TY - JOUR A1 - Schwarze, Thomas A1 - Sperlich, Eric A1 - Müller, Thomas A1 - Kelling, Alexandra A1 - Holdt, Hans-Jürgen T1 - Synthesis efforts of acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis(dialkylamino)maleonitriles as fluorescent probes for cations and a new colorimetric copper(II) chemodosimeter JF - Helvetica chimica acta N2 - In this article, we report on the synthesis of acyclic bis(monoalkylamino)maleonitriles and on the intended synthesis of macrocyclic bis(dialkylamino)maleonitriles to get fluorescent probes for cations. During our efforts to synthesize macrocyclic bis(dialkylamino)maleonitriles, we were only able to isolate macrocyclic bis(dialkylamino)-fumaronitriles. The synthesis of macrocyclic bis(dialkylamino)maleonitriles is challenging, due to the fact that bis-(dialkylamino)fumaronitriles are thermodynamically more stable than the corresponding bis(dialkylamino)-maleonitriles. Further, it turned out that the acyclic bis(monoalkylamino)maleonitriles and macrocyclic bis-(dialkylamino)fumaronitriles are no suitable tools to detect cations by a strong fluorescence enhancement. Further, only the bis(monoalkylamino)maleonitriles, which are bearing a 2-pyridyl unit as an additional complexing unit, are able to selectively recognize copper(II) by a color change from yellow to red. KW - copper KW - fumaronitrile KW - ligands KW - macrocycles KW - maleonitrile Y1 - 2021 U6 - https://doi.org/10.1002/hlca.202100028 SN - 1522-2675 VL - 104 IS - 6 SP - e2100028 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Behrendt, Felix Nicolas A1 - Schlaad, Helmut T1 - Entropy-Driven Ring-Opening Disulfide Metathesis Polymerization for the Synthesis of Functional Poly(disulfide)s JF - Macromolecular rapid communications N2 - Metal-free entropy-driven disulfide metathesis polymerization of unsaturated L-cystine based macrocycles produces high-molar-mass heterofunctional poly(disulfide)s, i.e., poly(ester-disulfide-alkene) and poly(amide-disulfide-alkene); M-w(app) = 44-60 kDa, (sic) > 1.7. The polymerization is fast and reaches equilibrium within 1-5 minutes (monomer conversion 70-90%) in polar aprotic solvents such as N,N-dimethylacetamide, dimethylsulfoxide, or y-valerolactone. Thiol-terminated polymers are stable in bulk or when dissolved in weakly polar solvents, but rapidly depolymerize in dilute polar solution. KW - disulfide KW - macrocycles KW - metathesis KW - ring-opening polymerization Y1 - 2018 U6 - https://doi.org/10.1002/marc.201700735 SN - 1022-1336 SN - 1521-3927 VL - 39 IS - 6 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Senge, Mathias O. A1 - Ryppa, Claudia A1 - Fazekas, Marijana A1 - Zawadzka, Monika A1 - Dahms, Katja T1 - 5,10-A2B2-Type meso-Substituted PorphyrinsuA Unique Class of Porphyrins with a Realigned Dipole Moment JF - Chemistry - a European journal N2 - Current applications in porphyrin chemistry require the use of unsymmetrically substituted porphyrins. Many current industrial interests in optics and biomedicine require systems with either pushpull (electron-donating and -withdrawing groups) or amphiphilic systems (hydrophobic and hydrophilic groups). In this context we present the class of 5,10-A2B2-type porphyrins for which two different substituents are positioned in diagonally opposite meso positions. Thus, the intramolecular dipole moment in these tetrapyrroles is positioned along a beta-beta vector passing through two pyrrole rings. This is opposite to the situation of the frequently used 5,15-A2BC porphyrins for which the dipole moment is oriented along a mesomeso axis. We have elaborated syntheses of the 5,10-A2B2 porphyrins by using transition-metal-catalyzed transformations of 5,10-A2 porphyrins or direct substitutions reactions thereof; this gives the target molecules in 2277% overall yields. The compounds exhibit interesting structural, spectroscopic, and optical features and can serve as building blocks for new porphyrin arrays and applications. KW - macrocycles KW - nitrogen heterocycles KW - nonlinear optics KW - porphyrinoids KW - tetrapyrroles Y1 - 2011 U6 - https://doi.org/10.1002/chem.201101934 SN - 0947-6539 VL - 17 IS - 48 SP - 13562 EP - 13573 PB - Wiley-VCH CY - Weinheim ER -