -