TY - JOUR A1 - Hofmann, Alexander J. L. A1 - Züfle, Simon A1 - Shimizu, Kohei A1 - Schmid, Markus A1 - Wessels, Vivien A1 - Jäger, Lars A1 - Altazin, Stephane A1 - Ikegami, Keitaro A1 - Khan, Motiur Rahman A1 - Neher, Dieter A1 - Ishii, Hisao A1 - Ruhstaller, Beat A1 - Brütting, Wolfgang T1 - Dipolar Doping of Organic Semiconductors to Enhance Carrier Injection JF - Physical review applied N2 - If not oriented perfectly isotropically, the strong dipole moment of polar organic semiconductor materials such as tris-(8-hydroxyquinolate)aluminum (Alq3) will lead to the buildup of a giant surface potential (GSP) and thus to a macroscopic dielectric polarization of the organic film. Despite this having been a known fact for years, the implications of such high potentials within an organic layer stack have only been studied recently. In this work, the influence of the GSP on hole injection into organic layers is investigated. Therefore, we apply a concept called dipolar doping to devices consisting of the prototypical organic materials N,N′-Di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB) as nonpolar host and Alq3 as dipolar dopant with different mixing ratios to tune the GSP. The mixtures are investigated in single-layer monopolar devices as well as bilayer metal/insulator/semiconductor structures. Characterization is done electrically using current-voltage (I-V) characteristics, impedance spectroscopy, and charge extraction by linearly increasing voltage and time of flight, as well as with ultraviolet photoelectron spectroscopy. We find a maximum in device performance for moderate to low doping concentrations of the polar species in the host. The observed behavior can be described on the basis of the Schottky effect for image-force barrier lowering, if the changes in the interface dipole, the carrier mobility, and the GSP induced by dipolar doping are taken into account. KW - Carrier dynamics KW - Electric polarization KW - Optoelectronics KW - Organic electronics KW - Doped semiconductors KW - Interfaces KW - Organic LEDs KW - Organic semiconductors Y1 - 2019 U6 - https://doi.org/10.1103/PhysRevApplied.12.064052 SN - 2331-7019 VL - 12 IS - 6 PB - American Physical Society CY - College Park ER - TY - JOUR A1 - Turner, Sarah T. A1 - Pingel, Patrick A1 - Steyrleuthner, Robert A1 - Crossland, Edward J. W. A1 - Ludwigs, Sabine A1 - Neher, Dieter T1 - Quantitative analysis of bulk heterojunction films using linear absorption spectroscopy and solar cell performance JF - Advanced functional materials N2 - A fundamental understanding of the relationship between the bulk morphology and device performance is required for the further development of bulk heterojunction organic solar cells. Here, non-optimized (chloroform cast) and nearly optimized (solvent-annealed o-dichlorobenzene cast) P3HT:PCBM blend films treated over a range of annealing temperatures are studied via optical and photovoltaic device measurements. Parameters related to the P3HT aggregate morphology in the blend are obtained through a recently established analytical model developed by F. C. Spano for the absorption of weakly interacting H-aggregates. Thermally induced changes are related to the glass transition range of the blend. In the chloroform prepared devices, the improvement in device efficiency upon annealing within the glass transition range can be attributed to the growth of P3HT aggregates, an overall increase in the percentage of chain crystallinity, and a concurrent increase in the hole mobilities. Films treated above the glass transition range show an increase in efficiency and fill factor not only associated with the change in chain crystallinity, but also with a decrease in the energetic disorder. On the other hand, the properties of the P3HT phase in the solvent-annealed o-dichlorobenzene cast blends are almost indistinguishable from those of the corresponding pristine P3HT layer and are only weakly affected by thermal annealing. Apparently, slow drying of the blend allows the P3HT chains to crystallize into large domains with low degrees of intra- and interchain disorder. This morphology appears to be most favorable for the efficient generation and extraction of charges. KW - Organic electronics KW - morphology KW - solar cells KW - mobility KW - absorption spectroscopy Y1 - 2011 U6 - https://doi.org/10.1002/adfm.201101583 SN - 1616-301X VL - 21 IS - 24 SP - 4640 EP - 4652 PB - Wiley-VCH CY - Weinheim ER -