TY - JOUR A1 - Heinze, Johannes A1 - Gensch, Sabine A1 - Weber, Ewald A1 - Joshi, Jasmin Radha T1 - Soil temperature modifies effects of soil biota on plant growth JF - Journal of plant ecology N2 - Aims Plants directly and indirectly interact with many abiotic and biotic soil components. Research so far mostly focused on direct, individual abiotic or biotic effects on plant growth, but only few studies tested the indirect effects of abiotic soil factors on plant growth. Therefore, we investigated how abiotic soil conditions affect plant performance, via changes induced by soil biota. Methods In a full-factorial experiment, we grew the widespread grass Dactylis glomerata either with or without soil biota and investigated the impact of soil temperature, fertility and moisture on the soil biota effects on plant growth. We measured biomass production, root traits and colonization by arbuscular mycorrhizal fungi as well as microbial respiration. Important Findings We found significant interaction effects between abiotic soil conditions and soil biota on plant growth for fertility, but especially for soil temperature, as an increase of 10 degrees C significantly changed the soil biota effects on plant growth from positive to neutral. However, if tested individually, an increase in soil temperature and fertility per se positively affected plant biomass production, whereas soil biota per se did not affect overall plant growth, but both influenced root architecture. By affecting soil microbial activity and root architecture, soil temperature might influence both mutualistic and pathogenic interactions between plants and soil biota. Such soil temperature effects should be considered in soil feedback studies to ensure greater transferability of results from artificial and experimental conditions to natural environmental conditions. KW - plant-soil interaction KW - soil biota KW - abiotic soil factors KW - root traits KW - plant growth Y1 - 2016 U6 - https://doi.org/10.1093/jpe/rtw097 SN - 1752-9921 SN - 1752-993X VL - 10 SP - 808 EP - 821 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Faisal, Muhammad B. A1 - Gechev, Tsanko S. A1 - Müller-Röber, Bernd A1 - Dijkwel, Paul P. T1 - Putative alternative translation start site-encoding nucleotides of CPR5 regulate growth and resistance JF - BMC plant biology N2 - Background The Arabidopsis CONSTITUTIVE EXPRESSER of PATHOGENESIS-RELATED GENES 5 (CPR5) has recently been shown to play a role in gating as part of the nuclear pore complex (NPC). Mutations in CPR5 cause multiple defects, including aberrant trichomes, reduced ploidy levels, reduced growth and enhanced resistance to bacterial and fungal pathogens. The pleiotropic nature of cpr5 mutations implicates that the CPR5 protein affects multiple pathways. However, little is known about the structural features that allow CPR5 to affect the different pathways. Results Our in silico studies suggest that in addition to three clusters of putative nuclear localization signals and four or five transmembrane domains, CPR5 contains two putative alternative translation start sites. To test the role of the methionine-encoding nucleotides implicated in those sites, metCPR5 cDNAs, in which the relevant nucleotides were changed to encode glutamine, were fused to the CPR5 native promoter and the constructs transformed to cpr5-2 plants to complement cpr5-compromised phenotypes. The control and metCPR5 constructs were able to complement all cpr5 phenotypes, although the extent of complementation depended on the specific complementing plant lines. Remarkably, plants transformed with metCPR5 constructs showed larger leaves and displayed reduced resistance when challenged to Pseudomonas syringae pv Pst DC3000, as compared to control plants. Thus, the methionine-encoding nucleotides regulate growth and resistance. We propose that structural features of the CPR5 N-terminus are implicated in selective gating of proteins involved in regulating the balance between growth and resistance. Conclusion Plants need to carefully balance the amount of resources used for growth and resistance. The Arabidopsis CPR5 protein regulates plant growth and immunity. Here we show that N-terminal features of CPR5 are involved in the regulation of the balance between growth and resistance. These findings may benefit efforts to improve plant yield, while maintaining optimal levels of disease resistance. KW - CPR5 KW - plant growth KW - disease resistance KW - cell death KW - arabidopsis thaliana KW - endoreduplication Y1 - 2020 U6 - https://doi.org/10.1186/s12870-020-02485-2 SN - 1471-2229 VL - 20 IS - 1 PB - BMC CY - London ER - TY - JOUR A1 - Apelt, Federico A1 - Breuer, David A1 - Nikoloski, Zoran A1 - Stitt, Mark A1 - Kragler, Friedrich T1 - Phytotyping(4D): a light-field imaging system for non-invasive and accurate monitoring of spatio-temporal plant growth JF - The plant journal N2 - Integrative studies of plant growth require spatially and temporally resolved information from high-throughput imaging systems. However, analysis and interpretation of conventional two-dimensional images is complicated by the three-dimensional nature of shoot architecture and by changes in leaf position over time, termed hyponasty. To solve this problem, Phytotyping(4D) uses a light-field camera that simultaneously provides a focus image and a depth image, which contains distance information about the object surface. Our automated pipeline segments the focus images, integrates depth information to reconstruct the three-dimensional architecture, and analyses time series to provide information about the relative expansion rate, the timing of leaf appearance, hyponastic movement, and shape for individual leaves and the whole rosette. Phytotyping(4D) was calibrated and validated using discs of known sizes, and plants tilted at various orientations. Information from this analysis was integrated into the pipeline to allow error assessment during routine operation. To illustrate the utility of Phytotyping(4D), we compare diurnal changes in Arabidopsis thaliana wild-type Col-0 and the starchless pgm mutant. Compared to Col-0, pgm showed very low relative expansion rate in the second half of the night, a transiently increased relative expansion rate at the onset of light period, and smaller hyponastic movement including delayed movement after dusk, both at the level of the rosette and individual leaves. Our study introduces light-field camera systems as a tool to accurately measure morphological and growth-related features in plants. Significance Statement Phytotyping(4D) is a non-invasive and accurate imaging system that combines a 3D light-field camera with an automated pipeline, which provides validated measurements of growth, movement, and other morphological features at the rosette and single-leaf level. In a case study in which we investigated the link between starch and growth, we demonstrated that Phytotyping(4D) is a key step towards bridging the gap between phenotypic observations and the rich genetic and metabolic knowledge. KW - plant growth KW - hyponasty KW - 3D imaging KW - light-field camera KW - Arabidopsis thaliana KW - pgm KW - technical advance Y1 - 2015 U6 - https://doi.org/10.1111/tpj.12833 SN - 0960-7412 SN - 1365-313X VL - 82 IS - 4 SP - 693 EP - 706 PB - Wiley-Blackwell CY - Hoboken ER -