TY - JOUR A1 - Kleinpeter, Erich ED - Webb, GA T1 - Quantification and visualization of the anisotropy effect in NMR spectroscopy by through-space NMR shieldings JF - Annual reports on NMR spectroscopy JF - Annual Reports on NMR Spectroscopy N2 - The anisotropy effect of functional groups (respectively the ring-current effect of aryl moieties) in H-1 NMR spectra has been computed as spatial NICS (through-space NMR chemical shieldings) and visualized by iso-chemical-shielding surfaces of various size and low(high) field direction. Hereby, the anisotropy/ring-current effect, which proves to be the molecular response property of spatial NICS, can be quantified and can be readily employed for assignment purposes in proton NMR spectroscopy-characteristic examples of stereochemistry and position assignments (the latter in supramolecular structures) will be given. In addition, anisotropy/ring-current effects in H-1 NMR spectra can be quantitatively separated from the second dominant structural effect in proton NMR spectra, the steric compression effect, pointing into the reverse direction, and the ring-current effect, by far the strongest anisotropy effect, can be impressively employed to visualize and quantify (anti) aromaticity and to clear up standing physical-organic phenomena as are pseudo-, spherical, captodative, homo-and chelatoaromaticity, to characterize the pi-electronic structure of, for example, fulvenes, fulvalenes, annulenes or fullerenes and to differentiate aromatic and quinonoid structures. KW - Through-space NMR shielding (TSNMRS) KW - Anisotropy effect KW - Stereochemistry KW - Ring-current effect KW - Aromatic or quinonoid KW - Aromaticity KW - Chelatoaromaticity KW - Binding pocket position KW - Supramolecular compounds KW - Diastereomers assignment Y1 - 2014 SN - 978-0-12-800184-4 U6 - https://doi.org/10.1016/B978-0-12-800184-4.00003-5 SN - 0066-4103 VL - 82 SP - 115 EP - 166 PB - Elsevier CY - San Diego ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas A1 - Schulz, Stefanie A1 - Wacker, Philipp T1 - Interplay of para- and diatropic ring currents [(anti)aromaticity] of macrocyclic rings subject to conformational influences, further annelation and hydrogenation of aromatic ring moieties JF - Tetrahedron N2 - The spatial magnetic properties (Through Space NMR Shieldings-TSNMRS) of a variety of porphyrins, hemiporphyrazines and tetraoxo[8]circulenes have been computed, visualized as Iso-chemical Shielding Surfaces (ICSS) of various size and direction, and were examined subject to the interplay of present (para)-diatropic ring currents [(anti)aromaticity] and influences on the latter property originating from the macrocyclic ring conformation, further annelation and partial to complete hydrogenation of aromatic ring moieties. Caution seems to be indicated when concluding from a single NICS parameter to present (para)diatropic ring currents [(anti)aromaticity]. (C) 2014 Elsevier Ltd. All rights reserved. KW - Porphyrins KW - Hemiporphyrazines KW - Tetraoxo[8]circulenes KW - (Anti)aromaticity KW - Anisotropy effect KW - Theoretical calculations Y1 - 2014 U6 - https://doi.org/10.1016/j.tet.2014.10.018 SN - 0040-4020 VL - 70 IS - 48 SP - 9230 EP - 9239 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Michaelis, Marcus A1 - Koch, Andreas T1 - Are para-nitro-pyridine N-oxides quinonoid or benzenoid? An answer given by spatial NICS (TSNMRS) JF - Tetrahedron N2 - The spatial magnetic properties (Through-Space NMR Shieldings-TSNMRS) of a number of substituted para-nitro-pyridine N-oxides have been computed, visualized as Iso-Chemical-Shielding-Surfaces (ICSS) of various size and direction, and were examined subject to the present quinonoid or benzenoid pi-relectron distribution of the six-membered ring. (C) 2015 Elsevier Ltd. All rights reserved. KW - para-Nitro-pyridine N-oxides KW - Quinonoid structure KW - Benzenoid structure KW - Ring current effect KW - Anisotropy effect KW - Theoretical calculations Y1 - 2015 U6 - https://doi.org/10.1016/j.tet.2015.02.043 SN - 0040-4020 VL - 71 IS - 15 SP - 2273 EP - 2279 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Characterization and quantification of quasi-aromaticity by spatial magnetic properties (TSNMRS) JF - Tetrahedron N2 - The spatial magnetic properties (Through Space NMR Shieldings-TSNMRS) of various types of structures with suggested quasi-aromaticity (a summaring topic: in detail push pull, captodative, chelate, supramolecular aromaticity, etc.) have been computed, are visualized as Isochemical Shielding Surfaces (ICSS) of various size/direction and examined subject to identify and quantify present (partial) aromaticity. While the TSNMRS approach proves really helpful [even in cases of (4n+2) pi-electron cyclic moieties formed via non-covalent polar interactions] quasi-aromaticity suggested for enol forms of 1,3-dicarbonyl compounds via resonance-assisted intramolecular and intermolecular hydrogen bonding cannot be confirmed. (C) 2015 Elsevier Ltd. All rights reserved. KW - Quasi-aromaticity KW - Ring current effect KW - Anisotropy effect KW - Theoretical calculations KW - ICSS KW - TSNMRS Y1 - 2015 U6 - https://doi.org/10.1016/j.tet.2015.06.019 SN - 0040-4020 VL - 71 IS - 33 SP - 5275 EP - 5284 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Hansen, Poul Erik A1 - Koch, Andreas A1 - Kleinpeter, Erich T1 - Ring current and anisotropy effects on OH chemical shifts in resonance-assisted intramolecular H-bonds JF - Tetrahedron letters N2 - Ring current effects on resonance-assisted and intramolecularly bridged hydrogen bond protons for 10-hydroxybenzo[h]quinoline 1 and a number of related compounds were calculated and the through-space NMR shieldings (TSNMRS) obtained hereby visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. These calculations revealed that this through-space effect is comparably large (up to 2 ppm) dependent on the position of the intramolecularly bridged OH proton, and therefore, contribute considerably to the chemical shift of the latter making it questionable to use delta(OH)/ppm in the estimation of intramolecular hydrogen bond strength without taking this into account. Furthermore, the anisotropy effects of additional groups on the aromatic moiety (e.g. the carbonyl group in salicylaldehyde or in o-hydroxyacetophenone of ca. 0.6 ppm deshielding) should also be considered. These through-space effects need to be taken into account when using OH chemical shifts to estimate hydrogen bond strength. KW - RA-intramolecular hydrogen bond KW - Through-space NMR shieldings (TSNMRS) KW - Iso-chemical-shielding surfaces (ICSS) KW - Ring current effect KW - Anisotropy effect Y1 - 2018 U6 - https://doi.org/10.1016/j.tetlet.2018.05.006 SN - 0040-4039 VL - 59 IS - 23 SP - 2288 EP - 2292 PB - Elsevier CY - Oxford ER - TY - JOUR A1 - Kleinpeter, Erich A1 - Koch, Andreas T1 - Dative or coordinative carbon-boron bond in boron trapped N-heterocyclic carbenes (NHCs)? BT - an answer given on the magnetic criterion JF - Tetrahedron : the international journal for the rapid publication of full original research papers and critical reviews in organic chemistry N2 - The spatial magnetic properties, through-space NMR shieldings (TSNMRS), of isolated as well as B-C bond length varied model compounds (BR3 trapped NHCs) have been calculated using the GIAO perturbation method employing the nucleus independent chemical shift (NICS) concept and the results visualized as iso-chemical-shielding surfaces (ICSS) of various size and direction. The TSNMRS values (actually the anisotropy effects measurable in H-1 NMR spectroscopy) are employed to qualify and quantify the present dative vs. coordinative bond character of the boron-carbon bond in the trapped NHCs. Results are confirmed by bond lengths and B-11/C-13 chemical shift variations in the BR3 trapped NHCs. KW - NHCs KW - Dative vs. coordinative NHC -> BR3 bond KW - Through-space NMR KW - shieldings (TSNMRS) KW - NICS KW - Anisotropy effect Y1 - 2021 U6 - https://doi.org/10.1016/j.tet.2020.131787 SN - 0040-4020 SN - 1464-5416 VL - 80 PB - Elsevier CY - Amsterdam ER -