TY - JOUR A1 - Turner, Monica L. A1 - Schaye, Joop A1 - Crain, Robert A. A1 - Theuns, Tom A1 - Wendt, Martin T1 - Observations of metals in the z approximate to 3.5 intergalactic medium and comparison to the EAGLE simulations JF - Monthly notices of the Royal Astronomical Society N2 - We study the z approximate to 3.5 intergalactic medium (IGM) by comparing new, high-quality absorption spectra of eight QSOs with < z(QSO)> = 3.75, to virtual observations of the Evolution and Assembly of Galaxies and their Environments (EAGLE) cosmological hydrodynamical simulations. We employ the pixel optical depth method and uncover strong correlations between various combinations of H I, C III, C IV, Si III, Si IV, and O VI. We find good agreement between many of the simulated and observed correlations, including tau(O) (VI) (tau(H) (I)). However, the observed median optical depths for the tau(C) (IV) (tau(H) (I)) and tau(Si) (IV) (tau(H) (I)) relations are higher than those measured from the mock spectra. The discrepancy increases from up to approximate to 0.1 dex at tau(H) (I) = 1 to approximate to 1 dex at tau(H) (I) = 10(2), where we are likely probing dense regions at small galactocentric distances. As possible solutions, we invoke (a) models of ionizing radiation softened above 4 Ryd to account for delayed completion of He II reionization; (b) simulations run at higher resolution; (c) the inclusion of additional line broadening due to unresolved turbulence; and (d) increased elemental abundances; however, none of these factors can fully explain the observed differences. Enhanced photoionization of H I by local sources, which was not modelled, could offer a solution. However, the much better agreement with the observed O VI(H I) relation, which we find probes a hot and likely collisionally ionized gas phase, indicates that the simulations are not in tension with the hot phase of the IGM, and suggests that the simulated outflows may entrain insufficient cool gas. KW - galaxies: formation KW - intergalactic medium KW - quasars: absorption lines Y1 - 2016 U6 - https://doi.org/10.1093/mnras/stw1816 SN - 0035-8711 SN - 1365-2966 VL - 462 SP - 2440 EP - 2464 PB - Oxford Univ. Press CY - Oxford ER - TY - JOUR A1 - Guber, Christoph R. A1 - Richter, Philipp T1 - Dust depletion of Ca and Ti in QSO absorption-line systems JF - Wiley Interdisciplinary Reviews : Water N2 - Aims. To explore the role of titanium-and calcium-dust depletion in gas in and around galaxies, we systematically study Ti/Ca abundance ratios in intervening absorption-line systems at low and high redshift. Methods. We investigate high-resolution optical spectra obtained by the UVES instrument at the Very Large Telescope (VLT) and spectroscopically analyze 34 absorption-line systems at z <= 0.5 to measure column densities (or limits) for Ca II and Ti II. We complement our UVES data set with previously published absorption-line data on Ti/Ca for redshifts up to z similar to 3.8. Our absorber sample contains 110 absorbers including damped Lyman alpha systems (DLAs), sub-DLAs, and Lyman-Limit systems (LLS). We compare our Ti/Ca findings with results from the MilkyWay and the Magellanic Clouds and discuss the properties of Ti/Ca absorbers in the general context of quasar absorption-line systems. Results. Our analysis indicates that there are two distinct populations of absorbers with either high or low Ti/Ca ratios with a separation at [Ti/Ca] approximate to 1. While the calcium-dust depletion in most of the absorbers appears to be severe, the titanium depletions are mild in systems with high Ti/Ca ratios. The derived trend indicates that absorbers with high Ti/Ca ratios have dust-to-gas ratios that are substantially lower than in the Milky Way. We characterize the overall nature of the absorbers by correlating Ti/Ca with other observables (e.g., metallicity, velocity-component structure) and by modeling the ionization properties of singly-ionized Ca and Ti in different environments. Conclusions. We conclude that Ca II and Ti II bearing absorption-line systems trace predominantly neutral gas in the disks and inner halo regions of galaxies, where the abundance of Ca and Ti reflects the local metal and dust content of the gas. Our study suggests that the Ti/Ca ratio represents a useful measure for the gas-to-dust ratio and overall metallicity in intervening absorption-line systems. KW - quasars: absorption lines KW - dust, extinction KW - galaxies: abundances KW - galaxies: ISM KW - intergalactic medium Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201628466 SN - 1432-0746 VL - 591 PB - EDP Sciences CY - Les Ulis ER - TY - JOUR A1 - Richter, Philipp A1 - Wakker, Bart P. A1 - Fechner, Cora A1 - Herenz, Peter A1 - Tepper-Garcia, T. A1 - Fox, Andrew J. T1 - An HST/COS legacy survey of intervening Si III absorption in the extended gaseous halos of low-redshift galaxies JF - Climate : open access journal N2 - Aims. Doubly ionized silicon (Si III) is a powerful tracer of diffuse ionized gas inside and outside of galaxies. It can be observed in the local Universe in ultraviolet (UV) absorption against bright extragalactic background sources. We here present an extensive study of intervening Si III-selected absorbers and study the properties of the warm circumgalactic medium (CGM) around low-redshift (z <= 0.1) galaxies. Methods. We analyzed the UV absorption spectra of 303 extragalactic background sources, as obtained with the Cosmic Origins Spectrograph (COS) on-board the Hubble Space Telescope (HST). We developed a geometrical model for the absorption-cross section of the CGM around the local galaxy population and compared the observed Si III absorption statistics with predictions provided by the model. We also compared redshifts and positions of the absorbers with those of similar to 64 000 galaxies using archival galaxy-survey data to investigate the relation between intervening Si III absorbers and the CGM. Results. Along a total redshift path of Delta z approximate to 24, we identify 69 intervening Si III systems that all show associated absorption from other low and high ions (e.g., H I, Si II, Si IV, C II, C IV). We derive a bias-corrected number density of dN/dz(Si III) = 2.5 +/- 0.4 for absorbers with column densities log N(Si III) > 12.2, which is similar to 3 times the number density of strong Mg II systems at z = 0. This number density matches the expected cross section of a Si III absorbing CGM around the local galaxy population with a mean covering fraction of < f(c)> = 0.69. For the majority (similar to 60 percent) of the absorbers, we identify possible host galaxies within 300 km s(-1) of the absorbers and derive impact parameters rho < 200 kpc, demonstrating that the spatial distributions of Si III absorbers and galaxies are highly correlated. Conclusions. Our study indicates that the majority of Si III-selected absorbers in our sample trace the CGM of nearby galaxies within their virial radii at a typical covering fraction of similar to 70 percent. We estimate that diffuse gas in the CGM around galaxies, as traced by Si III, contains substantially more (more than twice as much) baryonic mass than their neutral interstellar medium. KW - galaxies: halos KW - galaxies: formation KW - intergalactic medium KW - quasars: absorption lines Y1 - 2016 U6 - https://doi.org/10.1051/0004-6361/201527038 SN - 1432-0746 VL - 590 PB - EDP Sciences CY - Les Ulis ER -