TY - GEN A1 - Goodwin, Guillaume C. H. A1 - Mudd, Simon M. A1 - Clubb, Fiona J. T1 - Unsupervised detection of salt marsh platforms BT - a topographic method T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - Salt marshes filter pollutants, protect coastlines against storm surges, and sequester carbon, yet are under threat from sea level rise and anthropogenic modification. The sustained existence of the salt marsh ecosystem depends on the topographic evolution of marsh platforms. Quantifying marsh platform topography is vital for improving the management of these valuable landscapes. The determination of platform boundaries currently relies on supervised classification methods requiring near-infrared data to detect vegetation, or demands labour-intensive field surveys and digitisation. We propose a novel, unsupervised method to reproducibly isolate salt marsh scarps and platforms from a digital elevation model (DEM), referred to as Topographic Identification of Platforms (TIP). Field observations and numerical models show that salt marshes mature into subhorizontal platforms delineated by subvertical scarps. Based on this premise, we identify scarps as lines of local maxima on a slope raster, then fill landmasses from the scarps upward, thus isolating mature marsh platforms. We test the TIP method using lidar-derived DEMs from six salt marshes in England with varying tidal ranges and geometries, for which topographic platforms were manually isolated from tidal flats. Agreement between manual and unsupervised classification exceeds 94% for DEM resolutions of 1 m, with all but one site maintaining an accuracy superior to 90% for resolutions up to 3 m. For resolutions of 1 m, platforms detected with the TIP method are comparable in surface area to digitised platforms and have similar elevation distributions. We also find that our method allows for the accurate detection of local block failures as small as 3 times the DEM resolution. Detailed inspection reveals that although tidal creeks were digitised as part of the marsh platform, unsupervised classification categorises them as part of the tidal flat, causing an increase in false negatives and overall platform perimeter. This suggests our method may benefit from combination with existing creek detection algorithms. Fallen blocks and high tidal flat portions, associated with potential pioneer zones, can also lead to differences between our method and supervised mapping. Although pioneer zones prove difficult to classify using a topographic method, we suggest that these transition areas should be considered when analysing erosion and accretion processes, particularly in the case of incipient marsh platforms. Ultimately, we have shown that unsupervised classification of marsh platforms from high-resolution topography is possible and sufficient to monitor and analyse topographic evolution. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 936 KW - accuracy assessment KW - tidal flats KW - vegetation KW - extraction KW - elevation KW - sedimentation KW - opportunity KW - ecosystems KW - morphology KW - salinity Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-459329 SN - 1866-8372 IS - 936 SP - 239 EP - 255 ER - TY - GEN A1 - Kruse, Stefan A1 - Gerdes, Alexander A1 - Kath, Nadja J. A1 - Herzschuh, Ulrike T1 - Implementing spatially explicit wind-driven seed and pollen dispersal in the individual-based larch simulation model BT - LAVESI-WIND 1.0 T2 - Postprints der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe N2 - It is of major interest to estimate the feedback of arctic ecosystems to the global warming we expect in upcoming decades. The speed of this response is driven by the potential of species to migrate, tracking their climate optimum. For this, sessile plants have to produce and disperse seeds to newly available habitats, and pollination of ovules is needed for the seeds to be viable. These two processes are also the vectors that pass genetic information through a population. A restricted exchange among subpopulations might lead to a maladapted population due to diversity losses. Hence, a realistic implementation of these dispersal processes into a simulation model would allow an assessment of the importance of diversity for the migration of plant species in various environments worldwide. To date, dynamic global vegetation models have been optimized for a global application and overestimate the migration of biome shifts in currently warming temperatures. We hypothesize that this is caused by neglecting important fine-scale processes, which are necessary to estimate realistic vegetation trajectories. Recently, we built and parameterized a simulation model LAVESI for larches that dominate the latitudinal treelines in the northernmost areas of Siberia. In this study, we updated the vegetation model by including seed and pollen dispersal driven by wind speed and direction. The seed dispersal is modelled as a ballistic flight, and for the pollination of ovules of seeds produced, we implemented a wind-determined and distance-dependent probability distribution function using a von Mises distribution to select the pollen donor. A local sensitivity analysis of both processes supported the robustness of the model's results to the parameterization, although it highlighted the importance of recruitment and seed dispersal traits for migration rates. This individual-based and spatially explicit implementation of both dispersal processes makes it easily feasible to inherit plant traits and genetic information to assess the impact of migration processes on the genetics. Finally, we suggest how the final model can be applied to substantially help in unveiling the important drivers of migration dynamics and, with this, guide the improvement of recent global vegetation models. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 929 KW - long-distance dispersal KW - climate-change KW - genetic-structure KW - plant migration KW - larix-sibirica KW - DNA variation KW - large-scale KW - vegetation KW - landscape KW - future Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-445978 SN - 1866-8372 IS - 929 SP - 4451 EP - 4467 ER - TY - GEN A1 - Rodil, Iván F. A1 - Jaramillo, Eduardo A1 - Hubbard, David M. A1 - Dugan, Jenifer E. A1 - Melnick, Daniel A1 - Velasquez, Carlos T1 - Responses of dune plant communities to continental uplift from a major earthquake BT - sudden releases from coastal squeeze T2 - Postprints der Universität Potsdam : Mathematisch Naturwissenschaftliche Reihe N2 - Vegetated dunes are recognized as important natural barriers that shelter inland ecosystems and coastlines suffering daily erosive impacts of the sea and extreme events, such as tsunamis. However, societal responses to erosion and shoreline retreat often result in man-made coastal defence structures that cover part of the intertidal and upper shore zones causing coastal squeeze and habitat loss, especially for upper shore biota, such as dune plants. Coseismic uplift of up to 2.0 m on the Peninsula de Arauco (South central Chile, ca. 37.5 degrees S) caused by the 2010 Maule earthquake drastically modified the coastal landscape, including major increases in the width of uplifted beaches and the immediate conversion of mid to low sandy intertidal habitat to supralittoral sandy habitat above the reach of average tides and waves. To investigate the early stage responses in species richness, cover and across-shore distribution of the hitherto absent dune plants, we surveyed two formerly intertidal armoured sites and a nearby intertidal unarmoured site on a sandy beach located on the uplifted coast of Llico (Peninsula de Arauco) over two years. Almost 2 years after the 2010 earthquake, dune plants began to recruit, then rapidly grew and produced dune hummocks in the new upper beach habitats created by uplift at the three sites. Initial vegetation responses were very similar among sites. However, over the course of the study, the emerging vegetated dunes of the armoured sites suffered a slowdown in the development of the spatial distribution process, and remained impoverished in species richness and cover compared to the unarmoured site. Our results suggest that when released from the effects of coastal squeeze, vegetated dunes can recover without restoration actions. However, subsequent human activities and management of newly created beach and dune habitats can significantly alter the trajectory of vegetated dune development. Management that integrates the effects of natural and human induced disturbances, and promotes the development of dune vegetation as natural barriers can provide societal and conservation benefits in coastal ecosystems. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 516 KW - Chile earthquake KW - sandy-beach KW - New-Zealand KW - salt spray KW - vegetation KW - conservation KW - disturbance KW - protection KW - habitats KW - zonation Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-409629 SN - 1866-8372 IS - 516 ER - TY - GEN A1 - Niemeyer, Bastian A1 - Herzschuh, Ulrike A1 - Pestryakova, Luidmila Agafyevna T1 - Vegetation and lake changes on the southern Taymyr peninsula, northern Siberia, during the last 300 years inferred from pollen and Pediastrum green algae records T2 - The Holocene N2 - Siberian arctic vegetation and lake water communities, known for their temperature dependence, are expected to be particularly impacted by recent climate change and high warming rates. However, decadal information on the nature and strength of recent vegetation change and its time lag to climate signals are rare. In this study, we present a Pb-210/Cs-137 dated pollen and Pediastrum species record from a unnamed lake in the south of the Taymyr peninsula covering the period from AD 1706 to 2011. Thirty-nine palynomorphs and 10 morphotypes of Pediastrum species were studied to assess changes in vegetation and lake conditions as probable responses to climate change. We compared the pollen record with Pediastrum species, which we consider to be important proxies of climate changes. Three pollen assemblage zones characterised by Betula nana, Alnus viridis and Larix gmelinii (1706-1808); herbs such as Cyperaceae, Artemisia or Senecio (1808-1879), and higher abundance of Larix pollen (1955-2011) are visible. Also, three Pediastrum assemblage zones show changes of aquatic conditions: higher abundances of Pediastrum boryanum var. brevicorne (1706-1802); medium abundances of P. kawraiskyi and P. integrum (1802-1840 and 1920-1980), indicating cooler conditions while less eutrophic conditions are indicated by P. boryanum, and a mainly balanced composition with only small changes of cold- and warm-adapted Pediastrum species (1965-2011). In general, compositional Pediastrum species turnover is slightly higher than that indicated by pollen data (0.54 vs 0.34 SD), but both are only minor for this treeline location. In conclusion, the relevance of differentiation of Pediastrum species is promising and can give further insights into the relationship between lakes and their surrounding vegetation transferred onto climatic conditions. T3 - Zweitveröffentlichungen der Universität Potsdam : Mathematisch-Naturwissenschaftliche Reihe - 421 KW - morphotypes KW - Pediastrum KW - pollen KW - Siberia KW - treeline KW - vegetation Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:517-opus4-404882 VL - 25 IS - 4 ER -