TY - JOUR A1 - Griscom, Bronson W. A1 - Busch, Jonah A1 - Cook-Patton, Susan C. A1 - Ellis, Peter W. A1 - Funk, Jason A1 - Leavitt, Sara M. A1 - Lomax, Guy A1 - Turner, Will R. A1 - Chapman, Melissa A1 - Streck, Charlotte T1 - National mitigation potential from natural climate solutions in the tropics JF - Biological sciences N2 - Better land stewardship is needed to achieve the Paris Agreement's temperature goal, particularly in the tropics, where greenhouse gas emissions from the destruction of ecosystems are largest, and where the potential for additional land carbon storage is greatest. As countries enhance their nationally determined contributions (NDCs) to the Paris Agreement, confusion persists about the potential contribution of better land stewardship to meeting the Agreement's goal to hold global warming below 2 degrees C. We assess cost-effective tropical country-level potential of natural climate solutions (NCS)-protection, improved management and restoration of ecosystems-to deliver climate mitigation linked with sustainable development goals (SDGs). We identify groups of countries with distinctive NCS portfolios, and we explore factors (governance, financial capacity) influencing the feasibility of unlocking national NCS potential. Cost-effective tropical NCS offers globally significant climate mitigation in the coming decades (6.56 Pg CO(2)e yr(-1) at less than 100 US$ per Mg CO(2)e). In half of the tropical countries, cost-effective NCS could mitigate over half of national emissions. In more than a quarter of tropical countries, cost-effective NCS potential is greater than national emissions. We identify countries where, with international financing and political will, NCS can cost-effectively deliver the majority of enhanced NDCs while transforming national economies and contributing to SDGs. This article is part of the theme issue 'Climate change and ecosystems: threats, opportunities and solutions'. KW - natural climate solutions KW - climate mitigation KW - protection KW - land management KW - restoration KW - Paris Agreement Y1 - 2020 U6 - https://doi.org/10.1098/rstb.2019.0126 SN - 0080-4622 SN - 0962-8436 SN - 1471-2970 VL - 375 IS - 1794 SP - 1 EP - 11 PB - The Royal Society Publishing CY - London ER - TY - JOUR A1 - Wilson, Charlie A1 - Guivarch, Céline A1 - Kriegler, Elmar A1 - van Ruijven, Bas A1 - van Vuuren, Detlef P. A1 - Krey, Volker A1 - Schwanitz, Valeria Jana A1 - Thompson, Erica L. T1 - Evaluating process-based integrated assessment models of climate change mitigation JF - Climatic change N2 - Process-based integrated assessment models (IAMs) project long-term transformation pathways in energy and land-use systems under what-if assumptions. IAM evaluation is necessary to improve the models’ usefulness as scientific tools applicable in the complex and contested domain of climate change mitigation. We contribute the first comprehensive synthesis of process-based IAM evaluation research, drawing on a wide range of examples across six different evaluation methods including historical simulations, stylised facts, and model diagnostics. For each evaluation method, we identify progress and milestones to date, and draw out lessons learnt as well as challenges remaining. We find that each evaluation method has distinctive strengths, as well as constraints on its application. We use these insights to propose a systematic evaluation framework combining multiple methods to establish the appropriateness, interpretability, credibility, and relevance of process-based IAMs as useful scientific tools for informing climate policy. We also set out a programme of evaluation research to be mainstreamed both within and outside the IAM community. KW - process-based integrated assessment model KW - IAM KW - evaluation KW - climate mitigation Y1 - 2021 U6 - https://doi.org/10.1007/s10584-021-03099-9 SN - 0165-0009 SN - 1573-1480 VL - 166 IS - 1-2 PB - Springer Science + Business Media B.V. CY - Dordrecht ER - TY - JOUR A1 - Vindas-Picado, José A1 - Yaney-Keller, Adam A1 - St. Andrews, Laura A1 - Panagopoulou, Aliki A1 - Santidrián Tomillo, Pilar T1 - Effectiveness of shading to mitigate the impact of high temperature on sea turtle clutches considering the effect on primary sex ratios JF - Mitigation and adaptation strategies for global change : an international journal devoted to scientific, engineering, socio-economic and policy responses to environmental change N2 - Developmental success of sea turtle clutches depends on incubation temperature, which also determines sex ratio of hatchlings. As global temperatures are rising, several studies have proposed mitigation strategies such as irrigation and shading to increase hatching success. Our study expands upon this research and measures the effects of using boxes with different degrees of shade coverage (50%, 80%, and 90%) on sand temperature and water content. Boxes were fully covered with fabric in 2017/2018 (top and sides) but were side open in 2018/2019. We took measurements at olive ridley (Lepidochelys olivacea) and leatherback (Dermochelys coriacea) turtle nest depths (45 and 75 cm) at Playa Grande, Costa Rica. Shading reduced temperature by up to 0.8 degrees C and up to 0.4 degrees C at 45 cm and 75 cm, respectively. There were statistically significant differences between shading and control treatments at both depths, but differences between shade treatments were only significant when using side open boxes, possibly due to air flow. Shading had no effect on water content. While the impact of using shaded boxes on temperature was low, the potential impact on primary sex ratios was large. If shading were applied to leatherback clutches, the percentage of female hatchlings could vary by up to 50%, with a maximum difference around the pivotal temperature (temperature with 1:1 sex ratio). Shading can be useful to increase hatching success, but we recommend avoiding it at temperatures within the transitional range (temperatures that produce both sexes), or using it only during the last third of incubation, when sex is already determined. As global warming will likely continue, understanding potential impact and effectiveness of mitigation strategies may be critical for the survival of threatened sea turtle populations. KW - climate mitigation KW - climate change KW - hatchery KW - hatching success KW - TSD Y1 - 2020 U6 - https://doi.org/10.1007/s11027-020-09932-3 SN - 1381-2386 SN - 1573-1596 VL - 25 IS - 8 SP - 1509 EP - 1521 PB - Springer CY - Dordrecht ER - TY - JOUR A1 - Schultes, Anselm A1 - Piontek, Franziska A1 - Soergel, Bjoern A1 - Rogelj, Joeri A1 - Baumstark, Lavinia A1 - Kriegler, Elmar A1 - Edenhofer, Ottmar A1 - Luderer, Gunnar T1 - Economic damages from on-going climate change imply deeper near-term emission cuts JF - Environmental research letters N2 - Pathways toward limiting global warming to well below 2 ∘C, as used by the IPCC in the Fifth Assessment Report, do not consider the climate impacts already occurring below 2 ∘C. Here we show that accounting for such damages significantly increases the near-term ambition of transformation pathways. We use econometric estimates of climate damages on GDP growth and explicitly model the uncertainty in the persistence time of damages. The Integrated Assessment Model we use includes the climate system and mitigation technology detail required to derive near-term policies. We find an optimal carbon price of $115 per tonne of CO2 in 2030. The long-term persistence of damages, while highly uncertain, is a main driver of the near-term carbon price. Accounting for damages on economic growth increases the gap between the currently pledged nationally determined contributions and the welfare-optimal 2030 emissions by two thirds, compared to pathways considering the 2 ∘C limit only. KW - climate change KW - climate mitigation KW - climate impacts KW - integrated assessment Y1 - 2021 U6 - https://doi.org/10.1088/1748-9326/ac27ce SN - 1748-9326 VL - 16 IS - 10 PB - IOP Publishing CY - Bristol ER -