TY - JOUR A1 - Scheller, Frieder W. A1 - Zhang, Xiaorong A1 - Yarman, Aysu A1 - Wollenberger, Ulla A1 - Gyurcsányi, Róbert E. T1 - Molecularly imprinted polymer-based electrochemical sensors for biopolymers JF - Current opinion in electrochemistry N2 - Electrochemical synthesis and signal generation dominate among the almost 1200 articles published annually on protein-imprinted polymers. Such polymers can be easily prepared directly on the electrode surface, and the polymer thickness can be precisely adjusted to the size of the target to enable its free exchange. In this architecture, the molecularly imprinted polymer (MIP) layer represents only one ‘separation plate’; thus, the selectivity does not reach the values of ‘bulk’ measurements. The binding of target proteins can be detected straightforwardly by their modulating effect on the diffusional permeability of a redox marker through the thin MIP films. However, this generates an ‘overall apparent’ signal, which may include nonspecific interactions in the polymer layer and at the electrode surface. Certain targets, such as enzymes or redox active proteins, enables a more specific direct quantification of their binding to MIPs by in situ determination of the enzyme activity or direct electron transfer, respectively. KW - Electropolymerization KW - Direct electron transfer KW - Redox marker KW - Epitope imprinting KW - Biomarker Y1 - 2018 U6 - https://doi.org/10.1016/j.coelec.2018.12.005 SN - 2451-9103 VL - 14 SP - 53 EP - 59 PB - Elsevier CY - Amsterdam ER -