TY - JOUR A1 - Schürmann, Robin Mathis A1 - Vogel, Stefanie A1 - Ebel, Kenny A1 - Bald, Ilko T1 - The physico-chemical basis of DNA radiosensitization BT - implications for cancer radiation therapy JF - Chemistry - a European journal N2 - High-energy radiation is used in combination with radiosensitizing therapeutics to treat cancer. The most common radiosensitizers are halogenated nucleosides and cisplatin derivatives, and recently also metal nanoparticles have been suggested as potential radiosensitizing agents. The radiosensitizing action of these compounds can at least partly be ascribed to an enhanced reactivity towards secondary low-energy electrons generated along the radiation track of the high-energy primary radiation, or to an additional emission of secondary reactive electrons close to the tumor tissue. This is referred to as physico-chemical radiosensitization. In this Concept article we present current experimental methods used to study fundamental processes of physico-chemical radiosensitization and discuss the most relevant classes of radiosensitizers. Open questions in the current discussions are identified and future directions outlined, which can lead to optimized treatment protocols or even novel therapeutic concepts. KW - cancer KW - dissociative electron attachment KW - low-energy electrons KW - radiation therapy KW - radiosensitizers Y1 - 2018 U6 - https://doi.org/10.1002/chem.201800804 SN - 0947-6539 SN - 1521-3765 VL - 24 IS - 41 SP - 10271 EP - 10279 PB - Wiley-VCH CY - Weinheim ER - TY - JOUR A1 - Guo, Ranran A1 - Tian, Ye A1 - Yang, Yueqi A1 - Jiang, Qin A1 - Wang, Yajun A1 - Yang, Wuli T1 - A Yolk-Shell nanoplatform for gene-silencing-enhanced photolytic ablation of cancer JF - Advanced functional materials N2 - Noninvasive near-infrared (NIR) light responsive therapy is a promising cancer treatment modality; however, some inherent drawbacks of conventional phototherapy heavily restrict its application in clinic. Rather than producing heat or reactive oxygen species in conventional NIR treatment, here a multifunctional yolk-shell nanoplatform is proposed that is able to generate microbubbles to destruct cancer cells upon NIR laser irradiation. Besides, the therapeutic effect is highly improved through the coalition of small interfering RNA (siRNA), which is codelivered by the nanoplatform. In vitro experiments demonstrate that siRNA significantly inhibits expression of protective proteins and reduces the tolerance of cancer cells to bubble-induced environmental damage. In this way, higher cytotoxicity is achieved by utilizing the yolk-shell nanoparticles than treated with the same nanoparticles missing siRNA under NIR laser irradiation. After surface modification with polyethylene glycol and transferrin, the yolk-shell nanoparticles can target tumors selectively, as demonstrated from the photoacoustic and ultrasonic imaging in vivo. The yolk-shell nanoplatform shows outstanding tumor regression with minimal side effects under NIR laser irradiation. Therefore, the multifunctional nanoparticles that combining bubble-induced mechanical effect with RNA interference are expected to be an effective NIR light responsive oncotherapy. KW - cancer KW - gene silencing KW - near-infrared absorption KW - photolytic ablation KW - yolk-shell nanoparticles Y1 - 2018 U6 - https://doi.org/10.1002/adfm.201706398 SN - 1616-301X SN - 1616-3028 VL - 28 IS - 14 PB - Wiley-VCH CY - Weinheim ER -