TY - THES A1 - Dronov, Roman T1 - Multi-component protein films by layer-by-layer : assembly and electron transfer T1 - Multikomponenten-Proteinfilme mittels Layer-by-Layer-Technik : Design und Elektronentransfer N2 - Electron transfer phenomena in proteins represent one of the most common types of biochemical reactions. They play a central role in energy conversion pathways in living cells, and are crucial components in respiration and photosynthesis. These complex biochemical reaction cascades consist of a series of proteins and protein complexes that couple a charge transfer to different forms of chemical energy. The efficiency and sophisticated optimisation of signal transfer in these natural redox chains has inspired engineering of artificial architectures mimicking essential properties of their natural analogues. Implementation of direct electron transfer (DET) in protein assemblies was a breakthrough in bioelectronics, providing a simple and efficient way for coupling biological recognition events to a signal transducer. DET avoids the use of redox mediators, reducing potential interferences and side reactions, as well as being more compatible with in vivo conditions. However, only a few haem proteins, including the redox protein cytochrome c (cyt.c), and blue copper enzymes show efficient DET on different kinds of electrodes. Previous investigations with cyt.c have mainly focused on heterogeneous electron transfer of monolayers of this protein on gold. An important advance was the fabrication of cyt.c multilayers by electrostatic layer-by-layer self-assembly. The ease of fabrication, the stability, and the controllable permeability of polyelectrolyte multilayers have made them particularly attractive for electroanalytical applications. With cyt.c and sulfonated polyaniline it was for the first time possible that fully electro-active multilayers of the redox protein could be prepared. This approach was extended to design an analytical signal chain based on multilayers of cyt.c and xanthine oxidase (XOD). The system does not need an external mediator but relies on an in situ generation of a mediating radical and thus allows a signal transfer from hypoxanthine via the substrate converting enzyme and cyt.c to the electrode. Another kind of a signal chain is based on assembling proteins in complexes on electrodes in such a way that a direct protein-protein electron transfer becomes feasible. This design does not need a redox mediator in analogy to natural protein communication. For this purpose, cyt.c and the enzyme bilirubin oxidase (BOD, EC 1.3.3.5) are co-immobilized in a self-assembled polyelectrolyte multilayer on gold electrodes. Although these two proteins are not natural reaction partners, the protein architecture facilitates an electron transfer from the electrode via multiple protein layers to molecular oxygen resulting in a significant catalytic reduction current. Finally, we describe a novel strategy for multi-protein layer-by-layer self-assembly combining cyt.c with an enzyme sulfite oxidase (SOx) without use of any additional polymer. Electrostatic interactions between these two proteins with rather separated pI values during the assembly process from a low ionic strength buffer were found sufficient for the layer-by-layer deposition of the both biomolecules. It is anticipated that the concepts described in this work will stimulate further progress in multilayer design of even more complex biomimetic signal cascades taking advantage of direct communication between proteins. N2 - Elektronentransferphänomene in Proteinen stellen den häufigsten Typ biochemischer Reaktionen dar. Sie spielen eine zentrale Rolle bei der Energieumwandlung in der Zelle und sind entscheidende Komponenten in der Atmung und Photosynthese. Diese komplexen Kaskaden biochemischer Reaktionen setzen sich aus einer Reihe von Proteinen und Proteinkomplexen zusammen, die den Energietransfer an verschiedene Formen chemischer Energie koppeln. Die große Effektivität und Selektivität des Signaltransfers in diesen natürlichen Redoxketten war Vorbild für die Entwicklung künstlicher Architekturen, die die wesentlichen Eigenschaften ihrer natürlichen Analoga nachahmen. Die Implementierung des direkten Elektronentransfers (DET) von Proteinen mit Elektroden war ein Durchbruch im Bereich der Bioelektronik. Sie lieferte einen einfachen und effizienten Weg für das Koppeln biologischer Erkennungsereignisse an einen Signalumwandler. Durch den DET können Redoxmediatoren vermieden und damit potentielle Grenzflächen und Nebenreaktionen reduziert werden. Ebenso wird damit die Kompatibilität für in vivo Bedingungen erhöht. Jedoch zeigen nur einige Hämproteine wie das Redoxprotein Cytochrom c (Cyt c) und blaue Kupferproteine einen effizienten DET auf verschiedenen Elektrodentypen. Bisherige Untersuchungen mit Cyt c konzentrierten sich hauptsächlich auf den heterogenen Elektronentransfer von Monoschichten dieses Proteins auf Gold. Ein wichtiger Fortschritt war die Herstellung von Cyt c Multischichten durch die elektrostatische Layer-by-Layer-Technik. Die einfache Herstellung, die Stabilität sowie die kontrollierbaren Permeationseigenschaften von Polyelektrolyt-Multischichten machte sie besonders attraktiv für elektroanalytische Anwendungen. So gelang es auch zum ersten Mal vollständig elektroaktive Multischichten aus Cyt c und Polyanilinsulfonsäure zu präparieren. Dieser Ansatz wurde hier erweitert, um eine analytische Signalkette auf der Basis von Multischichten aus Cyt c und Xanthinoxidase zu entwerfen. Das System bedarf keinen externen Mediator, es hängt jedoch von der in situ Generierung eines vermittelnden Radikals ab und erlaubt daher einen Signaltransfer von Hypoxanthin über ein substratumwandelndes Enzym und Cyt c zur Elektrode. Eine andere Art von Signalketten basiert auf der Assemblierung von Proteinen in Komplexen auf Elektroden in solcher Art und Weise, daß ein direkter Protein-Protein-Elektronentransfer möglich wird. Dieser Ansatz benötigt keinen Redoxmediator in Analogie zu Beispielen aus dem biologischen Signaltransfer. Zu diesem Zweck werden Cyt c und das Enzym Bilirubinoxidase mit einem selbst-assemblierenden Polyelektrolyten auf einer Goldelektrode koimmobilisiert. Obwohl diese zwei Proteine keine natürlichen Reaktionspartner sind, unterstützt die Protein-Architektur einen Elektronentransfer von der Elektrode über mehrere Proteinschichten zu molekularem Sauerstoff und ergibt einen signifikanten katalytischen Reduktionsstrom. Schließlich wird eine neue Strategie beschrieben für eine Selbstassemblierung von Proteinen ohne zusätzlichen Polyelektrolyten - am Beispiel der Kombination von Cyt c mit Sulfitoxidase. Es stellte sich heraus, daß die elektrostatische Wechselwirkung zwischen diesen zwei Proteinen mit ziemlich weit voneinander entfernt liegenden pI-Werten während des Assemblierungsprozesses durch einen Puffer mit geringer Ionenstärke ausreicht um die beiden Biomoleküle nach dem Layer-by-Layer-Prinzip auf einer Elektrode abzuscheiden. Es wird erwartet, daß das entwickelte Konzept von Multiprotein-Assemblaten auf Elektroden weitere Fortschritte bei dem Entwurf von Multischichten und sogar noch komplexeren biomimetischen Signalkaskaden anregen wird und dabei der Vorteil der direkten Kommunikation zwischen Proteinen genutzt wird. KW - Protein Multilayer KW - Electron transfer KW - Signal transfer chain KW - Cytochrome c KW - Polyelectrolyte KW - Bilirubin oxidase KW - Surface characterization KW - Raman Y1 - 2007 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus-17281 ER - TY - JOUR A1 - Zeng, Ting A1 - Pankratov, Dmitry A1 - Falk, Magnus A1 - Leimkühler, Silke A1 - Shleev, Sergey A1 - Wollenberger, Ursula T1 - Miniature direct electron transfer based sulphite/oxygen enzymatic fuel cells JF - Biosensors and bioelectronics : the principal international journal devoted to research, design development and application of biosensors and bioelectronics N2 - A direct electron transfer (DET) based sulphite/oxygen biofuel cell is reported that utilises human sulphite oxidase (hSOx) and Myrothecium verrucaria bilirubin oxidase (MvBOx) and nanostructured gold electrodes. For bioanode construction, the nanostructured gold microelectrodes were further modified with 3,3'-dithiodipropionic acid di(N-hydroxysuccinimide ester) to which polyethylene imine was covalently attached. hSOx was adsorbed onto this chemically modified nanostructured electrode with high surface loading of electroactive enzyme and in presence of sulphite high anodic bioelectrocatalytic currents were generated with an onset potential of 0.05 V vs. NHE. The biocathode contained MyBOx directly adsorbed to the deposited gold nanoparticles for cathodic oxygen reduction starting at 0.71 V vs. NHE. Both enzyme electrodes were integrated to a DET-type biofuel cell. Power densities of 8 and 1 mu W cm(-2) were achieved at 0.15 V and 0.45 V of cell voltages, respectively, with the membrane based biodevices under aerobic conditions. (C) 2014 Elsevier B.V. All rights reserved. KW - Enzymatic fuel cell KW - Microscale electrode KW - Direct electron transfer KW - Sulphite oxidase KW - Bilirubin oxidase Y1 - 2015 U6 - https://doi.org/10.1016/j.bios.2014.10.080 SN - 0956-5663 SN - 1873-4235 VL - 66 SP - 39 EP - 42 PB - Elsevier CY - Oxford ER -