TY - JOUR A1 - Bobone, Sara A1 - Hilsch, Malte A1 - Storm, Julian A1 - Dunsing, Valentin A1 - Herrmann, Andreas A1 - Chiantia, Salvatore T1 - Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes JF - Journal of virology N2 - Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Forster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells. IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still not well understood. In this work, we show that phosphatidylserine can form lipid domains in physical models of the inner leaflet of the PM. Furthermore, the spatial organization of PS in the plane of the bilayer modulates M1-M1 interactions. Finally, we show that PS domains appear to be present in the PM of living cells and that M1 seems to display a high affinity for them. KW - influenza KW - assembly KW - confocal microscopy KW - fluorescence image analysis KW - lipid rafts KW - matrix protein KW - model membranes KW - phosphatidylserine KW - plasma membrane Y1 - 2017 U6 - https://doi.org/10.1128/JVI.00267-17 SN - 0022-538X SN - 1098-5514 VL - 91 PB - American Society for Microbiology CY - Washington ER - TY - JOUR A1 - Kolyvushko, Oleksandr A1 - Latzke, Juliane A1 - Dahmani, Ismail A1 - Osterrieder, Nikolaus A1 - Chiantia, Salvatore A1 - Azab, Walid T1 - Differentially-charged liposomes interact with alphaherpesviruses and interfere with virus entry JF - Pathogens N2 - Exposure of phosphatidylserine (PS) in the outer leaflet of the plasma membrane is induced by infection with several members of the Alphaherpesvirinae subfamily. There is evidence that PS is used by the equine herpesvirus type 1 (EHV-1) during entry, but the exact role of PS and other phospholipids in the entry process remains unknown. Here, we investigated the interaction of differently charged phospholipids with virus particles and determined their influence on infection. Our data show that liposomes containing negatively charged PS or positively charged DOTAP (N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium) inhibited EHV-1 infection, while neutral phosphatidylcholine (PC) had no effect. Inhibition of infection with PS was transient, decreased with time, and was dose dependent. Our findings indicate that both cationic and anionic phospholipids can interact with the virus and reduce infectivity, while, presumably, acting through different mechanisms. Charged phospholipids were found to have antiviral effects and may be used to inhibit EHV-1 infection. KW - alphaherpesvirus KW - EHV-1 KW - phosphatidylserine KW - inhibition KW - pathogen host KW - interaction Y1 - 2020 U6 - https://doi.org/10.3390/pathogens9050359 SN - 2076-0817 VL - 9 IS - 5 PB - MDPI CY - Basel ER -